十年(14-23)高考數(shù)學(xué)真題分項匯編專題02 函數(shù)選擇題(理科)(含解析)_第1頁
十年(14-23)高考數(shù)學(xué)真題分項匯編專題02 函數(shù)選擇題(理科)(含解析)_第2頁
十年(14-23)高考數(shù)學(xué)真題分項匯編專題02 函數(shù)選擇題(理科)(含解析)_第3頁
十年(14-23)高考數(shù)學(xué)真題分項匯編專題02 函數(shù)選擇題(理科)(含解析)_第4頁
十年(14-23)高考數(shù)學(xué)真題分項匯編專題02 函數(shù)選擇題(理科)(含解析)_第5頁
已閱讀5頁,還剩53頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

十年(2014-2023)年高考真題分項匯編—函數(shù)(選擇題)目錄TOC\o"1-1"\h\u題型一:函數(shù)及其表示 1題型二:函數(shù)的基本性質(zhì) 2題型三:基本初等函數(shù) 21題型四:函數(shù)的圖像 32題型五:函數(shù)與方程 43題型六:函數(shù)模型及其應(yīng)用 50題型七:函數(shù)的綜合問題 52題型一:函數(shù)及其表示1.(2023年天津卷·第5題)已知函數(shù)SKIPIF1<0一條對稱軸為直線SKIPIF1<0,一個周期為4,則SKIPIF1<0的解析式可能為 ()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B解析:由函數(shù)的解析式考查函數(shù)的最小周期性:A選項中SKIPIF1<0,B選項中SKIPIF1<0,C選項中SKIPIF1<0,D選項中SKIPIF1<0,排除選項CD,對于A選項,當(dāng)SKIPIF1<0時,函數(shù)值SKIPIF1<0,故SKIPIF1<0是函數(shù)的一個對稱中心,排除選項A,對于B選項,當(dāng)SKIPIF1<0時,函數(shù)值SKIPIF1<0,故SKIPIF1<0是函數(shù)的一條對稱軸,故選:B.2.(2014高考數(shù)學(xué)陜西理科·第10題)如圖,某飛行器在4千米高空水平飛行,從距著陸點(diǎn)SKIPIF1<0的水平距離10千米處下降,已知下降飛行軌跡為某三次函數(shù)圖像的一部分,則函數(shù)的解析式為 ()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A解析:由函數(shù)圖象可知,該三次函數(shù)過原點(diǎn),故可設(shè)SKIPIF1<0,由SKIPIF1<0解得SKIPIF1<0,故選A.3.(2014高考數(shù)學(xué)陜西理科·第7題)下列函數(shù)中,滿足“SKIPIF1<0”的單調(diào)遞增函數(shù)是 ()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D解析:從選項中檢驗(yàn)滿足SKIPIF1<0,只有C,D.其中為增函數(shù)的為D.故選D.4.(2014高考數(shù)學(xué)江西理科·第3題)已知函數(shù),,若,則 ()A.1 B.2 C.3 D.-1【答案】A解析:因?yàn)?所以即選A.題型二:函數(shù)的基本性質(zhì)1.(2023年北京卷·第4題)下列函數(shù)中,在區(qū)間SKIPIF1<0上單調(diào)遞增的是 ()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C解析:對于A,因?yàn)镾KIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,故A錯誤;對于B,因?yàn)镾KIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,故B錯誤;對于C,因?yàn)镾KIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故C正確;對于D,因?yàn)镾KIPIF1<0,SKIPIF1<0,顯然SKIPIF1<0在SKIPIF1<0上不單調(diào),D錯誤.故選:C.2.(2023年天津卷·第3題)若SKIPIF1<0,則SKIPIF1<0的大小關(guān)系為 ()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D解析:由SKIPIF1<0在R上遞增,則SKIPIF1<0,由SKIPIF1<0在SKIPIF1<0上遞增,則SKIPIF1<0.所以SKIPIF1<0.故選:D3.(2023年新課標(biāo)全國Ⅰ卷·第4題)設(shè)函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,則SKIPIF1<0的取值范圍是 ()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D解析:函數(shù)SKIPIF1<0在R上單調(diào)遞增,而函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,則有函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,因此SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的取值范圍是SKIPIF1<0.故選:D4.(2023年新課標(biāo)全國Ⅱ卷·第4題)若SKIPIF1<0為偶函數(shù),則SKIPIF1<0 ().A.SKIPIF1<0 B.0 C.SKIPIF1<0 D.1【答案】B解析:因?yàn)镾KIPIF1<0為偶函數(shù),則SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,則其定義域?yàn)镾KIPIF1<0或SKIPIF1<0,關(guān)于原點(diǎn)對稱.SKIPIF1<0,故此時SKIPIF1<0為偶函數(shù).故選:B.5.(2023年全國乙卷理科·第4題)已知SKIPIF1<0是偶函數(shù),則SKIPIF1<0 ()A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.2【答案】D解析:因?yàn)镾KIPIF1<0為偶函數(shù),則SKIPIF1<0,又因?yàn)镾KIPIF1<0不恒為0,可得SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.故選:D.6.