版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
湖南省株洲市荷塘區(qū)2024屆中考數(shù)學(xué)對(duì)點(diǎn)突破模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在⊙O中,弦AB=CD,AB⊥CD于點(diǎn)E,已知CE?ED=3,BE=1,則⊙O的直徑是()A.2 B. C.2 D.52.如圖,AB與⊙O相切于點(diǎn)B,OA=2,∠OAB=30°,弦BC∥OA,則劣弧的長(zhǎng)是()A. B. C. D.3.4的平方根是()A.2 B.±2 C.8 D.±84.如圖所示,在△ABC中,∠C=90°,AC=4,BC=3,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),使點(diǎn)C落在線段AB上的點(diǎn)E處,點(diǎn)B落在點(diǎn)D處,則BD兩點(diǎn)間的距離為()A.2 B. C. D.5.被譽(yù)為“中國(guó)天眼”的世界上最大的單口徑球面射電望遠(yuǎn)鏡FAST的反射面總面積約為250000m2,則250000用科學(xué)記數(shù)法表示為()A.25×104m2 B.0.25×106m2 C.2.5×105m2 D.2.5×106m26.甲、乙兩人同時(shí)分別從A,B兩地沿同一條公路騎自行車到C地.已知A,C兩地間的距離為110千米,B,C兩地間的距離為100千米.甲騎自行車的平均速度比乙快2千米/時(shí).結(jié)果兩人同時(shí)到達(dá)C地.求兩人的平均速度,為解決此問題,設(shè)乙騎自行車的平均速度為x千米/時(shí).由題意列出方程.其中正確的是()A. B. C. D.7.如圖,平行四邊形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,AE平分∠BAD,分別交BC、BD于點(diǎn)E、P,連接OE,∠ADC=60°,AB=BC=1,則下列結(jié)論:①∠CAD=30°②BD=③S平行四邊形ABCD=AB?AC④OE=AD⑤S△APO=,正確的個(gè)數(shù)是()A.2 B.3 C.4 D.58.一艘在南北航線上的測(cè)量船,于A點(diǎn)處測(cè)得海島B在點(diǎn)A的南偏東30°方向,繼續(xù)向南航行30海里到達(dá)C點(diǎn)時(shí),測(cè)得海島B在C點(diǎn)的北偏東15°方向,那么海島B離此航線的最近距離是()(結(jié)果保留小數(shù)點(diǎn)后兩位)(參考數(shù)據(jù):3≈1.732,2≈1.414)A.4.64海里B.5.49海里C.6.12海里D.6.21海里9.已知:如圖,AD是△ABC的角平分線,且AB:AC=3:2,則△ABD與△ACD的面積之比為()A.3:2 B.9:4 C.2:3 D.4:910.一家商店將某種服裝按成本價(jià)提高40%后標(biāo)價(jià),又以8折(即按標(biāo)價(jià)的80%)優(yōu)惠賣出,結(jié)果每件作服裝仍可獲利15元,則這種服裝每件的成本是()A.120元 B.125元 C.135元 D.140元二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.在如圖所示(A,B,C三個(gè)區(qū)域)的圖形中隨機(jī)地撒一把豆子,豆子落在區(qū)域的可能性最大(填A(yù)或B或C).12.飛機(jī)著陸后滑行的距離S(單位:米)與滑行的時(shí)間t(單位:秒)之間的函數(shù)關(guān)系式是s=60t﹣1.2t2,那么飛機(jī)著陸后滑行_____秒停下.13.