人教A版高中數(shù)學(xué)(選擇性必修第一冊)同步講義第28講 3.2.1雙曲線及其標(biāo)準(zhǔn)方程(原卷版)_第1頁
人教A版高中數(shù)學(xué)(選擇性必修第一冊)同步講義第28講 3.2.1雙曲線及其標(biāo)準(zhǔn)方程(原卷版)_第2頁
人教A版高中數(shù)學(xué)(選擇性必修第一冊)同步講義第28講 3.2.1雙曲線及其標(biāo)準(zhǔn)方程(原卷版)_第3頁
人教A版高中數(shù)學(xué)(選擇性必修第一冊)同步講義第28講 3.2.1雙曲線及其標(biāo)準(zhǔn)方程(原卷版)_第4頁
人教A版高中數(shù)學(xué)(選擇性必修第一冊)同步講義第28講 3.2.1雙曲線及其標(biāo)準(zhǔn)方程(原卷版)_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

第03講3.2.1雙曲線及其標(biāo)準(zhǔn)方程課程標(biāo)準(zhǔn)學(xué)習(xí)目標(biāo)①掌握雙曲線的定義,幾何圖形,熟記雙曲線的標(biāo)準(zhǔn)方程,并能初步應(yīng)用。②通過對雙曲線標(biāo)準(zhǔn)方程的推導(dǎo),提高求動點(diǎn)軌跡方程的能力。③初步會按特定條件求雙曲線的標(biāo)準(zhǔn)方程。通過本節(jié)課的學(xué)習(xí),要求掌握雙曲線的定義(相關(guān)的量的掌握)及雙曲線的標(biāo)準(zhǔn)方程(滿足的條件),會求與雙曲線有關(guān)的幾何量.知識點(diǎn)01:雙曲線的定義1、定義:一般地,我們把平面內(nèi)與兩個定點(diǎn)SKIPIF1<0,SKIPIF1<0的距離的差的絕對值等于非零常數(shù)(小于SKIPIF1<0)的點(diǎn)的軌跡叫做雙曲線.這兩個定點(diǎn)叫做雙曲線的焦點(diǎn),兩焦點(diǎn)間的距離叫做雙曲線的焦距.2、集合語言表達(dá)式雙曲線就是下列點(diǎn)的集合:SKIPIF1<0.3、說明若將定義中差的絕對值中的絕對值符號去掉,則點(diǎn)SKIPIF1<0的軌跡為雙曲線的一支,具體是哪一支,取決于SKIPIF1<0與SKIPIF1<0的大小.(1)若SKIPIF1<0,則SKIPIF1<0,點(diǎn)SKIPIF1<0的軌跡是靠近定點(diǎn)SKIPIF1<0的那一支;(2)若SKIPIF1<0,則SKIPIF1<0,點(diǎn)SKIPIF1<0的軌跡是靠近定點(diǎn)SKIPIF1<0的那一支.【即學(xué)即練1】(2023秋·高二課時練習(xí))平面內(nèi)到兩個定點(diǎn)SKIPIF1<0的距離之差的絕對值等于SKIPIF1<0的點(diǎn)的軌跡是(