(2021年新高考全國Ⅱ卷·第8題)已知函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0為偶函數(shù),SKIPIF1<0為奇函數(shù),則 ()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B解析:因?yàn)楹瘮?shù)SKIPIF1<0為偶函數(shù),則SKIPIF1<0,可得SKIPIF1<0,因?yàn)楹瘮?shù)SKIPIF1<0為奇函數(shù),則SKIPIF1<0,所以,SKIPIF1<0,所以,SKIPIF1<0,即SKIPIF1<0,故函數(shù)SKIPIF1<0是以4為周期的周期函數(shù),因?yàn)楹瘮?shù)SKIPIF1<0為奇函數(shù),則SKIPIF1<0,故SKIPIF1<0,其它三個選項未知,故選B.7.(2021年高考全國乙卷理科·第0題)設(shè)函數(shù)SKIPIF1<0,則下列函數(shù)中為奇函數(shù)的是 ()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B解析:由題意可得SKIPIF1<0,對于A,SKIPIF1<0不是奇函數(shù);對于B,SKIPIF1<0是奇函數(shù);對于C,SKIPIF1<0,定義域不關(guān)于原點(diǎn)對稱,不是奇函數(shù);對于D,SKIPIF1<0,定義域不關(guān)于原點(diǎn)對稱,不是奇函數(shù).故選:B8.(2020年高考課標(biāo)Ⅱ卷理科·第0題)設(shè)函數(shù)SKIPIF1<0,則f(x) ()A.是偶函數(shù),且在SKIPIF1<0單調(diào)遞增 B.是奇函數(shù),且在SKIPIF1<0單調(diào)遞減C.是偶函數(shù),且在SKIPIF1<0單調(diào)遞增 D.是奇函數(shù),且在SKIPIF1<0單調(diào)遞減【答案】D解析:由SKIPIF1<0得SKIPIF1<0定義域?yàn)镾KIPIF1<0,關(guān)于坐標(biāo)原點(diǎn)對稱,又SKIPIF1<0,SKIPIF1<0為定義域上的奇函數(shù),可排除AC;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,排除B;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0在定義域內(nèi)單調(diào)遞增,根據(jù)復(fù)合函數(shù)單調(diào)性可知:SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,D正確.故選:D.9.(2020年新高考全國Ⅰ卷(山東)·第8題)若定義在SKIPIF1<0的奇函數(shù)f(x)在SKIPIF1<0單調(diào)遞減,且f(2)=0,則滿足SKIPIF1<0的x的取值范圍是 ()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D解析:因?yàn)槎x在SKIPIF1<0上的奇函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,且SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上也是單調(diào)遞減,且SKIPIF1<0,SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以由SKIPIF1<0可得:SKIPIF1<0或SKIPIF1<0或SKIPIF1<0解得SKIPIF1<0或SKIPIF1<0,所以滿足SKIPIF1<0的SKIPIF1<0的取值范圍是SKIPIF1<0,故選:D.10.(2020年新高考全國卷Ⅱ數(shù)學(xué)(海南)·第8題)若定義在SKIPIF1<0的奇函數(shù)f(x)在SKIPIF1<0單調(diào)遞減,且f(2)=0,則滿足SKIPIF1<0的x的取值范圍是 ()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D解析:因?yàn)槎x在SKIPIF1<0上的奇函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,且SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上也是單調(diào)遞減,且SKIPIF1<0,SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以由SKIPIF1<0可得:SKIPIF1<0或SKIPIF1<0或SKIPIF1<0解得SKIPIF1<0或SKIPIF1<0,所以滿足SKIPIF1<0的SKIPIF1<0的取值范圍是SKIPIF1<0,故選:D.11.(2022高考北京卷·第7題)在北京冬奧會上,國家速滑館“冰絲帶”使用高效環(huán)保二氧化碳跨臨界直冷制冰技術(shù),為實(shí)現(xiàn)綠色冬奧作出了貢獻(xiàn).如圖描述了一定條件下二氧化碳所處的狀態(tài)與T和SKIPIF1<0的關(guān)系,其中T表示溫度,單位是K;P表示壓強(qiáng),單位是SKIPIF1<0.下列結(jié)論中正確的是 () ()A.當(dāng)SKIPIF1<0,SKIPIF1<0時,二氧化碳處于液態(tài)B.當(dāng)SKIPIF1<0,SKIPIF1<0時,二氧化碳處于氣態(tài)C.當(dāng)SKIPIF1<0,SKIPIF1<0時,二氧化碳處于超臨界狀態(tài)D.當(dāng)SKIPIF1<0,SKIPIF1<0時,二氧化碳處于超臨界狀態(tài)【答案】D解析:當(dāng)SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,此時二氧化碳處于固態(tài),故A錯誤.當(dāng)SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,此時二氧化碳處于液態(tài),故B錯誤.當(dāng)SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0與4非常接近,故此時二氧化碳處于固態(tài),另一方面,SKIPIF1<0時對應(yīng)的是非超臨界狀態(tài),故C錯誤.當(dāng)SKIPIF1<0,SKIPIF1<0時,因SKIPIF1<0,故此時二氧化碳處于超臨界狀態(tài),故D正確.故選,D12.