分解因式:4a2-4a+1=______.14.計(jì)算()()的結(jié)果等于_____.15.如圖,反比例函數(shù)(x>0)的圖象與矩形OABC的邊長(zhǎng)AB、BC分別交于點(diǎn)E、F且AE=BE,則△OEF的面積的值為.16.如圖,在正方形ABCD中,E是AB上一點(diǎn),BE=2,AE=3BE,P是AC上一動(dòng)點(diǎn),則PB+PE的最小值是.三、解答題(共8題,共72分)17.(8分)如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k≠0)的圖象與x軸、y軸分別交于A、B兩點(diǎn),且與反比例函數(shù)y=nx(1)求一次函數(shù)與反比例函數(shù)的解析式;(2)記兩函數(shù)圖象的另一個(gè)交點(diǎn)為E,求△CDE的面積;(3)直接寫出不等式kx+b≤nx18.(8分)如圖,在矩形紙片ABCD中,AB=6,BC=1.把△BCD沿對(duì)角線BD折疊,使點(diǎn)C落在C′處,BC′交AD于點(diǎn)G;E、F分別是C′D和BD上的點(diǎn),線段EF交AD于點(diǎn)H,把△FDE沿EF折疊,使點(diǎn)D落在D′處,點(diǎn)D′恰好與點(diǎn)A重合.(1)求證:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的長(zhǎng).19.(8分)某小學(xué)為每個(gè)班級(jí)配備了一種可以加熱的飲水機(jī),該飲水機(jī)的工作程序是:放滿水后,接通電源,則自動(dòng)開始加熱,每分鐘水溫上升10℃,待加熱到100℃,飲水機(jī)自動(dòng)停止加熱,水溫開始下降,水溫y(℃)和通電時(shí)間x(min)成反比例關(guān)系,直至水溫降至室溫,飲水機(jī)再次自動(dòng)加熱,重復(fù)上述過程.設(shè)某天水溫和室溫為20℃,接通電源后,水溫和時(shí)間的關(guān)系如下圖所示,回答下列問題:(1)分別求出當(dāng)0≤x≤8和8<x≤a時(shí),y和x之間的關(guān)系式;(2)求出圖中a的值;(3)李老師這天早上7:30將飲水機(jī)電源打開,若他想再8:10上課前能喝到不超過40℃的開水,問他需要在什么時(shí)間段內(nèi)接水.20.(8分)如圖,⊙O是Rt△ABC的外接圓,∠C=90°,tanB=,過點(diǎn)B的直線l是⊙O的切線,點(diǎn)D是直線l上一點(diǎn),過點(diǎn)D作DE⊥CB交CB延長(zhǎng)線于點(diǎn)E,連接AD,交⊙O于點(diǎn)F,連接BF、CD交于點(diǎn)G.(1)求證:△ACB∽△BED;(2)當(dāng)AD⊥AC時(shí),求的值;(3)若CD平分∠ACB,AC=2,連接CF,求線段CF的長(zhǎng).21.(8分)某手機(jī)店銷售部型和部型手機(jī)的利潤(rùn)為元,銷售部型和部型手機(jī)的利潤(rùn)為元.(1)求每部型手機(jī)和型手機(jī)的銷售利潤(rùn);(2)該手機(jī)店計(jì)劃一次購(gòu)進(jìn),兩種型號(hào)的手機(jī)共部,其中型手機(jī)的進(jìn)貨量不超過型手機(jī)的倍,設(shè)購(gòu)進(jìn)型手機(jī)部,這部手機(jī)的銷售總利潤(rùn)為元.①求關(guān)于的函數(shù)關(guān)系式;②該手機(jī)店購(gòu)進(jìn)型、型手機(jī)各多少部,才能使銷售總利潤(rùn)最大?