)A.雙曲線 B.兩條射線 C.一條線段 D.一條直線【答案】B【詳解】如圖:設(shè)動點(diǎn)為SKIPIF1<0,SKIPIF1<0到兩個定點(diǎn)SKIPIF1<0的距離之差的絕對值為SKIPIF1<0,則若SKIPIF1<0在線段SKIPIF1<0(不包含兩端點(diǎn))上,有SKIPIF1<0;若SKIPIF1<0在直線SKIPIF1<0外,有SKIPIF1<0;若SKIPIF1<0在線段SKIPIF1<0的延長線上或線段SKIPIF1<0的反向延長線上(均包含兩端點(diǎn)),則有SKIPIF1<0.故選:B知識點(diǎn)02:雙曲線的標(biāo)準(zhǔn)方程焦點(diǎn)位置焦點(diǎn)在SKIPIF1<0軸上焦點(diǎn)在SKIPIF1<0軸上標(biāo)準(zhǔn)方程SKIPIF1<0(SKIPIF1<0)SKIPIF1<0(SKIPIF1<0)圖象焦點(diǎn)坐標(biāo)SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0的關(guān)系SKIPIF1<0兩種雙曲線SKIPIF1<0,SKIPIF1<0(SKIPIF1<0)的相同點(diǎn)是:它們的形狀、大小都相同,都有SKIPIF1<0,SKIPIF1<0;不同點(diǎn)是:兩種雙曲線的位置不同,它們的焦點(diǎn)坐標(biāo)也不同.【即學(xué)即練2】(2023秋·高二課時練習(xí))已知雙曲線對稱軸為坐標(biāo)軸,中心在原點(diǎn),兩焦點(diǎn)為SKIPIF1<0,直線SKIPIF1<0過雙曲線的一個焦點(diǎn),P為雙曲線上一點(diǎn),且SKIPIF1<0,則雙曲線的方程為.【答案】SKIPIF1<0或SKIPIF1<0【詳解】由題意,點(diǎn)SKIPIF1<0為雙曲線上一點(diǎn),且SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,又由直線SKIPIF1<0過雙曲線的一個焦點(diǎn),當(dāng)SKIPIF1<0時,可得SKIPIF1<0;當(dāng)SKIPIF1<0時,可得SKIPIF1<0;當(dāng)雙曲線的焦點(diǎn)在SKIPIF1<0軸上時,雙曲線的一個焦點(diǎn)坐標(biāo)為SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,此時雙曲線的方程為SKIPIF1<0;當(dāng)雙曲線的焦點(diǎn)在SKIPIF1<0軸上時,雙曲線的一個焦點(diǎn)坐標(biāo)為SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,此時雙曲線的方程為SKIPIF1<0,所以雙曲線的方程為SKIPIF1<0或SKIPIF1<0.故答案為:SKIPIF1<0或SKIPIF1<0題型01雙曲線定義的理解【典例1】(2023春·安徽滁州·高二校考開學(xué)考試)若雙曲線SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,點(diǎn)SKIPIF1<0在雙曲線SKIPIF1<0上,且SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<0【典例2】(2023·全國·高三專題練習(xí))若動點(diǎn)SKIPIF1<0滿足關(guān)系式SKIPIF1<0,則點(diǎn)SKIPIF1<0的軌跡是(

)A.直線 B.圓 C.橢圓 D.雙曲線一支【變式1】(2023秋·遼寧錦州·高三統(tǒng)考期末)雙曲線SKIPIF1<0:SKIPIF1<0的左右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,一條漸近線方程為SKIPIF1<0,若點(diǎn)SKIPIF1<0在雙曲線SKIPIF1<0上,且SKIPIF1<0,則SKIPIF1<0(

)A.7 B.9 C.1或9 D.3或7【變式2】(2023秋·北京石景山·高二統(tǒng)考期末)雙曲線SKIPIF1<0右支上一點(diǎn)A到右焦點(diǎn)SKIPIF1<0的距離為3,則點(diǎn)A到左焦點(diǎn)SKIPIF1<0的距離為(

)A.5 B.6 C.9 D.11題型02利用雙曲線定義求方程【典例1】(2023春·四川德陽·高二德陽五中??茧A段練習(xí))已知點(diǎn)SKIPIF1<0,SKIPIF1<0,動點(diǎn)SKIPIF1<0滿足條件SKIPIF1<0.則動點(diǎn)SKIPIF1<0的軌跡方程為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【典例2】(2023秋·山東臨沂·高二臨沂第三中學(xué)??计谀┮粍訄AP過定點(diǎn)SKIPIF1<0,且與已知圓N:SKIPIF1<0相內(nèi)切,則動圓圓心P的軌跡方程是.【變式1】(2023·高二課時練習(xí))到點(diǎn)SKIPIF1<0,SKIPIF1<0的距離的差的絕對值等于6的點(diǎn)的雙曲線的標(biāo)準(zhǔn)方程為.【變式2】2023·全國·高三專題練習(xí))已知圓SKIPIF1<0:SKIPIF1<0,圓SKIPIF1<0:SKIPIF1<0,圓SKIPIF1<0與圓SKIPIF1<0、圓SKIPIF1<0外切,求圓心SKIPIF1<0的軌跡方程SKIPIF1<0題型03利用雙曲線定義求點(diǎn)到焦點(diǎn)距離及最值【典例1】(2023·高二課時練習(xí))已知雙曲線SKIPIF1<0在左支上一點(diǎn)M到右焦點(diǎn)SKIPIF1<0的距離為18,N是線段SKIPIF1<0的中點(diǎn),O為坐標(biāo)原點(diǎn),則SKIPIF1<0等于(