(2022高考北京卷·第4題)己知函數(shù)SKIPIF1<0,則對任意實(shí)數(shù)x,有 ()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C解析:SKIPIF1<0,故A錯誤,C正確;SKIPIF1<0,不是常數(shù),故BD錯誤;故選,C.13.(2022新高考全國II卷·第8題)已知函數(shù)SKIPIF1<0的定義域?yàn)镽,且SKIPIF1<0,則SKIPIF1<0 ()A.SKIPIF1<0 B.SKIPIF1<0 C.0 D.1【答案】A解析:因?yàn)镾KIPIF1<0,令SKIPIF1<0可得,SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0可得,SKIPIF1<0,即SKIPIF1<0,所以函數(shù)SKIPIF1<0為偶函數(shù),令SKIPIF1<0得,SKIPIF1<0,即有SKIPIF1<0,從而可知SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0,所以函數(shù)SKIPIF1<0的一個周期為SKIPIF1<0.因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以一個周期內(nèi)的SKIPIF1<0.由于22除以6余4,所以SKIPIF1<0.故選:A.14.(2022新高考全國I卷·第7題)設(shè)SKIPIF1<0,則 ()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C解析:設(shè)SKIPIF1<0,因?yàn)镾KIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時,SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞增,又SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0故選:C.15.(2019·上?!さ?5題)已知SKIPIF1<0,函數(shù)SKIPIF1<0,存在常數(shù)SKIPIF1<0,使得SKIPIF1<0為偶函數(shù),則SKIPIF1<0可能的值為 ()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】法一(推薦):依次代入選項的值,檢驗(yàn)SKIPIF1<0的奇偶性,選C;法二:SKIPIF1<0,若SKIPIF1<0為偶函數(shù),則SKIPIF1<0,且SKIPIF1<0也為偶函數(shù)(偶函數(shù)×偶函數(shù)=偶函數(shù)),∴SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,選C.16.(2019·全國Ⅲ·理·第11題)設(shè)SKIPIF1<0是定義域?yàn)镾KIPIF1<0的偶函數(shù),且在SKIPIF1<0單調(diào)遞減,則 ()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】SKIPIF1<0是SKIPIF1<0上的偶函數(shù),SKIPIF1<0.SKIPIF1<0,又SKIPIF1<0在(0,+∞)單調(diào)遞減,SKIPIF1<0,SKIPIF1<0,故選C.17.(2018年高考數(shù)學(xué)課標(biāo)Ⅱ卷(理)·第11題)已知SKIPIF1<0是定義域?yàn)镾KIPIF1<0的奇函數(shù),滿足SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0 ()A.SKIPIF1<0 B.0 C.2 D.50【答案】C解析:因?yàn)镾KIPIF1<0是定義域?yàn)镾KIPIF1<0的奇函數(shù),且滿足SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,因此SKIPIF1<0是周期函數(shù)且SKIPIF1<0.又SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故選C.18.(2014高考數(shù)學(xué)上海理科·第18題)設(shè)SKIPIF1<0若SKIPIF1<0是SKIPIF1<0的最小值,則SKIPIF1<0的取值范圍為 ().A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D解析:當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,二次函數(shù)對稱軸為SKIPIF1<0,要使得SKIPIF1<0時有最小值,則SKIPIF1<0,綜上SKIPIF1<0.19.(2014高考數(shù)學(xué)山東理科·第5題)已知實(shí)數(shù)SKIPIF1<0滿足SKIPIF1<0(SKIPIF1<0),則下列關(guān)系式恒成立的是 ()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】SKIPIF1<0解析:由SKIPIF1<0知,SKIPIF1<0,所以SKIPIF1<0.20.(2014高考數(shù)學(xué)山東理科·第3題)函數(shù)SKIPIF1<0的定義域?yàn)?()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】SKIPIF1<0解析:因?yàn)镾KIPIF1<0,所以SKIPIF1<0或SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.21.(2014高考數(shù)學(xué)遼寧理科·第12題)已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0滿足:①SKIPIF1<0;②對所有SKIPIF1<0,且SKIPIF1<0,有SKIPIF1<0.若對所有SKIPIF1<0,SKIPIF1<0,則k的最小值為 ()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B解析:依題意,由SKIPIF1<0,得SKIPIF1<0,所以定義在[0,1]上的函數(shù)y=f(x)上任意兩點(diǎn)直線的斜率|k|<SKIPIF1<0,

不妨令k>0,構(gòu)造函數(shù)f(x)=SKIPIF1<0(SKIPIF1<0),滿足f(0)=f(1)=0,|f(x)-f(y)|<SKIPIF1<0|x-y|.

