




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
山東省棲霞市2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末檢測(cè)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.將一枚均勻的骰子先后拋擲3次,至少出現(xiàn)兩次點(diǎn)數(shù)為3的概率為()A. B.C. D.2.設(shè)函數(shù),則()A.4 B.5C.6 D.73.設(shè)是雙曲線的一個(gè)焦點(diǎn),,是的兩個(gè)頂點(diǎn),上存在一點(diǎn),使得與以為直徑的圓相切于,且是線段的中點(diǎn),則的漸近線方程為A. B.C. D.4.橢圓與(0<k<9)的()A.長(zhǎng)軸的長(zhǎng)相等B.短軸的長(zhǎng)相等C.離心率相等D.焦距相等5.已知,條件,條件,則是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.已知雙曲線E的漸近線為,則其離心率為()A. B.C. D.或7.已知復(fù)數(shù)滿足(其中為虛數(shù)單位),則復(fù)數(shù)的虛部為()A. B.C. D.8.已知各項(xiàng)均為正數(shù)的等比數(shù)列{},=5,=10,則=A. B.7C.6 D.9.拋物線的焦點(diǎn)到直線的距離()A. B.C.1 D.210.在四棱錐中,底面為平行四邊形,為邊的中點(diǎn),為邊上的一列點(diǎn),連接,交于,且,其中數(shù)列的首項(xiàng),則()A. B.為等比數(shù)列C. D.11.函數(shù)的導(dǎo)函數(shù)為,對(duì)任意,都有成立,若,則滿足不等式的的取值范圍是()A. B.C D.12.設(shè),若函數(shù),有大于零的極值點(diǎn),則A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知點(diǎn)在拋物線上,那么點(diǎn)到點(diǎn)的距離與點(diǎn)到拋物線焦點(diǎn)距離之和取得最小值時(shí),點(diǎn)的坐標(biāo)為______14.設(shè)實(shí)數(shù)、滿足約束條件,則的最小值為___________.15.在空間直角坐標(biāo)系中,點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為點(diǎn),則___________.16.總書記在“十九大”報(bào)告中指出:堅(jiān)定文化自信,推動(dòng)中華優(yōu)秀傳統(tǒng)文化創(chuàng)造性轉(zhuǎn)化.“楊輝三角”揭示了二項(xiàng)式系數(shù)在三角形中的一種幾何排列規(guī)律,最早在中國(guó)南宋數(shù)學(xué)家楊輝1261年所著的《詳解九章算法》一書中出現(xiàn),歐洲數(shù)學(xué)家帕斯卡在1654年才發(fā)現(xiàn)這一規(guī)律,比楊輝要晚近四百年.“楊輝三角”是中國(guó)數(shù)學(xué)史上的一個(gè)偉大成就,激發(fā)起一批又一批數(shù)學(xué)愛好者的探究欲望.如圖所示,在由二項(xiàng)式系數(shù)所構(gòu)成的“楊輝三角中,第10行第8個(gè)數(shù)是______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)甲、乙等6個(gè)班級(jí)參加學(xué)校組織廣播操比賽,若采用抽簽的方式隨機(jī)確定各班級(jí)的出場(chǎng)順序(序號(hào)為1,2,…,6),求:(1)甲、乙兩班級(jí)的出場(chǎng)序號(hào)中至少有一個(gè)為奇數(shù)的概率;(2)甲、乙兩班級(jí)之間的演出班級(jí)(不含甲乙)個(gè)數(shù)X的分布列與期望18.(12分)已知拋物線C:上一點(diǎn)到焦點(diǎn)F的距離為2(1)求實(shí)數(shù)p的值;(2)若直線l過C的焦點(diǎn),與拋物線交于A,B兩點(diǎn),且,求直線l的方程19.