)A.4 B.2 C.1 D.SKIPIF1<0【典例2】(2023·全國·高三專題練習(xí))已知雙曲線SKIPIF1<0的左焦點(diǎn)為SKIPIF1<0,點(diǎn)SKIPIF1<0是雙曲線SKIPIF1<0右支上的一點(diǎn),點(diǎn)SKIPIF1<0是圓SKIPIF1<0上的一點(diǎn),則SKIPIF1<0的最小值為(

)A.5 B.SKIPIF1<0 C.7 D.8【典例3】(2023春·湖南株洲·高二株洲二中??茧A段練習(xí))雙曲線SKIPIF1<0的左?右焦點(diǎn)是SKIPIF1<0、SKIPIF1<0,點(diǎn)SKIPIF1<0在雙曲線SKIPIF1<0上,若SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<0【變式1】(2023秋·北京豐臺·高二北京市第十二中學(xué)??计谀┮阎猄KIPIF1<0是雙曲線SKIPIF1<0的兩個焦點(diǎn),點(diǎn)SKIPIF1<0在雙曲線上,若SKIPIF1<0,則SKIPIF1<0(

)A.1或9 B.3或7 C.9 D.7【變式2】(2023·高二課時練習(xí))SKIPIF1<0是雙曲線SKIPIF1<0=1的右支上一點(diǎn),M、N分別是圓SKIPIF1<0和SKIPIF1<0=4上的點(diǎn),則SKIPIF1<0的最大值為(

)A.6 B.7 C.8 D.9【變式3】(2023·高二課時練習(xí))若點(diǎn)SKIPIF1<0在曲線SKIPIF1<0上,點(diǎn)SKIPIF1<0在曲線SKIPIF1<0上,點(diǎn)SKIPIF1<0在曲線SKIPIF1<0上,則SKIPIF1<0的最大值是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型04利用雙曲線定義求雙曲線中線段和差最值【典例1】(2023·全國·高三專題練習(xí))已知點(diǎn)SKIPIF1<0,雙曲線SKIPIF1<0的左焦點(diǎn)為SKIPIF1<0,點(diǎn)SKIPIF1<0在雙曲線SKIPIF1<0的右支上運(yùn)動.當(dāng)SKIPIF1<0的周長最小時,SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例2】(2023春·寧夏石嘴山·高二平羅中學(xué)??茧A段練習(xí))已知SKIPIF1<0,雙曲線C:SKIPIF1<0的左焦點(diǎn)為F,P是雙曲線C的右支上的動點(diǎn),則SKIPIF1<0的最大值是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例3】(2023·全國·高三專題練習(xí))過雙曲線SKIPIF1<0的左焦點(diǎn)F作圓SKIPIF1<0的一條切線(切點(diǎn)為T),交雙曲線右支點(diǎn)于P,點(diǎn)M為線段FP的中點(diǎn),連接MO,則SKIPIF1<0的最大值為.【變式1】(2023秋·湖北·高二統(tǒng)考期末)已知雙曲線SKIPIF1<0的左焦點(diǎn)為SKIPIF1<0,M為雙曲線C右支上任意一點(diǎn),D點(diǎn)的坐標(biāo)為SKIPIF1<0,則SKIPIF1<0的最大值為(