當(dāng)x∈[0,SKIPIF1<0],且y∈[0,SKIPIF1<0]時,所以SKIPIF1<0,即SKIPIF1<0,所以|f(x)-f(y)|=|kx-ky|=k|x-y|≤SKIPIF1<0k<SKIPIF1<0;

當(dāng)x∈[0,SKIPIF1<0],且y∈[SKIPIF1<0,1]時,有SKIPIF1<0,所以|f(x)-f(y)|=|kx-(k-ky)|=|k(x+y)-k|≤|SKIPIF1<0k-k|=SKIPIF1<0<SKIPIF1<0;

當(dāng)y∈[0,SKIPIF1<0],且x∈[SKIPIF1<0,1]時,同理可得,|f(x)-f(y)|<SKIPIF1<0;

當(dāng)x∈[SKIPIF1<0,1],且y∈[SKIPIF1<0,1]時,|f(x)-f(y)|=|(k-kx)-(k-ky)|=k|x-y|≤k×(1-SKIPIF1<0)=SKIPIF1<0<SKIPIF1<0;∴當(dāng)k>0時,對所有x,y∈[0,1],|f(x)-f(y)|<SKIPIF1<0,∵對所有x,y∈[0,1],|f(x)-f(y)|<k恒成立,∴k≥SKIPIF1<0,即k的最小值為SKIPIF1<0.

當(dāng)SKIPIF1<0時,同理可得|f(x)-f(y)|<SKIPIF1<0,即k的最小值為SKIPIF1<0.

綜上所述,k的最小值為SKIPIF1<0.解析2:先證SKIPIF1<0.不妨設(shè)SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0;若SKIPIF1<0,有SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0所以SKIPIF1<0.由于對稱性,同理可證明當(dāng)SKIPIF1<0時,SKIPIF1<0;故:SKIPIF1<0再證SKIPIF1<0.為了證明這一點(diǎn),我們需要構(gòu)造一族函數(shù).我們構(gòu)造如下函數(shù):SKIPIF1<0(其中SKIPIF1<0是遠(yuǎn)小于SKIPIF1<0的正數(shù))顯然有SKIPIF1<0.接下來再驗(yàn)證條件(2).同樣不妨設(shè)SKIPIF1<0.(i)當(dāng)SKIPIF1<0時,SKIPIF1<0(ii)當(dāng)SKIPIF1<0時,SKIPIF1<0SKIPIF1<0;(iii)當(dāng)SKIPIF1<0時,SKIPIF1<0SKIPIF1<0(因?yàn)榇藭r有SKIPIF1<0和SKIPIF1<0,所以SKIPIF1<0).又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,由于SKIPIF1<0的任意性,令SKIPIF1<0趨近與0,可得SKIPIF1<0.由于對稱性,同理可證明當(dāng)SKIPIF1<0時,SKIPIF1<0;綜合SKIPIF1<0,所以只有SKIPIF1<0.解析3:依題意,由SKIPIF1<0,得SKIPIF1<0,所以定義在[0,1]上的函數(shù)y=f(x)任意兩點(diǎn)連線的直線斜率|k|<SKIPIF1<0,設(shè)直線SKIPIF1<0:SKIPIF1<0,直線SKIPIF1<0:SKIPIF1<0,直線SKIPIF1<0與直線SKIPIF1<0的交點(diǎn)PSKIPIF1<0,如圖所示的函數(shù)y=f(x)滿足的條件函數(shù)之一(函數(shù)y=f(x)的圖像位于直線SKIPIF1<0與直線SKIPIF1<0的下方,即SKIPIF1<0.),所以對所有x,y∈[0,1],|f(x)-f(y)|<SKIPIF1<0,∵對所有x,y∈[0,1],|f(x)-f(y)|<k恒成立,∴k≥SKIPIF1<0,即k的最小值為SKIPIF1<0.解析4:依題意,由SKIPIF1<0,得SKIPIF1<0,所以定義在[0,1]上的函數(shù)y=f(x)任意兩點(diǎn)連線的直線斜率|k|<SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0(SKIPIF1<0),滿足已經(jīng)條件①,②;當(dāng)x,y∈[0,SKIPIF1<0]或x,y∈[SKIPIF1<0,1],時所以SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)x∈[0,SKIPIF1<0],y∈[SKIPIF1<0,1]或x∈[SKIPIF1<0,1],y∈[0,SKIPIF1<0]時,SKIPIF1<0|k(x+y)-k|≤|SKIPIF1<0k-k|=SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,綜上:當(dāng)SKIPIF1<0時,SKIPIF1<0.