(12分)在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且滿足bcosA+(2c+a)cosB=0(1)求角B的大?。唬?)若b=4,△ABC的面積為,求a+c的值20.(12分)要設(shè)計(jì)一種圓柱形、容積為500mL的一體化易拉罐金屬包裝,如何設(shè)計(jì)才能使得總成本最低?21.(12分)已知橢圓,其焦點(diǎn)為,,離心率為,若點(diǎn)滿足.(1)求橢圓的方程;(2)若直線與橢圓交于兩點(diǎn),為坐標(biāo)原點(diǎn),的重心滿足:,求實(shí)數(shù)的取值范圍.22.(10分)如圖,在四棱錐中,底面ABCD是邊長(zhǎng)為1的菱形,且,側(cè)棱,,M是PC的中點(diǎn),設(shè),,(1)試用,,表示向量;(2)求BM的長(zhǎng)
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】利用次獨(dú)立重復(fù)試驗(yàn)中事件A恰好發(fā)生次的概率計(jì)算公式直接求解.【詳解】解:將一枚均勻的篩子先后拋擲3次,每次出現(xiàn)點(diǎn)數(shù)為3的概率都是至少出現(xiàn)兩次點(diǎn)數(shù)為3的概率為:故選:D2、D【解析】求出函數(shù)的導(dǎo)數(shù),將x=1代入即可求得答案.【詳解】,故,故選:D.3、C【解析】根據(jù)圖形的幾何特性轉(zhuǎn)化成雙曲線的之間的關(guān)系求解.【詳解】設(shè)另一焦點(diǎn)為,連接,由于是圓的切線,則,且,又是的中點(diǎn),則是的中位線,則,且,由雙曲線定義可知,由勾股定理知,,,即,漸近線方程為,所以漸近線方程為故選C.【點(diǎn)睛】本題考查雙曲線的簡(jiǎn)單的幾何性質(zhì),屬于中檔題.4、D【解析】根據(jù)橢圓方程求得兩個(gè)橢圓的,由此確定正確選項(xiàng).【詳解】橢圓與(0<k<9)的焦點(diǎn)分別在x軸和y軸上,前者a2=25,b2=9,則c2=16,后者a2=25-k,b2=9-k,則顯然只有D正確故選:D5、A【解析】利用“1”的妙用探討命題“若p則q”的真假,取特殊值計(jì)算說明“若q則p”的真假即可判斷作答.【詳解】因?yàn)?,由得:,則,當(dāng)且僅當(dāng),即時(shí)取等號(hào),因此,,因,,由,取,則,,即,,所以是的充分不必要條件.故選:A6、D【解析】根據(jù)雙曲線標(biāo)準(zhǔn)方程與漸近線的關(guān)系即可求解.【詳解】當(dāng)雙曲線焦點(diǎn)在x軸上時(shí),漸近線為,故離心率為;當(dāng)雙曲線焦點(diǎn)在y軸上時(shí),漸近線為,故離心率為;故選:D.7、A【解析】由題目條件可得,即,然后利用復(fù)數(shù)的運(yùn)算法則化簡(jiǎn).【詳解】因?yàn)?,所以,則故復(fù)數(shù)的虛部為.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的相關(guān)概念及復(fù)數(shù)的乘除運(yùn)算,按照復(fù)數(shù)的運(yùn)算法則化簡(jiǎn)計(jì)算即可,較簡(jiǎn)單.8、A【解析】由等比數(shù)列的性質(zhì)知,a1a2a3,a4a5a6,a7a8a9成等比數(shù)列,所以a4a5a6=故答案為考點(diǎn):等比數(shù)列的性質(zhì)、指數(shù)冪的運(yùn)算、根式與指數(shù)式的互化等知識(shí),轉(zhuǎn)化與化歸的數(shù)學(xué)思想9、B【解析】由拋物線可得焦點(diǎn)坐標(biāo),結(jié)合點(diǎn)到直線的距離公式,即可求解.【詳解】由拋物線可得焦點(diǎn)坐標(biāo)為,根據(jù)點(diǎn)到直線的距離公式,可得,即拋物線的焦點(diǎn)到直線的距離為.故選:B.10、A【解析】由得,為邊的中點(diǎn)得,設(shè),所以,根據(jù)向量相等可判斷A選項(xiàng);由得是公比為的等比數(shù)列,可判斷B選項(xiàng);代入可判斷C選項(xiàng);當(dāng)時(shí)可判斷D選項(xiàng).