版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
湖南長沙市芙蓉區(qū)鐵路一中學(xué)重點(diǎn)達(dá)標(biāo)名校2024屆中考數(shù)學(xué)模擬預(yù)測題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖,是半圓的直徑,點(diǎn)、是半圓的三等分點(diǎn),弦.現(xiàn)將一飛鏢擲向該圖,則飛鏢落在陰影區(qū)域的概率為()A. B. C. D.2.3的相反數(shù)是()A.﹣3 B.3 C. D.﹣3.一元一次不等式2(1+x)>1+3x的解集在數(shù)軸上表示為()A. B. C. D.4.長春市奧林匹克公園即將于2018年年底建成,它的總投資額約為2500000000元,2500000000這個(gè)數(shù)用科學(xué)記數(shù)法表示為()A.0.25×1010B.2.5×1010C.2.5×109D.25×1085.十九大報(bào)告指出,我國目前經(jīng)濟(jì)保持了中高速增長,在世界主要國家中名列前茅,國內(nèi)生產(chǎn)總值從54萬億元增長80萬億元,穩(wěn)居世界第二,其中80萬億用科學(xué)記數(shù)法表示為()A.8×1012 B.8×1013 C.8×1014 D.0.8×10136.如圖,以O(shè)為圓心的圓與直線交于A、B兩點(diǎn),若△OAB恰為等邊三角形,則弧AB的長度為()A. B.π C.π D.π7.若與互為相反數(shù),則x的值是()A.1 B.2 C.3 D.48.如圖,已知點(diǎn)P是雙曲線y=上的一個(gè)動(dòng)點(diǎn),連結(jié)OP,若將線段OP繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到線段OQ,則經(jīng)過點(diǎn)Q的雙曲線的表達(dá)式為()A.y= B.y=﹣ C.y= D.y=﹣9.如圖在△ABC中,AC=BC,過點(diǎn)C作CD⊥AB,垂足為點(diǎn)D,過D作DE∥BC交AC于點(diǎn)E,若BD=6,AE=5,則sin∠EDC的值為()A. B. C. D.10.如圖,在兩個(gè)同心圓中,四條直徑把大圓分成八等份,若往圓面投擲飛鏢,則飛鏢落在黑色區(qū)域的概率是()A. B. C. D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,已知,D、E分別是邊AB、AC上的點(diǎn),且設(shè),,那么______用向量、表示12.如圖,在正方形ABCD外取一點(diǎn)E,連接AE、BE、DE.過點(diǎn)A作AE的垂線交DE于點(diǎn)P.若AE=AP=1,PB=.下列結(jié)論:①△APD≌△AEB;②點(diǎn)B到直線AE的距離為;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正確結(jié)論的序號是.13.若xay與3x2yb是同類項(xiàng),則ab的值為_____.14.分解因式:m3–m=_____.15.如圖,矩形ABCD中,AB=2AD,點(diǎn)A(0,1),點(diǎn)C、D在反比例函數(shù)y=(k>0)的圖象上,AB與x軸的正半軸相交于點(diǎn)E,若E為AB的中點(diǎn),則k的值為_____.16.若關(guān)于x的一元二次方程有兩個(gè)不相等的實(shí)數(shù)根,則k的取值范圍是______.三、解答題(共8題,共72分)17.(8分)已知△ABC在平面直角坐標(biāo)系中的位置如圖所示.分別寫出圖中點(diǎn)A和點(diǎn)C的坐標(biāo);畫出△ABC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)90°后的△A′B′C′;求點(diǎn)A旋轉(zhuǎn)到點(diǎn)A′所經(jīng)過的路線長(結(jié)果保留π).18.(8分)我國古代數(shù)學(xué)著作《增刪算法統(tǒng)宗》記載“繩索量竿”問題:“一條竿子一條索,索比竿子長一托,折回索子卻量竿,卻比竿子短一托”其大意為:現(xiàn)有一根竿和一根繩索,用繩索去量竿,繩索比竿長5尺;如果將繩索對半折后再去量竿,就比竿短5尺.求繩索長和竿長.19.