∵對所有x,y∈[0,1],|f(x)-f(y)|<k恒成立,∴k≥SKIPIF1<0,即k的最小值為SKIPIF1<0.22.(2014高考數(shù)學(xué)課標(biāo)1理科·第3題)設(shè)函數(shù),的定義域都為R,且是奇函數(shù),是偶函數(shù),則下列結(jié)論正確的是 ()A.是偶函數(shù) B.||是奇函數(shù)C.||是奇函數(shù) D.||是奇函數(shù)【答案】C解析:設(shè),則,∵是奇函數(shù),是偶函數(shù),∴,為奇函數(shù),選C.23.(2014高考數(shù)學(xué)江西理科·第2題)函數(shù)的定義域?yàn)?()A. B. C. D.【答案】C分析:由題意得:解得或,所以選C.24.(2014高考數(shù)學(xué)湖南理科·第10題)已知函數(shù)SKIPIF1<0與SKIPIF1<0的圖象上存在關(guān)于SKIPIF1<0軸對稱的點(diǎn),則SKIPIF1<0的取值范圍是 ()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B解析:由題可得存在SKIPIF1<0滿足SKIPIF1<0SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0取決于負(fù)無窮小時,SKIPIF1<0趨近于SKIPIF1<0,因?yàn)楹瘮?shù)SKIPIF1<0在定義域內(nèi)是單調(diào)遞增的,所以SKIPIF1<0,故選B.25.(2014高考數(shù)學(xué)湖南理科·第3題)已知SKIPIF1<0分別是定義在SKIPIF1<0上的偶函數(shù)和奇函數(shù),且SKIPIF1<0,則SKIPIF1<0= ()A.-3 B.-1 C.1 D.3【答案】C解析:分別令x=1和x=-1可得SKIPIF1<0且SKIPIF1<0SKIPIF1<0則SKIPIF1<0,故選C.26.(2014高考數(shù)學(xué)福建理科·第7題)已知函數(shù)SKIPIF1<0,則下列結(jié)論正確的是 ()A.SKIPIF1<0是偶函數(shù) B.SKIPIF1<0是增函數(shù)C.SKIPIF1<0是周期函數(shù) D.SKIPIF1<0的值域?yàn)镾KIPIF1<0【答案】D解析:由解析式可知當(dāng)SKIPIF1<0時,SKIPIF1<0為周期函數(shù),當(dāng)SKIPIF1<0時,SKIPIF1<0為二次函數(shù)的一部分,故SKIPIF1<0不是單調(diào)函數(shù),不是周期函數(shù),也不具備奇偶性,故可排除A、B、C,對于D,當(dāng)SKIPIF1<0時,函數(shù)的值域?yàn)镾KIPIF1<0,當(dāng)SKIPIF1<0時,函數(shù)的值域?yàn)橹涤驗(yàn)镾KIPIF1<0,故函數(shù)SKIPIF1<0的值域?yàn)镾KIPIF1<0,故正確.故選:D.27.(2014高考數(shù)學(xué)北京理科·第3題)曲線SKIPIF1<0,(SKIPIF1<0為參數(shù))的對稱中心 ()A.在直線SKIPIF1<0上 B.在直線SKIPIF1<0上C.在直線SKIPIF1<0上 D.在直線SKIPIF1<0上【答案】B解析:消去參數(shù)SKIPIF1<0,將參數(shù)方程化為普通方程:SKIPIF1<0,其對稱中心是圓心SKIPIF1<0,該點(diǎn)在直線SKIPIF1<0上,故選B28.(2014高考數(shù)學(xué)北京理科·第2題)下列函數(shù)中,在區(qū)間SKIPIF1<0上為增函數(shù)的是 ()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A解析:A項,函數(shù)SKIPIF1<0在SKIPIF1<0上為增函數(shù),所以在SKIPIF1<0上為增函數(shù),故正確;B項,函數(shù)SKIPIF1<0在SKIPIF1<0上為減函數(shù),在SKIPIF1<0上為增函數(shù),故錯誤;C項,函數(shù)SKIPIF1<0SKIPIF1<0在R上為減函數(shù),故錯誤;D項,函數(shù)SKIPIF1<0在SKIPIF1<0上為減函數(shù),故錯誤。29.(2014高考數(shù)學(xué)安徽理科·第9題)若SKIPIF1<0的最小值為3,則實(shí)數(shù)SKIPIF1<0的值為 ()A.5或8 B.?1或5 C.?1或4 D.?4或8【答案】D解析:利用絕對值的幾何意義,SKIPIF1<0,結(jié)合數(shù)軸易知,當(dāng)SKIPIF1<0時,取得最小值,此時SKIPIF1<0,由SKIPIF1<0,可求得SKIPIF1<0或SKIPIF1<0,故選D.30.