(3)在(2)的條件下,該手機(jī)店實(shí)際進(jìn)貨時(shí),廠家對(duì)型手機(jī)出廠價(jià)下調(diào)元,且限定手機(jī)店最多購(gòu)進(jìn)型手機(jī)部,若手機(jī)店保持同種手機(jī)的售價(jià)不變,設(shè)計(jì)出使這部手機(jī)銷售總利潤(rùn)最大的進(jìn)貨方案.22.(10分)如圖,一座鋼結(jié)構(gòu)橋梁的框架是△ABC,水平橫梁BC長(zhǎng)18米,中柱AD高6米,其中D是BC的中點(diǎn),且AD⊥BC.(1)求sinB的值;(2)現(xiàn)需要加裝支架DE、EF,其中點(diǎn)E在AB上,BE=2AE,且EF⊥BC,垂足為點(diǎn)F,求支架DE的長(zhǎng).23.(12分)如圖,BC是路邊坡角為30°,長(zhǎng)為10米的一道斜坡,在坡頂燈桿CD的頂端D處有一探射燈,射出的邊緣光線DA和DB與水平路面AB所成的夾角∠DAN和∠DBN分別是37°和60°(圖中的點(diǎn)A、B、C、D、M、N均在同一平面內(nèi),CM∥AN).求燈桿CD的高度;求AB的長(zhǎng)度(結(jié)果精確到0.1米).(參考數(shù)據(jù):=1.1.sin37°≈060,cos37°≈0.80,tan37°≈0.75)24.某校為了解本校九年級(jí)男生體育測(cè)試中跳繩成績(jī)的情況,隨機(jī)抽取該校九年級(jí)若干名男生,調(diào)查他們的跳繩成績(jī)(次/分),按成績(jī)分成,,,,五個(gè)等級(jí).將所得數(shù)據(jù)繪制成如下統(tǒng)計(jì)圖.根據(jù)圖中信息,解答下列問題:該校被抽取的男生跳繩成績(jī)頻數(shù)分布直方圖(1)本次調(diào)查中,男生的跳繩成績(jī)的中位數(shù)在________等級(jí);(2)若該校九年級(jí)共有男生400人,估計(jì)該校九年級(jí)男生跳繩成績(jī)是等級(jí)的人數(shù).
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解題分析】
作OH⊥AB于H,OG⊥CD于G,連接OA,根據(jù)相交弦定理求出EA,根據(jù)題意求出CD,根據(jù)垂徑定理、勾股定理計(jì)算即可.【題目詳解】解:作OH⊥AB于H,OG⊥CD于G,連接OA,由相交弦定理得,CE?ED=EA?BE,即EA×1=3,解得,AE=3,∴AB=4,∵OH⊥AB,∴AH=HB=2,∵AB=CD,CE?ED=3,∴CD=4,∵OG⊥CD,∴EG=1,由題意得,四邊形HEGO是矩形,∴OH=EG=1,由勾股定理得,OA=,∴⊙O的直徑為,故選C.【題目點(diǎn)撥】此題考查了相交弦定理、垂徑定理、勾股定理、矩形的判定與性質(zhì);根據(jù)圖形作出相應(yīng)的輔助線是解本題的關(guān)鍵.2、B【解題分析】解:連接OB,OC.∵AB為圓O的切線,∴∠ABO=90°.在Rt△ABO中,OA=2,∠OAB=30°,∴OB=1,∠AOB=60°.∵BC∥OA,∴∠OBC=∠AOB=60°.又∵OB=OC,∴△BOC為等邊三角形,∴∠BOC=60°,則劣弧BC的弧長(zhǎng)為=π.故選B.點(diǎn)睛:此題考查了切線的性質(zhì),含30度直角三角形的性質(zhì),以及弧長(zhǎng)公式,熟練掌握切線的性質(zhì)是解答本題的關(guān)鍵.3、B【解題分析】