)A.3 B.1 C.SKIPIF1<0 D.SKIPIF1<0【變式2】(2023·山東泰安·統(tǒng)考二模)已知雙曲線SKIPIF1<0,其一條漸近線方程為SKIPIF1<0,右頂點(diǎn)為A,左,右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,點(diǎn)P在其右支上,點(diǎn)SKIPIF1<0,三角形SKIPIF1<0的面積為SKIPIF1<0,則當(dāng)SKIPIF1<0取得最大值時點(diǎn)P的坐標(biāo)為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【變式3】(2023·高二課時練習(xí))已知雙曲線SKIPIF1<0的左右焦點(diǎn)分別為SKIPIF1<0?SKIPIF1<0,SKIPIF1<0為雙曲線右支上一點(diǎn),點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,則SKIPIF1<0的最小值為.題型05判斷方程是否表示雙曲線【典例1】(多選)(2023秋·山西晉中·高二統(tǒng)考期末)關(guān)于SKIPIF1<0、SKIPIF1<0的方程SKIPIF1<0表示的軌跡可以是(

)A.橢圓 B.雙曲線 C.直線 D.拋物線【典例2】(多選)(2023春·安徽·高二合肥市第八中學(xué)校聯(lián)考開學(xué)考試)對于曲線C:SKIPIF1<0,則下列說法正確的有(

)A.曲線C可能為圓 B.曲線C不可能為焦點(diǎn)在y軸上的雙曲線C.若SKIPIF1<0,則曲線C為橢圓 D.若SKIPIF1<0,則曲線C為雙曲線【變式1】(多選)(2023秋·浙江湖州·高二統(tǒng)考期末)已知曲線SKIPIF1<0的方程為SKIPIF1<0,則(

)A.曲線SKIPIF1<0可以表示圓B.曲線SKIPIF1<0可以表示焦點(diǎn)在SKIPIF1<0軸上的橢圓C.曲線SKIPIF1<0可以表示焦點(diǎn)在SKIPIF1<0軸上的橢圓D.曲線SKIPIF1<0可以表示焦點(diǎn)在SKIPIF1<0軸上的雙曲線【變式2】(多選)(2023春·安徽安慶·高二安徽省宿松中學(xué)校考開學(xué)考試)方程SKIPIF1<0表示的曲線可以是(

)A.圓B.焦點(diǎn)在y軸上的雙曲線C.焦點(diǎn)在y軸上的橢圓D.焦點(diǎn)在x軸上的雙曲線題型06根據(jù)方程表示雙曲線求參數(shù)【典例1】(2023春·湖南岳陽·高三湖南省岳陽縣第一中學(xué)??奸_學(xué)考試)已知SKIPIF1<0,則“SKIPIF1<0”是“方程SKIPIF1<0表示雙曲線”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件【典例2】(2023春·內(nèi)蒙古興安盟·高二烏蘭浩特市第四中學(xué)??茧A段練習(xí))已知曲線SKIPIF1<0是雙曲線,則實數(shù)k的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【變式1】(2023·全國·高三對口高考)若曲線SKIPIF1<0表示雙曲線,那么實數(shù)k的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【變式2】(2023秋·高二課時練習(xí))“SKIPIF1<0”是“方程SKIPIF1<0表示雙曲線”的(