【詳解】由得,因?yàn)闉檫叺闹悬c(diǎn),所以,所以設(shè),所以,所以,當(dāng)時(shí),A選項(xiàng)正確;,由得,是公比為的等比數(shù)列,所以,所以,所以,不是常數(shù),故B選項(xiàng)錯(cuò)誤;所以,由得,故C選項(xiàng)錯(cuò)誤;當(dāng)時(shí),,所以,此時(shí)為的中點(diǎn),與重合,即,,故D錯(cuò)誤.故選:A.11、C【解析】構(gòu)造函數(shù),利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,將所求不等式變形為,結(jié)合函數(shù)的單調(diào)性即可得解.【詳解】對(duì)任意,都有成立,即令,則,所以函數(shù)在上單調(diào)遞增不等式即,即因?yàn)?,所以所以,,解得,所以不等式的解集為故選:C.12、B【解析】設(shè),則,若函數(shù)在x∈R上有大于零的極值點(diǎn)即有正根,當(dāng)有成立時(shí),顯然有,此時(shí).由,得參數(shù)a的范圍為.故選B考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由拋物線定義可得,由此可知當(dāng)為與拋物線的交點(diǎn)時(shí),取得最小值,進(jìn)而求得點(diǎn)坐標(biāo).【詳解】由題意得:拋物線焦點(diǎn)為,準(zhǔn)線為作,垂直于準(zhǔn)線,如下圖所示:由拋物線定義知:(當(dāng)且僅當(dāng)三點(diǎn)共線時(shí)取等號(hào))即的最小值為,此時(shí)為與拋物線的交點(diǎn)故答案為【點(diǎn)睛】本題考查拋物線線上的點(diǎn)到焦點(diǎn)的距離與到定點(diǎn)距離之和最小的相關(guān)問題的求解,關(guān)鍵是能夠熟練應(yīng)用拋物線定義確定最值取得的位置.14、2【解析】畫出不等式組對(duì)應(yīng)的可行域,平移動(dòng)直線后可得目標(biāo)函數(shù)的最小值.【詳解】不等式組對(duì)應(yīng)的可行域如圖所示:將初始直線平移至點(diǎn)時(shí),可取最小值,由可得,故,故答案為:2.15、【解析】先利用關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)特征求出點(diǎn),再利用空間兩點(diǎn)間的距離公式即可求.【詳解】因?yàn)锽與關(guān)于原點(diǎn)對(duì)稱,故,所以.故答案為:.16、120【解析】根據(jù)二項(xiàng)式的展開式系數(shù)的相關(guān)知識(shí)即可求解.【詳解】因?yàn)?,二?xiàng)式展開式第項(xiàng)的系數(shù)為,所以,第10行第8個(gè)數(shù)是.故答案為:120三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)X01234p期望為.【解析】(1)求出甲、乙兩班級(jí)的出場(chǎng)序號(hào)中均為偶數(shù)的概率,進(jìn)而求出答案;(2)求出X的可能取值及相應(yīng)的概率,寫出分布列,求出期望值.【小問1詳解】由題意得:甲、乙兩班級(jí)的出場(chǎng)序號(hào)中均為偶數(shù)的概率為,故甲、乙兩班級(jí)的出場(chǎng)序號(hào)中至少有一個(gè)為奇數(shù)的概率;【小問2詳解】X的可能取值為0,1,2,3,4,,,,故分布列為:X01234p數(shù)學(xué)期望為18、(1)2(2)或【解析】(1)根據(jù)拋物線上的點(diǎn)到焦點(diǎn)與準(zhǔn)線的距離相等可得到結(jié)果(2)通過聯(lián)立拋物線與直線方程利用韋達(dá)定理求解關(guān)系式即可得到結(jié)果【小問1詳解】拋物線焦點(diǎn)為,準(zhǔn)線方程為,因?yàn)辄c(diǎn)到焦點(diǎn)F距離為2,所以,解得【小問2詳解】拋物線C的焦點(diǎn)坐標(biāo)為,當(dāng)斜率不存在時(shí),可得不滿足題意,當(dāng