依據(jù)平方根的定義求解即可.【題目詳解】∵(±1)1=4,∴4的平方根是±1.故選B.【題目點(diǎn)撥】本題主要考查的是平方根的定義,掌握平方根的定義是解題的關(guān)鍵.4、C【解題分析】解:連接BD.在△ABC中,∵∠C=90°,AC=4,BC=3,∴AB=2.∵將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),使點(diǎn)C落在線段AB上的點(diǎn)E處,點(diǎn)B落在點(diǎn)D處,∴AE=4,DE=3,∴BE=2.在Rt△BED中,BD=.故選C.點(diǎn)睛:本題考查了勾股定理和旋轉(zhuǎn)的基本性質(zhì),解決此類問題的關(guān)鍵是掌握旋轉(zhuǎn)的基本性質(zhì),特別是線段之間的關(guān)系.題目整體較為簡(jiǎn)單,適合隨堂訓(xùn)練.5、C【解題分析】
科學(xué)記數(shù)法的表示形式為a×10n,其中1≤|a|<10,n為整數(shù).【題目詳解】解:由科學(xué)記數(shù)法可知:250000m2=2.5×105m2,故選C.【題目點(diǎn)撥】此題考查科學(xué)記數(shù)法表示較大的數(shù)的方法,準(zhǔn)確確定a與n值是關(guān)鍵.6、A【解題分析】設(shè)乙騎自行車的平均速度為x千米/時(shí),則甲騎自行車的平均速度為(x+2)千米/時(shí),根據(jù)題意可得等量關(guān)系:甲騎110千米所用時(shí)間=乙騎100千米所用時(shí)間,根據(jù)等量關(guān)系可列出方程即可.解:設(shè)乙騎自行車的平均速度為x千米/時(shí),由題意得:=,故選A.7、D【解題分析】
①先根據(jù)角平分線和平行得:∠BAE=∠BEA,則AB=BE=1,由有一個(gè)角是60度的等腰三角形是等邊三角形得:△ABE是等邊三角形,由外角的性質(zhì)和等腰三角形的性質(zhì)得:∠ACE=30°,最后由平行線的性質(zhì)可作判斷;②先根據(jù)三角形中位線定理得:OE=AB=,OE∥AB,根據(jù)勾股定理計(jì)算OC=和OD的長(zhǎng),可得BD的長(zhǎng);③因?yàn)椤螧AC=90°,根據(jù)平行四邊形的面積公式可作判斷;④根據(jù)三角形中位線定理可作判斷;⑤根據(jù)同高三角形面積的比等于對(duì)應(yīng)底邊的比可得:S△AOE=S△EOC=OE?OC=,,代入可得結(jié)論.【題目詳解】①∵AE平分∠BAD,∴∠BAE=∠DAE,∵四邊形ABCD是平行四邊形,∴AD∥BC,∠ABC=∠ADC=60°,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=1,∴△ABE是等邊三角形,∴AE=BE=1,∵BC=2,∴EC=1,∴AE=EC,∴∠EAC=∠ACE,∵∠AEB=∠EAC+∠ACE=60°,∴∠ACE=30°,∵AD∥BC,∴∠CAD=∠ACE=30°,故①正確;②∵BE=EC,OA=OC,∴OE=AB=,OE∥AB,∴∠EOC=∠BAC=60°+30°=90°,Rt△EOC中,OC=,∵四邊形ABCD是平行四邊形,∴∠BCD=∠BAD=120°,∴∠ACB=30°,∴∠ACD=90°,Rt△OCD中,OD=,∴BD=2OD=,故②正確;③由②知:∠BAC=90°,∴S?ABCD=AB?AC,故③正確;④由②知:OE是△ABC的中位線,又AB=BC,BC=AD,∴OE=AB=AD,故④正確;⑤∵四邊形ABCD是平行四邊形,∴OA=OC=,∴S△AOE=S△EOC=OE?OC=××,∵OE∥AB,∴,∴,∴S△AOP=S△AOE==,故⑤正確;本題正確的有:①②③④⑤,5個(gè),故選D.【題目點(diǎn)撥】本題考查了平行四邊形的性質(zhì)、等腰三角形的性質(zhì)、直角三角形30度角的性質(zhì)、三角形面積和平行四邊形面積的計(jì)算;熟練掌握平行四邊形的性質(zhì),證明△ABE是等邊三角形是解決問題的關(guān)鍵,并熟練掌握同高三角形面積的關(guān)系.8、B【解題分析】