(2014高考數(shù)學(xué)安徽理科·第6題)設(shè)函數(shù)SKIPIF1<0滿足SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0 ()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A解析:由題意可得SKIPIF1<0,SKIPIF1<0SKIPIF1<0,兩式相加可得SKIPIF1<0,所以SKIPIF1<0是周期為SKIPIF1<0的周期函數(shù),所以SKIPIF1<0,故選A.31.(2015高考數(shù)學(xué)四川理科·第9題)如果函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0單調(diào)遞減,則SKIPIF1<0的最大值為 ()A.16 B.18 C.25 D.SKIPIF1<0【答案】B解析:SKIPIF1<0時,拋物線的對稱軸為SKIPIF1<0.據(jù)題意,當(dāng)SKIPIF1<0時,SKIPIF1<0即SKIPIF1<0.SKIPIF1<0.由SKIPIF1<0且SKIPIF1<0得SKIPIF1<0.當(dāng)SKIPIF1<0時,拋物線開口向下,據(jù)題意得,SKIPIF1<0即SKIPIF1<0.SKIPIF1<0.由SKIPIF1<0且SKIPIF1<0得SKIPIF1<0,故應(yīng)舍去.要使得SKIPIF1<0取得最大值,應(yīng)有SKIPIF1<0SKIPIF1<0.所以SKIPIF1<0,所以最大值為18.選B..32.(2015高考數(shù)學(xué)湖南理科·第5題)設(shè)函數(shù)SKIPIF1<0,則SKIPIF1<0是 ()A.奇函數(shù),且在SKIPIF1<0上是增函數(shù)B.奇函數(shù),且在SKIPIF1<0上是減函數(shù)C.偶函數(shù),且在SKIPIF1<0上是增函數(shù)D.偶函數(shù),且在SKIPIF1<0上是減函數(shù)【答案】A.分析:顯然,SKIPIF1<0定義域?yàn)镾KIPIF1<0,關(guān)于原點(diǎn)對稱,又∵SKIPIF1<0,∴SKIPIF1<0為奇函數(shù),顯然,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故選A.33.(2015高考數(shù)學(xué)廣東理科·第3題)下列函數(shù)中,既不是奇函數(shù),也不是偶函數(shù)的是 ()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D解析:令SKIPIF1<0,則SKIPIF1<0即SKIPIF1<0,所以SKIPIF1<0既不是奇函數(shù)也不是偶函數(shù),而BCD依次是奇函數(shù)、偶函數(shù)、偶函數(shù),故選D.34.(2015高考數(shù)學(xué)福建理科·第2題)下列函數(shù)為奇函數(shù)的是 ()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D解析:函數(shù)SKIPIF1<0是非奇非偶函數(shù);SKIPIF1<0和SKIPIF1<0是偶函數(shù);SKIPIF1<0是奇函數(shù),故選D.35.(2015高考數(shù)學(xué)安徽理科·第2題)下列函數(shù)中,既是偶函數(shù)又存在零點(diǎn)的是 ()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A解析:由選項可知,SKIPIF1<0項均不是偶函數(shù),故排除SKIPIF1<0,SKIPIF1<0項是偶函數(shù),但SKIPIF1<0項與SKIPIF1<0軸沒有交點(diǎn),即SKIPIF1<0項的函數(shù)不存在零點(diǎn),故選A.36.(2017年高考數(shù)學(xué)新課標(biāo)Ⅰ卷理科·第5題)函數(shù)在單調(diào)遞減,且為奇函數(shù).若,則滿足的的取值范圍是 ()A. B. C. D.【答案】D【解析】因?yàn)闉槠婧瘮?shù)且在上單調(diào)遞減,要使成立,則滿足,所以由得,即使成立的滿足,選D.37.(2017年高考數(shù)學(xué)天津理科·第8題)已知函數(shù)設(shè),若關(guān)于的不等式在上恒成立,則的取值范圍是 ()A. B. C. D.【答案】A.