)A.充分不必要條件 B.必要不充分條件 C.充要條件D.既不充分也不必要條件題型07求雙曲線方程【典例1】(2023秋·高二課時練習(xí))已知雙曲線過點(diǎn)SKIPIF1<0,且與橢圓SKIPIF1<0有公共焦點(diǎn),則雙曲線的標(biāo)準(zhǔn)方程是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【典例2】(2023·全國·高三專題練習(xí))2023年3月27日,貴州省首屆“美麗鄉(xiāng)村”籃球聯(lián)賽總決賽火爆開賽,被網(wǎng)友稱為“村BA”.從某個角度觀察籃球(如圖1),可以得到一個對稱的平面圖形,如圖2所示,籃球的外輪形狀為圓O,將籃球表面的粘合線看成坐標(biāo)軸和雙曲線的一部分,若坐標(biāo)軸和雙曲線與圓O的交點(diǎn)將圓O的周長八等分,SKIPIF1<0,視AD所在直線為x軸,則雙曲線的方程為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例3】(2023秋·高二課時練習(xí))根據(jù)下列條件,求雙曲線的標(biāo)準(zhǔn)方程:(1)以橢圓SKIPIF1<0短軸的兩個端點(diǎn)為焦點(diǎn),且過點(diǎn)SKIPIF1<0;(2)經(jīng)過點(diǎn)SKIPIF1<0和SKIPIF1<0.【變式1】(2023·全國·高三專題練習(xí))已知雙曲線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,SKIPIF1<0,過SKIPIF1<0的直線SKIPIF1<0與SKIPIF1<0的左支相交于SKIPIF1<0兩點(diǎn),過SKIPIF1<0的直線SKIPIF1<0與SKIPIF1<0的右支相交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),若四邊形SKIPIF1<0為平行四邊形,以SKIPIF1<0為直徑的圓過SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的方程為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【變式2】(2023春·河南洛陽·高二校聯(lián)考階段練習(xí))已知雙曲線SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,點(diǎn)P在雙曲線的右支上,若SKIPIF1<0,則雙曲線C的方程為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【變式3】(2023·上海·高三專題練習(xí))過原點(diǎn)的直線SKIPIF1<0與雙曲線SKIPIF1<0的左、右兩支分別交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),SKIPIF1<0為SKIPIF1<0的右焦點(diǎn),若SKIPIF1<0,且SKIPIF1<0,則雙曲線SKIPIF1<0的方程為.題型08雙曲線中的軌跡方程問題【典例1】(2023·重慶沙坪壩·重慶南開中學(xué)??寄M預(yù)測)已知雙曲線SKIPIF1<0與直線SKIPIF1<0有唯一的公共點(diǎn)SKIPIF1<0,過點(diǎn)SKIPIF1<0且與SKIPIF1<0垂直的直線分別交SKIPIF1<0軸、SKIPIF1<0軸于SKIPIF1<0兩點(diǎn).當(dāng)點(diǎn)SKIPIF1<0運(yùn)動時,點(diǎn)SKIPIF1<0的軌跡方程是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【典例2】(2023·全國·高三專題練習(xí))在平面直角坐標(biāo)系中,動點(diǎn)SKIPIF1<0與定點(diǎn)SKIPIF1<0的距離和SKIPIF1<0到定直線SKIPIF1<0的距離的比是常數(shù)SKIPIF1<0,設(shè)動點(diǎn)SKIPIF1<0的軌跡為曲線SKIPIF1<0.求曲線SKIPIF1<0的方程;【典例3】(2023·高二課時練習(xí))已知SKIPIF1<0中的兩個頂點(diǎn)是SKIPIF1<0,SKIPIF1<0邊與SKIPIF1<0邊所在直線的斜率之積是SKIPIF1<0,求頂點(diǎn)SKIPIF1<0的軌跡.【變式1】(2023秋·廣東·高二統(tǒng)考期末)動圓P過定點(diǎn)M(0,2),且與圓N:SKIPIF1<0相內(nèi)切,則動圓圓心P的軌跡方程是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【變式2】(2023·全國·高三專題練習(xí))在平面直角坐標(biāo)系SKIPIF1<0中,已知點(diǎn)SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0的軌跡為SKIPIF1<0.求SKIPIF1<0的方程;【變式3】(2023·全國·高三專題練習(xí))如圖,動點(diǎn)SKIPIF1<0與兩定點(diǎn)SKIPIF1<0、SKIPIF1<0構(gòu)成SKIPIF1<0,且直線SKIPIF1<0的斜率之積為SKIPIF1<0,設(shè)動點(diǎn)SKIPIF1<0的軌跡為SKIPIF1<0.求軌跡SKIPIF1<0的方程;題型09雙曲線中的焦點(diǎn)三角形問題【典例1】(2023春·四川資陽·高二統(tǒng)考期末)已知雙曲線SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,直線SKIPIF1<0經(jīng)過SKIPIF1<0且與SKIPIF1<0的右支相交于A,B兩點(diǎn),若SKIPIF1<0,則SKIPIF1<0的周長為(