(8分)某校組織學(xué)生去9km外的郊區(qū)游玩,一部分學(xué)生騎自行車先走,半小時(shí)后,其他學(xué)生乘公共汽車出發(fā),結(jié)果他們同時(shí)到達(dá).己知公共汽車的速度是自行車速度的3倍,求自行車的速度和公共汽車的速度分別是多少?20.(8分)如圖,直線y=x+2與雙曲線y=相交于點(diǎn)A(m,3),與x軸交于點(diǎn)C.求雙曲線的解析式;點(diǎn)P在x軸上,如果△ACP的面積為3,求點(diǎn)P的坐標(biāo).21.(8分)計(jì)算:4sin30°+(1﹣)0﹣|﹣2|+()﹣222.(10分)如圖,△ACB與△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,點(diǎn)D為AB邊上的一點(diǎn),(1)求證:△ACE≌△BCD;(2)若DE=13,BD=12,求線段AB的長.23.(12分)如圖,AB是⊙O的直徑,D為⊙O上一點(diǎn),過弧BD上一點(diǎn)T作⊙O的切線TC,且TC⊥AD于點(diǎn)C.(1)若∠DAB=50°,求∠ATC的度數(shù);(2)若⊙O半徑為2,TC=3,求AD的長.24.計(jì)算:2-1+20160-3tan30°+|-|
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解題分析】
連接OC、OD、BD,根據(jù)點(diǎn)C,D是半圓O的三等分點(diǎn),推導(dǎo)出OC∥BD且△BOD是等邊三角形,陰影部分面積轉(zhuǎn)化為扇形BOD的面積,分別計(jì)算出扇形BOD的面積和半圓的面積,然后根據(jù)概率公式即可得出答案.【題目詳解】解:如圖,連接OC、OD、BD,∵點(diǎn)C、D是半圓O的三等分點(diǎn),∴,∴∠AOC=∠COD=∠DOB=60°,∵OC=OD,∴△COD是等邊三角形,∴OC=OD=CD,∵,∴,∵OB=OD,∴△BOD是等邊三角形,則∠ODB=60°,∴∠ODB=∠COD=60°,∴OC∥BD,∴,∴S陰影=S扇形OBD,S半圓O,飛鏢落在陰影區(qū)域的概率,故選:D.【題目點(diǎn)撥】本題主要考查扇形面積的計(jì)算和幾何概率問題:概率=相應(yīng)的面積與總面積之比,解題的關(guān)鍵是把求不規(guī)則圖形的面積轉(zhuǎn)化為求規(guī)則圖形的面積.2、A【解題分析】試題分析:根據(jù)相反數(shù)的概念知:1的相反數(shù)是﹣1.故選A.【考點(diǎn)】相反數(shù).3、B【解題分析】
按照解一元一次不等式的步驟求解即可.【題目詳解】去括號,得2+2x>1+3x;移項(xiàng)合并同類項(xiàng),得x<1,所以選B.【題目點(diǎn)撥】數(shù)形結(jié)合思想是初中常用的方法之一.4、C【解題分析】【分析】科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對值大于10時(shí),n是正數(shù);當(dāng)原數(shù)的絕對值小于1時(shí),n是負(fù)數(shù).【題目詳解】2500000000的小數(shù)點(diǎn)向左移動(dòng)9位得到2.5,所以2500000000用科學(xué)記數(shù)表示為:2.5×1.故選C.【題目點(diǎn)撥】本題考查了科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.5、B【解題分析】80萬億用科學(xué)記數(shù)法表示為8×1.故選B.點(diǎn)睛:本題考查了科學(xué)計(jì)數(shù)法,科學(xué)記數(shù)法的表示形式為的形式,其中,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對值<1時(shí),n是負(fù)數(shù).6、C【解題分析】過點(diǎn)作,∵,∴,,∴為等腰直角三角形,,,∵為等邊三角形,∴,∴.∴.故選C.7、D【解題分析】由題意得+=0,去分母3x+4(1-x)=0,解得x=4.故選D.8、D【解題分析】