)斜率存在時(shí),設(shè)直線l的方程為聯(lián)立方程,得,顯然,設(shè),,則,所以,解得所以直線l的方程為或19、(1)(2)【解析】(1)利用正弦定理化簡(jiǎn),通過兩角和與差的三角函數(shù)求出,即可得到結(jié)果(2)利用三角形的面積求出,通過由余弦定理求解即可【詳解】解:(1)因?yàn)閎cosA=(2c+a)cos(π﹣B),所以sinBcosA=(﹣2sinC﹣sinA)cosB所以sin(A+B)=﹣2sinCcosB∴cosB=﹣∴B=(2)由=得ac=4由余弦定理得b2=a2+c2+ac=(a+c)2+ac=16∴a+c=2【點(diǎn)睛】本題主要考查了利用正、余弦定理及三角形的面積公式解三角形問題,其中在解有關(guān)三角形的題目時(shí),要有意識(shí)地考慮用哪個(gè)定理更合適,或是兩個(gè)定理都要用.一般地,如果式子中含有角的余弦或邊的二次式時(shí),要考慮用余弦定理;如果式子中含有角的正弦或邊的一次式時(shí),則考慮用正弦定理;以上特征都不明顯時(shí),則要考慮兩個(gè)定理都有可能用到20、當(dāng)圓柱底面半徑為,高為時(shí),總成本最底.【解析】設(shè)圓柱底面半徑為cm,高為cm,圓柱表面積為Scm2,進(jìn)而根據(jù)體積得到,然后求出表面積,進(jìn)而運(yùn)用導(dǎo)數(shù)的方法求得表面積的最小值,此時(shí)成本最小.【詳解】設(shè)圓柱底面半徑為cm,高為cm,圓柱表面積為Scm2,每平方厘米金屬包裝造價(jià)為元,由題意得:,則,表面積造價(jià),,令,得,令,得,的單調(diào)遞減區(qū)間為,遞增區(qū)間為,當(dāng)圓柱底面半徑為,高為時(shí),總成本最底.21、(1)(2)【解析】(1)運(yùn)用橢圓的離心率公式,結(jié)合橢圓的定義可得在橢圓上,代入橢圓方程,求出,,即可求橢圓的方程;(2)設(shè)出直線方程,聯(lián)立直線和橢圓方程,利用根與系數(shù)之間的關(guān)系、以及向量數(shù)量積的坐標(biāo)表示進(jìn)行求解即可.【小問1詳解】依題意得,點(diǎn),滿足,可得在橢圓上,可得:,且,解得,,所以橢圓的方程為;【小問2詳解】設(shè),,,,,,當(dāng)時(shí),,此時(shí)A,B關(guān)于y軸對(duì)稱,則重心為,由得:,則,此時(shí)與橢圓不會(huì)有兩交點(diǎn),故不合題意,故;聯(lián)立與橢圓方程,可得,可得,化為,,,①,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 軟考網(wǎng)絡(luò)工程師未來趨勢(shì)展望試題及答案
- 網(wǎng)絡(luò)工程師的實(shí)踐技能提升試題及答案
- 西方政治制度的多樣性研究試題及答案
- 如何提高公共政策的有效性與透明度試題及答案
- 安全工程師考試題庫(kù)及答案
- 安全風(fēng)險(xiǎn)管理試題及答案
- 工業(yè)廢氣深度凈化技術(shù)2025年在汽車制造行業(yè)應(yīng)用前景報(bào)告
- 軟技能在軟件設(shè)計(jì)師考試中的試題及答案
- 政治教育在民主社會(huì)中的重要性試題及答案
- 安全電路試題及答案
- ECMO并發(fā)癥教學(xué)課件
- 消防水管道改造應(yīng)急預(yù)案
- 2021城鎮(zhèn)燃?xì)庥枚酌褢?yīng)用技術(shù)規(guī)程
- 【保安服務(wù)】服務(wù)承諾
- 07第七講 發(fā)展全過程人民民主
- 弱電智能化系統(tǒng)施工方案
- 對(duì)外派人員的員工幫助計(jì)劃以華為公司為例
- 2020-2021學(xué)年浙江省寧波市鎮(zhèn)海區(qū)七年級(jí)(下)期末數(shù)學(xué)試卷(附答案詳解)
- GB/T 9162-2001關(guān)節(jié)軸承推力關(guān)節(jié)軸承
- GB/T 34560.2-2017結(jié)構(gòu)鋼第2部分:一般用途結(jié)構(gòu)鋼交貨技術(shù)條件
- 閱讀繪本《小種子》PPT
評(píng)論
0/150
提交評(píng)論