)A.6 B.8 C.10 D.12【典例2】(2023春·福建莆田·高二莆田一中校考階段練習(xí))設(shè)SKIPIF1<0,SKIPIF1<0分別是雙曲線SKIPIF1<0的左右焦點(diǎn),過SKIPIF1<0作SKIPIF1<0軸的垂線與SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),若SKIPIF1<0為正三角形,則SKIPIF1<0的面積為(

)A.SKIPIF1<0 B.4 C.SKIPIF1<0 D.3【典例3】(2023·全國·高三專題練習(xí))已知雙曲線SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0為雙曲線右支上一點(diǎn),SKIPIF1<0為SKIPIF1<0的內(nèi)切圓上一點(diǎn),則SKIPIF1<0取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【典例4】(2023春·上海浦東新·高二上海南匯中學(xué)??计谥校┮阎猄KIPIF1<0,SKIPIF1<0為雙曲線SKIPIF1<0的左、右焦點(diǎn),點(diǎn)P在雙曲線C上,SKIPIF1<0,則SKIPIF1<0.【典例5】(2023·海南??凇そy(tǒng)考模擬預(yù)測)已知點(diǎn)SKIPIF1<0,SKIPIF1<0分別是雙曲線SKIPIF1<0的左右焦點(diǎn),過SKIPIF1<0的直線SKIPIF1<0與該雙曲線交于SKIPIF1<0,SKIPIF1<0兩點(diǎn)(點(diǎn)SKIPIF1<0位于第一象限),點(diǎn)SKIPIF1<0是△SKIPIF1<0內(nèi)切圓的圓心,則SKIPIF1<0;若SKIPIF1<0的傾斜角為SKIPIF1<0,△SKIPIF1<0的內(nèi)切圓面積為SKIPIF1<0,△SKIPIF1<0的內(nèi)切圓面積為SKIPIF1<0,則SKIPIF1<0為.【變式1】(2023春·福建南平·高二??茧A段練習(xí))已知雙曲線SKIPIF1<0,直線l過其上焦點(diǎn)SKIPIF1<0,交雙曲線上支于A,B兩點(diǎn),且SKIPIF1<0,SKIPIF1<0為雙曲線下焦點(diǎn),SKIPIF1<0的周長為18,則m值為(

)A.8 B.SKIPIF1<0 C.10 D.SKIPIF1<0【變式2】(2023春·江西宜春·高二校聯(lián)考期末)已知SKIPIF1<0,SKIPIF1<0分別為雙曲線SKIPIF1<0:SKIPIF1<0的左、右焦點(diǎn),左右頂點(diǎn)分別為SKIPIF1<0,離心率為SKIPIF1<0,點(diǎn)SKIPIF1<0為雙曲線C上一點(diǎn),直線SKIPIF1<0的斜率之和為SKIPIF1<0,SKIPIF1<0的面積為SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式3】(2023秋·高二單元測試)設(shè)雙曲線SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為雙曲線右支上一點(diǎn),且SKIPIF1<0,則SKIPIF1<0的大小為.【變式4】(2023春·上海松江·高二上海市松江二中??计谥校碾p曲線SKIPIF1<0的左焦點(diǎn)SKIPIF1<0引圓SKIPIF1<0的切線,切點(diǎn)為SKIPIF1<0,延長SKIPIF1<0交雙曲線右支于SKIPIF1<0點(diǎn),若SKIPIF1<0為線段SKIPIF1<0的中點(diǎn),SKIPIF1<0為坐標(biāo)原點(diǎn),則SKIPIF1<0的值是.【變式5】(2023·北京西城·統(tǒng)考二模)已知兩點(diǎn)SKIPIF1<0.點(diǎn)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的面積是;SKIPIF1<0的一個取值為.A夯實基礎(chǔ)B能力提升C綜合素養(yǎng)A夯實基礎(chǔ)一、單選題1.(2023春·福建福州·高二校聯(lián)考期中)設(shè)P是雙曲線SKIPIF1<0上一點(diǎn),F(xiàn)1,F(xiàn)2分別是雙曲線左、右兩個焦點(diǎn),若|PF1|=9,則|PF2|等于(