過P,Q分別作PM⊥x軸,QN⊥x軸,利用AAS得到兩三角形全等,由全等三角形對應(yīng)邊相等及反比例函數(shù)k的幾何意義確定出所求即可.【題目詳解】過P,Q分別作PM⊥x軸,QN⊥x軸,∵∠POQ=90°,∴∠QON+∠POM=90°,∵∠QON+∠OQN=90°,∴∠POM=∠OQN,由旋轉(zhuǎn)可得OP=OQ,在△QON和△OPM中,,∴△QON≌△OPM(AAS),∴ON=PM,QN=OM,設(shè)P(a,b),則有Q(-b,a),由點(diǎn)P在y=上,得到ab=3,可得-ab=-3,則點(diǎn)Q在y=-上.故選D.【題目點(diǎn)撥】此題考查了待定系數(shù)法求反比例函數(shù)解析式,反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,以及坐標(biāo)與圖形變化,熟練掌握待定系數(shù)法是解本題的關(guān)鍵.9、A【解題分析】
由等腰三角形三線合一的性質(zhì)得出AD=DB=6,∠BDC=∠ADC=90°,由AE=5,DE∥BC知AC=2AE=10,∠EDC=∠BCD,再根據(jù)正弦函數(shù)的概念求解可得.【題目詳解】∵△ABC中,AC=BC,過點(diǎn)C作CD⊥AB,∴AD=DB=6,∠BDC=∠ADC=90°,∵AE=5,DE∥BC,∴AC=2AE=10,∠EDC=∠BCD,∴sin∠EDC=sin∠BCD=,故選:A.【題目點(diǎn)撥】本題主要考查解直角三角形,解題的關(guān)鍵是熟練掌握等腰三角形三線合一的性質(zhì)和平行線的性質(zhì)及直角三角形的性質(zhì)等知識點(diǎn).10、D【解題分析】
兩個(gè)同心圓被均分成八等份,飛鏢落在每一個(gè)區(qū)域的機(jī)會(huì)是均等的,由此計(jì)算出黑色區(qū)域的面積,利用幾何概率的計(jì)算方法解答即可.【題目詳解】因?yàn)閮蓚€(gè)同心圓等分成八等份,飛鏢落在每一個(gè)區(qū)域的機(jī)會(huì)是均等的,其中黑色區(qū)域的面積占了其中的四等份,所以P(飛鏢落在黑色區(qū)域)==.故答案選:D.【題目點(diǎn)撥】本題考查了幾何概率,解題的關(guān)鍵是熟練的掌握幾何概率的相關(guān)知識點(diǎn).二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、【解題分析】
在△ABC中,,∠A=∠A,所以△ABC△ADE,所以DE=BC,再由向量的運(yùn)算可得出結(jié)果.【題目詳解】解:在△ABC中,,∠A=∠A,∴△ABC△ADE,∴DE=BC,∴=3=3∴=,故答案為.【題目點(diǎn)撥】本題考查了相似三角形的判定和性質(zhì)以及向量的運(yùn)算.12、①③⑤【解題分析】
①利用同角的余角相等,易得∠EAB=∠PAD,再結(jié)合已知條件利用SAS可證兩三角形全等;
②過B作BF⊥AE,交AE的延長線于F,利用③中的∠BEP=90°,利用勾股定理可求BE,結(jié)合△AEP是等腰直角三角形,可證△BEF是等腰直角三角形,再利用勾股定理可求EF、BF;
③利用①中的全等,可得∠APD=∠AEB,結(jié)合三角形的外角的性質(zhì),易得∠BEP=90°,即可證;
④連接BD,求出△ABD的面積,然后減去△BDP的面積即可;
⑤在Rt△ABF中,利用勾股定理可求AB2,即是正方形的面積.【題目詳解】①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,
∴∠EAB=∠PAD,
又∵AE=AP,AB=AD,
∵在△APD和△AEB中,
,
∴△APD≌△AEB(SAS);
故此選項(xiàng)成立;
③∵△APD≌△AEB,
∴∠APD=∠AEB,
∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,
∴∠BEP=∠PAE=90°,
∴EB⊥ED;
故此選項(xiàng)成立;
②過B作BF⊥AE,交AE的延長線于F,
∵AE=AP,∠EAP=90°,
∴∠AEP=∠APE=45°,
又∵③中EB⊥ED,BF⊥AF,
∴∠FEB=∠FBE=45°,
又∵BE=
=
=
,
∴BF=EF=
,
故此選項(xiàng)不正確;
④如圖,連接BD,在Rt△AEP中,
∵AE=AP=1,
∴EP=
,
又∵PB=
,
∴BE=
,
∵△APD≌△AEB,
∴PD=BE=
,
∴S
△ABP+S
△ADP=S
△ABD-S
△BDP=
S
正方形ABCD-
×DP×BE=
×(4+
)-
×
×
=
+
.
故此選項(xiàng)不正確.