根據(jù)題意畫出圖如圖所示:作BD⊥AC,取BE=CE,根據(jù)三角形內(nèi)角和和等腰三角形的性質(zhì)得出BA=BE,AD=DE,設(shè)BD=x,Rt△ABD中,根據(jù)勾股定理得AD=DE=
3x,AB=BE=CE=2x,由AC=AD+DE+EC=2
3x+2x=30,解之即可得出答案.【題目詳解】根據(jù)題意畫出圖如圖所示:作BD⊥AC,取BE=CE,
∵AC=30,∠CAB=30°∠ACB=15°,
∴∠ABC=135°,
又∵BE=CE,
∴∠ACB=∠EBC=15°,
∴∠ABE=120°,
又∵∠CAB=30°
∴BA=BE,AD=DE,
設(shè)BD=x,
在Rt△ABD中,
∴AD=DE=
3x,AB=BE=CE=2x,
∴AC=AD+DE+EC=2
3x+2x=30,
∴x=153+1
=
15【題目點(diǎn)撥】本題考查了三角形內(nèi)角和定理與等腰直角三角形的性質(zhì),解題的關(guān)鍵是熟練的掌握三角形內(nèi)角和定理與等腰直角三角形的性質(zhì).9、A【解題分析】試題解析:過點(diǎn)D作DE⊥AB于E,DF⊥AC于F.∵AD為∠BAC的平分線,∴DE=DF,又AB:AC=3:2,故選A.點(diǎn)睛:角平分線上的點(diǎn)到角兩邊的距離相等.10、B【解題分析】試題分析:通過理解題意可知本題的等量關(guān)系,即每件作服裝仍可獲利=按成本價(jià)提高40%后標(biāo)價(jià),又以8折賣出,根據(jù)這兩個(gè)等量關(guān)系,可列出方程,再求解.解:設(shè)這種服裝每件的成本是x元,根據(jù)題意列方程得:x+15=(x+40%x)×80%解這個(gè)方程得:x=125則這種服裝每件的成本是125元.故選B.考點(diǎn):一元一次方程的應(yīng)用.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、A【解題分析】試題分析:由題意得:SA>SB>SC,故落在A區(qū)域的可能性大考點(diǎn):幾何概率12、1【解題分析】
飛機(jī)停下時(shí),也就是滑行距離最遠(yuǎn)時(shí),即在本題中需求出s最大時(shí)對(duì)應(yīng)的t值.【題目詳解】由題意,s=﹣1.2t2+60t=﹣1.2(t2﹣50t+61﹣61)=﹣1.2(t﹣1)2+750即當(dāng)t=1秒時(shí),飛機(jī)才能停下來.故答案為1.【題目點(diǎn)撥】本題考查了二次函數(shù)的應(yīng)用.解題時(shí),利用配方法求得t=2時(shí),s取最大值.13、【解題分析】
根據(jù)完全平方公式的特點(diǎn):兩項(xiàng)平方項(xiàng)的符號(hào)相同,另一項(xiàng)是兩底數(shù)積的2倍,本題可用完全平方公式分解因式.【題目詳解】解:.故答案為.【題目點(diǎn)撥】本題考查用完全平方公式法進(jìn)行因式分解,能用完全平方公式法進(jìn)行因式分解的式子的特點(diǎn)需熟練掌握.14、4【解題分析】
利用平方差公式計(jì)算.【題目詳解】解:原式=()2-()2=7-3=4.故答案為:4.【題目點(diǎn)撥】本題考查了二次根式的混合運(yùn)算.15、【解題分析】試題分析:如圖,連接OB.∵E、F是反比例函數(shù)(x>0)的圖象上的點(diǎn),EA⊥x軸于A,F(xiàn)C⊥y軸于C,∴S△AOE=S△COF=×1=.∵AE=BE,∴S△BOE=S△AOE=,S△BOC=S△AOB=1.∴S△BOF=S△BOC﹣S△COF=1﹣=.∴F是BC的中點(diǎn).∴S△OEF=S矩形AOCB﹣S△AOE﹣S△COF﹣S△BEF=6﹣﹣﹣×=.16、10【解題分析】