【解析】由不等式得,,只需要計算在上的最大值和在上的最小值即可,當(dāng)時又(當(dāng)時取等號),(當(dāng)時取等號),所以,當(dāng)時又(當(dāng)時取等號),(當(dāng)時取等號),所以,綜上.故選A.38.(2017年高考數(shù)學(xué)天津理科·第6題)已知奇函數(shù)在上是增函數(shù),.若,,,則的大小關(guān)系為 ()A. B. C. D.【答案】C.【解析】因?yàn)槠婧瘮?shù)在上增函數(shù),所以當(dāng)時,,從而是上的偶函數(shù),且在上是增函數(shù),,,又,則,所以,所以,所以,故選C.39.(2017年高考數(shù)學(xué)課標(biāo)Ⅲ卷理科·第11題)已知函數(shù)有唯一零點(diǎn),則 ()A. B. C. D.【答案】C【解析】法一:,設(shè),當(dāng)時,,當(dāng)時,,函數(shù)單調(diào)遞減;當(dāng)時,,函數(shù)單調(diào)遞增,當(dāng)時,函數(shù)取得最小值,設(shè),當(dāng)時,函數(shù)取得最小值,若,函數(shù)和沒有交點(diǎn),當(dāng)時,時,函數(shù)和有一個交點(diǎn),即,所以,故選C.法二:由條件,,得:所以,即為的對稱軸由題意,有唯一零點(diǎn),∴的零點(diǎn)只能為即解得.40.(2017年高考數(shù)學(xué)北京理科·第5題)已知函數(shù),則 ()A.是奇函數(shù),且在上是增函數(shù) B.是偶函數(shù),且在上是增函數(shù)C.是奇函數(shù),且在上是減函數(shù) D.是偶函數(shù),且在上是減函數(shù)【答案】A【解析】,所以函數(shù)是奇函數(shù),并且是增函數(shù),是減函數(shù),根據(jù)增函數(shù)-減函數(shù)=增函數(shù),所以函數(shù)是增函數(shù),故選A.41.(2016高考數(shù)學(xué)上海理科·第18題)設(shè)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0是定義域?yàn)镾KIPIF1<0的三個函數(shù),對于命題:=1\*GB3①若SKIPIF1<0、SKIPIF1<0、SKIPIF1<0均為增函數(shù),則SKIPIF1<0、SKIPIF1<0、SKIPIF1<0中至少有一個增函數(shù);=2\*GB3②若SKIPIF1<0、SKIPIF1<0、SKIPIF1<0均是以SKIPIF1<0為周期的函數(shù),則SKIPIF1<0、SKIPIF1<0、SKIPIF1<0均是以SKIPIF1<0為周期的函數(shù),下列判斷正確的是 ()A.=1\*GB3①和=2\*GB3②均為真命題 B.=1\*GB3①和=2\*GB3②均為假命題C.=1\*GB3①為真命題,=2\*GB3②為假命題 D.=1\*GB3①為假命題,=2\*GB3②為真命題【答案】D【解析1】因?yàn)镾KIPIF1<0所以SKIPIF1<0又SKIPIF1<0、SKIPIF1<0、SKIPIF1<0均是以SKIPIF1<0為周期的函數(shù)所以SKIPIF1<0,所以SKIPIF1<0是周期為SKIPIF1<0的函數(shù)同理可得SKIPIF1<0、SKIPIF1<0均是以SKIPIF1<0為周期的函數(shù),②正確;SKIPIF1<0、SKIPIF1<0、SKIPIF1<0中至少有一個增函數(shù)包含一個增函數(shù)、兩個減函數(shù);兩個增函數(shù)、一個減函數(shù);三個增函數(shù),其中當(dāng)三個函數(shù)中一個為增函數(shù)、另兩個為減函數(shù)時,由于減函數(shù)加減函數(shù)一定為減函數(shù),所以①不正確.選D.【解析2】①不成立,可舉反例SKIPIF1<0,SKIPIF1<0,SKIPIF1<0②SKIPIF1<0SKIPIF1<0SKIPIF1<0前兩式作差,可得SKIPIF1<0結(jié)合第三式,可得SKIPIF1<0,SKIPIF1<0也有SKIPIF1<0∴②正確故選D.42.(2016高考數(shù)學(xué)山東理科·第9題)已知函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0.則SKIPIF1<0 ()A.?2 B.?1 C.0 D.2【答案】D【解析】當(dāng)SKIPIF1<0時,SKIPIF1<0,所以當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0是周期為SKIPIF1<0的周期函數(shù),所以SKIPIF1<0,又函數(shù)SKIPIF1<0是奇函數(shù),所以SKIPIF1<0,故選D.43.