⑤∵EF=BF=
,AE=1,
∴在Rt△ABF中,AB
2=(AE+EF)
2+BF
2=4+
,
∴S
正方形ABCD=AB
2=4+
,
故此選項(xiàng)正確.
故答案為①③⑤.【題目點(diǎn)撥】本題考查了全等三角形的判定和性質(zhì)的運(yùn)用、正方形的性質(zhì)的運(yùn)用、正方形和三角形的面積公式的運(yùn)用、勾股定理的運(yùn)用等知識.13、2【解題分析】試題解析:∵xay與3x2yb是同類項(xiàng),∴a=2,b=1,則ab=2.14、m(m+1)(m-1)【解題分析】
根據(jù)因式分解的一般步驟:一提(公因式)、二套(平方差公式,完全平方公式)、三檢查(徹底分解),可以先提公因式,再利用平方差完成因式分解【題目詳解】解:故答案為:m(m+1)(m-1).【題目點(diǎn)撥】本題考查因式分解,掌握因式分解的技巧是解題關(guān)鍵.15、【解題分析】解:如圖,作DF⊥y軸于F,過B點(diǎn)作x軸的平行線與過C點(diǎn)垂直與x軸的直線交于G,CG交x軸于K,作BH⊥x軸于H,∵四邊形ABCD是矩形,∴∠BAD=90°,∴∠DAF+∠OAE=90°,∵∠AEO+∠OAE=90°,∴∠DAF=∠AEO,∵AB=2AD,E為AB的中點(diǎn),∴AD=AE,在△ADF和△EAO中,∵∠DAF=∠AEO,∠AFD=∠AOE=90°,AD=AE,∴△ADF≌△EAO(AAS),∴DF=OA=1,AF=OE,∴D(1,k),∴AF=k﹣1,同理;△AOE≌△BHE,△ADF≌△CBG,∴BH=BG=DF=OA=1,EH=CG=OE=AF=k﹣1,∴OK=2(k﹣1)+1=2k﹣1,CK=k﹣2,∴C(2k﹣1,k﹣2),∴(2k﹣1)(k﹣2)=1k,解得k1=,k2=,∵k﹣1>0,∴k=.故答案為.點(diǎn)睛:本題考查了矩形的性質(zhì)和反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征.圖象上的點(diǎn)(x,y)的橫縱坐標(biāo)的積是定值k,即xy=k.16、k<5且k≠1.【解題分析】試題解析:∵關(guān)于x的一元二次方程有兩個(gè)不相等的實(shí)數(shù)根,解得:且故答案為且三、解答題(共8題,共72分)17、(1)、(2)見解析(3)【解題分析】試題分析:(1)根據(jù)點(diǎn)的平面直角坐標(biāo)系中點(diǎn)的位置寫出點(diǎn)的坐標(biāo);(2)根據(jù)旋轉(zhuǎn)圖形的性質(zhì)畫出旋轉(zhuǎn)后的圖形;(3)點(diǎn)A所經(jīng)過的路程是以點(diǎn)C為圓心,AC長為半徑的扇形的弧長.試題解析:(1)A(0,4)C(3,1)(2)如圖所示:(3)根據(jù)勾股定理可得:AC=3,則.考點(diǎn):圖形的旋轉(zhuǎn)、扇形的弧長計(jì)算公式.18、繩索長為20尺,竿長為15尺.【解題分析】
設(shè)索長為x尺,竿子長為y尺,根據(jù)“索比竿子長一托,對折索子來量竿,卻比竿子短一托”,即可得出關(guān)于x、y的二元一次方程組,解之即可得出結(jié)論.【題目詳解】設(shè)繩索長、竿長分別為尺,尺,依題意得:解得:,.答:繩索長為20尺,竿長為15尺.【題目點(diǎn)撥】本題考查了二元一次方程組的應(yīng)用,找準(zhǔn)等量關(guān)系,正確列出二元一次方程組是解題的關(guān)鍵.19、自行車的速度是12km/h,公共汽車的速度是1km/h.【解題分析】