由正方形性質(zhì)的得出B、D關(guān)于AC對(duì)稱,根據(jù)兩點(diǎn)之間線段最短可知,連接DE,交AC于P,連接BP,則此時(shí)PB+PE的值最小,進(jìn)而利用勾股定理求出即可.【題目詳解】如圖,連接DE,交AC于P,連接BP,則此時(shí)PB+PE的值最小.∵四邊形ABCD是正方形,∴B、D關(guān)于AC對(duì)稱,∴PB=PD,∴PB+PE=PD+PE=DE.∵BE=2,AE=3BE,∴AE=6,AB=8,∴DE==10,故PB+PE的最小值是10.故答案為10.三、解答題(共8題,共72分)17、(1)y=﹣2x+1;y=﹣80x【解題分析】
(1)根據(jù)OA、OB的長(zhǎng)寫出A、B兩點(diǎn)的坐標(biāo),再用待定系數(shù)法求解一次函數(shù)的解析式,然后求得點(diǎn)C的坐標(biāo),進(jìn)而求出反比例函數(shù)的解析式.(2)聯(lián)立方程組求解出交點(diǎn)坐標(biāo)即可.(3)觀察函數(shù)圖象,當(dāng)函數(shù)y=kx+b的圖像處于y=nx下方或與其有重合點(diǎn)時(shí),x的取值范圍即為【題目詳解】(1)由已知,OA=6,OB=1,OD=4,∵CD⊥x軸,∴OB∥CD,∴△ABO∽△ACD,∴,∴,∴CD=20,∴點(diǎn)C坐標(biāo)為(﹣4,20),∴n=xy=﹣80.∴反比例函數(shù)解析式為:y=﹣,把點(diǎn)A(6,0),B(0,1)代入y=kx+b得:,解得:.∴一次函數(shù)解析式為:y=﹣2x+1,(2)當(dāng)﹣=﹣2x+1時(shí),解得,x1=10,x2=﹣4,當(dāng)x=10時(shí),y=﹣8,∴點(diǎn)E坐標(biāo)為(10,﹣8),∴S△CDE=S△CDA+S△EDA=.(3)不等式kx+b≤,從函數(shù)圖象上看,表示一次函數(shù)圖象不低于反比例函數(shù)圖象,∴由圖象得,x≥10,或﹣4≤x<0.【題目點(diǎn)撥】本題考查了應(yīng)用待定系數(shù)法求一次函數(shù)和反比例函數(shù)解析式以及用函數(shù)的觀點(diǎn)通過函數(shù)圖像解不等式.18、(1)證明見解析(2)7/24(3)25/6【解題分析】(1)證明:∵△BDC′由△BDC翻折而成,∴∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,∴∠ABG=∠ADE。在△ABG≌△C′DG中,∵∠BAG=∠C,AB=C′D,∠ABG=∠ADC′,∴△ABG≌△C′DG(ASA)。(2)解:∵由(1)可知△ABG≌△C′DG,∴GD=GB,∴AG+GB=AD。設(shè)AG=x,則GB=1﹣x,在Rt△ABG中,∵AB2+AG2=BG2,即62+x2=(1﹣x)2,解得x=?!唷#?)解:∵△AEF是△DEF翻折而成,∴EF垂直平分AD。∴HD=AD=4?!遲an∠ABG=tan∠ADE=?!郋H=HD×=4×?!逧F垂直平分AD,AB⊥AD,∴HF是△ABD的中位線?!郒F=AB=×6=3?!郋F=EH+HF=。(1)根據(jù)翻折變換的性質(zhì)可知∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,故可得出結(jié)論。(2)由(1)可知GD=GB,故AG+GB=AD,設(shè)AG=x,則GB=1-x,在Rt△ABG中利用勾股定理即可求出AG的長(zhǎng),從而得出tan∠ABG的值。(3)由△AEF是△DEF翻折而成可知EF垂直平分AD,故HD=AD=4,再根據(jù)tan∠ABG的值即可得出EH的長(zhǎng),同理可得HF是△ABD的中位線,故可得出HF的長(zhǎng),由EF=EH+HF即可得出結(jié)果。19、(1)當(dāng)0≤x≤8時(shí),y=10x+20;當(dāng)8<x≤a時(shí),y=;(2)40;(3)要在7:50~8:10時(shí)間段內(nèi)接水.【解題分析】