(2016高考數(shù)學(xué)課標(biāo)Ⅱ卷理科·第12題)已知函數(shù)SKIPIF1<0滿足SKIPIF1<0,若函數(shù)SKIPIF1<0與SKIPIF1<0圖像的交點(diǎn)為SKIPIF1<0,則SKIPIF1<0 ()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】SKIPIF1<0的圖像的對稱中心為SKIPIF1<0又函數(shù)SKIPIF1<0滿足SKIPIF1<0,所以SKIPIF1<0圖像的對稱中心為:SKIPIF1<0所以SKIPIF1<0,故選B44.(2016高考數(shù)學(xué)北京理科·第5題)已知SKIPIF1<0,且SKIPIF1<0,則 ()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C解析:SKIPIF1<0.考查的是反比例函數(shù)SKIPIF1<0在SKIPIF1<0單調(diào)遞減,所以SKIPIF1<0即SKIPIF1<0所以SKIPIF1<0錯;SKIPIF1<0.考查的是三角函數(shù)SKIPIF1<0在SKIPIF1<0單調(diào)性,不是單調(diào)的,所以不一定有SKIPIF1<0,SKIPIF1<0錯;SKIPIF1<0.考查的是指數(shù)函數(shù)SKIPIF1<0在SKIPIF1<0單調(diào)遞減,所以有SKIPIF1<0即SKIPIF1<0所以SKIPIF1<0對;SKIPIF1<0考查的是對數(shù)函數(shù)SKIPIF1<0的性質(zhì),SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0不一定有SKIPIF1<0,所以SKIPIF1<0錯.題型三:基本初等函數(shù)1.(2021年新高考全國Ⅱ卷·第7題)已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則下列判斷正確的是 ()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C解析:SKIPIF1<0,即SKIPIF1<0,故選C.2.(2021年高考全國乙卷理科·第0題)設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.則 ()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B解析:SKIPIF1<0,所以SKIPIF1<0;下面比較SKIPIF1<0與SKIPIF1<0的大小關(guān)系.記SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,由于SKIPIF1<0所以當(dāng)0<x<2時,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0;令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,由于SKIPIF1<0,在x>0時,SKIPIF1<0,所以SKIPIF1<0,即函數(shù)SKIPIF1<0在[0,+∞)上單調(diào)遞減,所以SKIPIF1<0,即SKIPIF1<0,即b<c;綜上,SKIPIF1<0,故選:B.3.(2021年高考全國甲卷理科·第0題)青少年視力是社會普遍關(guān)注的問題,視力情況可借助視力表測量.通常用五分記錄法和小數(shù)記錄法記錄視力數(shù)據(jù),五分記錄法的數(shù)據(jù)L和小數(shù)記錄表的數(shù)據(jù)V的滿足SKIPIF1<0.已知某同學(xué)視力的五分記錄法的數(shù)據(jù)為4.9,則其視力的小數(shù)記錄法的數(shù)據(jù)為 ()(SKIPIF1<0)A.1.5 B.1.2 C.0.8 D.0.6【答案】C解析:由SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0.故選:C.4.(2020年高考課標(biāo)Ⅰ卷理科·第0題)若SKIPIF1<0,則 ()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】設(shè)SKIPIF1<0,則SKIPIF1<0為增函數(shù),因?yàn)镾KIPIF1<0所以SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.SKIPIF1<0SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論