設(shè)自行車的速度為xkm/h,則公共汽車的速度為3xkm/h,根據(jù)題意得:,解分式方程即可.【題目詳解】解:設(shè)自行車的速度為xkm/h,則公共汽車的速度為3xkm/h,根據(jù)題意得:,解得:x=12,經(jīng)檢驗(yàn),x=12是原分式方程的解,∴3x=1.答:自行車的速度是12km/h,公共汽車的速度是1km/h.【題目點(diǎn)撥】本題考核知識點(diǎn):列分式方程解應(yīng)用題.解題關(guān)鍵點(diǎn):找出相等關(guān)系,列出方程.20、(1)(2)(-6,0)或(-2,0).【解題分析】分析:(1)把A點(diǎn)坐標(biāo)代入直線解析式可求得m的值,則可求得A點(diǎn)坐標(biāo),再把A點(diǎn)坐標(biāo)代入雙曲線解析式可求得k的值,可求得雙曲線解析式;(2)設(shè)P(t,0),則可表示出PC的長,進(jìn)一步表示出△ACP的面積,可得到關(guān)于t的方程,則可求得P點(diǎn)坐標(biāo).詳解:(1)把A點(diǎn)坐標(biāo)代入y=x+2,可得:3=m+2,解得:m=2,∴A(2,3).∵A點(diǎn)也在雙曲線上,∴k=2×3=6,∴雙曲線解析式為y=;(2)在y=x+2中,令y=0可求得:x=﹣4,∴C(﹣4,0).∵點(diǎn)P在x軸上,∴可設(shè)P點(diǎn)坐標(biāo)為(t,0),∴CP=|t+4|,且A(2,3),∴S△ACP=×3|t+4|.∵△ACP的面積為3,∴×3|t+4|=3,解得:t=﹣6或t=﹣2,∴P點(diǎn)坐標(biāo)為(﹣6,0)或(﹣2,0).點(diǎn)睛:本題主要考查函數(shù)圖象的交點(diǎn),掌握函數(shù)圖象的交點(diǎn)坐標(biāo)滿足每個(gè)函數(shù)解析式是解題的關(guān)鍵.21、1.【解題分析】
按照實(shí)數(shù)的運(yùn)算順序進(jìn)行運(yùn)算即可.【題目詳解】原式=1.【題目點(diǎn)撥】本題考查實(shí)數(shù)的運(yùn)算,主要考查零次冪,負(fù)整數(shù)指數(shù)冪,特殊角的三角函數(shù)值以及絕對值,熟練掌握各個(gè)知識點(diǎn)是解題的關(guān)鍵.22、(3)證明見解析;(3)AB=3.【解題分析】
(3)由等腰直角三角形得出AC=BC,CE=CD,∠ACB=∠ECD=90°,得出∠BCD=∠ACE,根據(jù)SAS推出△ACE≌△BCD即可;(3)求出AD=5,根據(jù)全等得出AE=BD=33,在Rt△AED中,由勾股定理求出DE即可.【題目詳解】證明:(3)如圖,∵△ACB與△ECD都是等腰直角三角形,∴AC=BC,CE=CD,∵∠ACB=∠ECD=90°,∴∠ACB﹣∠ACD=∠
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 租賃機(jī)租金優(yōu)惠條
- 企業(yè)分支機(jī)構(gòu)設(shè)立合同
- 礦山安全設(shè)備招投標(biāo)方案范本
- 劇院入口廣告牌安裝協(xié)議
- 倉庫保管員安全監(jiān)護(hù)守則
- 企業(yè)財(cái)務(wù)風(fēng)險(xiǎn)控制制度
- 研發(fā)鏈豬場租賃協(xié)議
- 2024全新建筑設(shè)備安裝包工合同范本下載3篇
- 水資源利用打井施工合同范本
- 音樂教室兼職教師聘任書
- (2024年)長歌行漢樂府古詩PPT語文課件
- 計(jì)算機(jī)組成智慧樹知到期末考試答案2024年
- 冶金裝備制造行業(yè)產(chǎn)業(yè)鏈協(xié)同與生態(tài)構(gòu)建
- 倉庫班長年終總結(jié)及工作計(jì)劃
- 部編人教版二年級勞動(dòng)教育上冊期末試卷(帶答案)
- 籃球比賽記錄表
- 芒果干行業(yè)標(biāo)準(zhǔn)
- 網(wǎng)絡(luò)安全服務(wù)項(xiàng)目服務(wù)質(zhì)量保障措施(實(shí)施方案)
- 常用家庭園養(yǎng)植物課件
- 肛門手術(shù)的鎮(zhèn)痛研課件
- 中山醫(yī)院報(bào)告查詢app
評論
0/150
提交評論