(1)當(dāng)0≤x≤8時(shí),設(shè)y=k1x+b,將(0,20),(8,100)的坐標(biāo)分別代入y=k1x+b,即可求得k1、b的值,從而得一次函數(shù)的解析式;當(dāng)8<x≤a時(shí),設(shè)y=,將(8,100)的坐標(biāo)代入y=,求得k2的值,即可得反比例函數(shù)的解析式;(2)把y=20代入反比例函數(shù)的解析式,即可求得a值;(3)把y=40代入反比例函數(shù)的解析式,求得對(duì)應(yīng)x的值,根據(jù)想喝到不低于40℃的開水,結(jié)合函數(shù)圖象求得x的取值范圍,從而求得李老師接水的時(shí)間范圍.【題目詳解】解:(1)當(dāng)0≤x≤8時(shí),設(shè)y=k1x+b,將(0,20),(8,100)的坐標(biāo)分別代入y=k1x+b,可求得k1=10,b=20∴當(dāng)0≤x≤8時(shí),y=10x+20.當(dāng)8<x≤a時(shí),設(shè)y=,將(8,100)的坐標(biāo)代入y=,得k2=800∴當(dāng)8<x≤a時(shí),y=.綜上,當(dāng)0≤x≤8時(shí),y=10x+20;當(dāng)8<x≤a時(shí),y=(2)將y=20代入y=,解得x=40,即a=40.(3)當(dāng)y=40時(shí),x==20∴要想喝到不低于40℃的開水,x需滿足8≤x≤20,即李老師要在7:38到7:50之間接水.【題目點(diǎn)撥】本題主要考查了一次函數(shù)及反比例函數(shù)的應(yīng)用題,是一個(gè)分段函數(shù)問題,分段函數(shù)是在不同區(qū)間有不同對(duì)應(yīng)方式的函數(shù),要特別注意自變量取值范圍的劃分,既要科學(xué)合理,又要符合實(shí)際.20、(1)詳見解析;(2);(3).【解題分析】
(1)只要證明∠ACB=∠E,∠ABC=∠BDE即可;(2)首先證明BE:DE:BC=1:2:4,由△GCB∽△GDF,可得=;(3)想辦法證明AB垂直平分CF即可解決問題.【題目詳解】(1)證明:如圖1中,∵DE⊥CB,∴∠ACB=∠E=90°,∵BD是切線,∴AB⊥BD,∴∠ABD=90°,∴∠ABC+∠DBE=90°,∠BDE+∠DBE=90°,∴∠ABC=∠BDE,∴△ACB∽△BED;(2)解:如圖2中,∵△ACB∽△BED;四邊形ACED是矩形,∴BE:DE:BC=1:2:4,∵DF∥BC,∴△GCB∽△GDF,∴=;(3)解:如圖3中,∵tan∠ABC==,AC=2,∴BC=4,BE=4,DE=8,AB=2,BD=4,易證△DBE≌△DBF,可得BF=4=BC,∴AC=AF=2,∴CF⊥AB,設(shè)CF交AB于H,則CF=2CH=2×.【題目點(diǎn)撥】本題考查相似三角形的判定和性質(zhì)、圓周角定理、切線的性質(zhì)、解直角三角形、線段的垂直平分線的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問題,所以中考??碱}型.21、(1)每部型手機(jī)的銷售利潤(rùn)為元,每部型手機(jī)的銷售利潤(rùn)為元;(2)①;②手機(jī)店購(gòu)進(jìn)部型手機(jī)和部型手機(jī)的銷售利潤(rùn)最大;(3)手機(jī)店購(gòu)進(jìn)部型手機(jī)和部型手機(jī)的銷售利潤(rùn)最大.【解題分析】
(1)設(shè)每部型手機(jī)的銷售利潤(rùn)為元,每部型手機(jī)的銷售利潤(rùn)為元,根據(jù)題意列出方程組求解即可;(2)①根據(jù)總利潤(rùn)=銷售A型手機(jī)的利潤(rùn)+銷售B型手機(jī)的利潤(rùn)即可列出函數(shù)關(guān)系式;②根據(jù)題意,得,解得,根據(jù)一次函數(shù)的增減性可得當(dāng)當(dāng)時(shí),取最大值;(3)根據(jù)題意,,,然后分①當(dāng)時(shí),②當(dāng)時(shí),③當(dāng)時(shí),三種情況進(jìn)行討論求解即可.【題目詳解】解:(1)設(shè)每部型手機(jī)的銷售利潤(rùn)為元,每部型手機(jī)的銷售利潤(rùn)為元.根據(jù)題意,得,解得答:每部型手機(jī)的銷售利潤(rùn)為元,每部型手機(jī)的銷售利潤(rùn)為元.(2)①根據(jù)題意,得,即.②根據(jù)題意,得,解得.,,隨的增大而減小.為正整數(shù),
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 古詩(shī)詞誦讀《 書憤》課件 2023-2024學(xué)年統(tǒng)編版高中語文選擇性必修中冊(cè)
- 《供應(yīng)商開發(fā)選擇》課件
- 《拿來主義》課件 2024-2025學(xué)年統(tǒng)編版高中語文必修上冊(cè)
- 2025屆江蘇省連云港市海頭高級(jí)中學(xué)高考全國(guó)統(tǒng)考預(yù)測(cè)密卷數(shù)學(xué)試卷含解析
- 內(nèi)蒙古鄂爾多斯市達(dá)拉特旗第一中學(xué)2025屆高考考前模擬數(shù)學(xué)試題含解析
- 2025屆廣西玉林市玉州區(qū)高考適應(yīng)性考試數(shù)學(xué)試卷含解析
- 吉林省四平市公主嶺市第五高級(jí)中學(xué)2025屆高考語文考前最后一卷預(yù)測(cè)卷含解析
- 山西太原五中2025屆高三最后一卷語文試卷含解析
- 2025屆山東省東營(yíng)市墾利縣第一中學(xué)高三下學(xué)期聯(lián)合考試數(shù)學(xué)試題含解析
- 《保險(xiǎn)公司內(nèi)勤早會(huì)》課件
- “搶10”游戲(教學(xué)設(shè)計(jì))-2024-2025學(xué)年一年級(jí)上冊(cè)數(shù)學(xué)蘇教版
- 危險(xiǎn)化學(xué)品企業(yè)安全操作規(guī)程編制規(guī)范
- 第13章《內(nèi)能》和第14章《內(nèi)能的利用》測(cè)試試題 -2024-2025學(xué)年人教版物理九年級(jí)全一冊(cè)
- 美容用泥漿面膜產(chǎn)品市場(chǎng)需求分析報(bào)告
- 二年級(jí)上冊(cè)美術(shù)第十三課《刷牙》市公開課一等獎(jiǎng)省賽課獲獎(jiǎng)?wù)n件
- 人教版六上第二單元第四課時(shí)《金杯》《牧歌》教案
- DB5304T 090-2024 玉溪市鮮食玉米種植技術(shù)規(guī)程
- 泰國(guó)課件完整版本
- 2024至2030年中國(guó)江蘇省物流行業(yè)市場(chǎng)運(yùn)行現(xiàn)狀及投資戰(zhàn)略研究報(bào)告
- DL∕T 741-2019 架空輸電線路運(yùn)行規(guī)程
- 云貴川等地區(qū) 綠色食品肉雞林下養(yǎng)殖規(guī)程
評(píng)論
0/150
提交評(píng)論