)A.1 B.17 C.1或17 D.82.(2023春·江西·高二校聯(lián)考期中)若方程SKIPIF1<0表示雙曲線,則實數(shù)SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<03.(2023·吉林通化·梅河口市第五中學(xué)??寄M預(yù)測)已知SKIPIF1<0,SKIPIF1<0是雙曲線SKIPIF1<0的左、右焦點(diǎn),點(diǎn)M在雙曲線的右支上,設(shè)M到直線SKIPIF1<0的距離為d,則SKIPIF1<0的最小值為(

)A.7 B.SKIPIF1<0 C.8 D.SKIPIF1<04.(2023秋·甘肅天水·高二天水市第一中學(xué)??计谀┯蓚惗刂ㄖ聞?wù)所SteynStudio設(shè)計的南非雙曲線大教堂驚艷世界,該建筑是數(shù)學(xué)與建筑完美結(jié)合造就的藝術(shù)品.若將如圖所示的大教堂外形弧線的一段近似看成雙曲線SKIPIF1<0下支的一部分,且此雙曲線的虛軸長為2,離心率為2,則該雙曲線的方程為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2023春·四川資陽·高二統(tǒng)考期末)已知雙曲線SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,直線SKIPIF1<0經(jīng)過SKIPIF1<0且與SKIPIF1<0的右支相交于A,B兩點(diǎn),若SKIPIF1<0,則SKIPIF1<0的周長為(

)A.6 B.8 C.10 D.126.(2023春·河南洛陽·高二統(tǒng)考期末)如圖,SKIPIF1<0,SKIPIF1<0分別是雙曲線SKIPIF1<0的左、右焦點(diǎn),SKIPIF1<0,點(diǎn)SKIPIF1<0在雙曲線的右支上,SKIPIF1<0的延長線與SKIPIF1<0軸交于點(diǎn)SKIPIF1<0,SKIPIF1<0的內(nèi)切圓在邊SKIPIF1<0上的切點(diǎn)為SKIPIF1<0,若SKIPIF1<0,則此雙曲線的漸近線方程為(

A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<07.(2023·全國·校聯(lián)考三模)若雙曲線SKIPIF1<0與雙曲線SKIPIF1<0有相同的焦距,且SKIPIF1<0過點(diǎn)SKIPIF1<0,則雙曲線SKIPIF1<0的標(biāo)準(zhǔn)方程為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<08.(2023春·江西宜春·高二校聯(lián)考期末)已知SKIPIF1<0,SKIPIF1<0分別為雙曲線SKIPIF1<0:SKIPIF1<0的左、右焦點(diǎn),左右頂點(diǎn)分別為SKIPIF1<0,離心率為SKIPIF1<0,點(diǎn)SKIPIF1<0為雙曲線C上一點(diǎn),直線SKIPIF1<0的斜率之和為SKIPIF1<0,SKIPIF1<0的面積為SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0二、多選題9.(2023秋·江蘇南京·高二校考期末)已知方程SKIPIF1<0表示的曲線為SKIPIF1<0,則下列四個結(jié)論中正確的是(

)A.當(dāng)SKIPIF1<0時,曲線SKIPIF1<0是橢圓B.當(dāng)SKIPIF1<0或SKIPIF1<0時,曲線SKIPIF1<0是雙曲線C.若曲線SKIPIF1<0是焦點(diǎn)在SKIPIF1<0軸上的橢圓,則SKIPIF1<0D.若曲線SKIPIF1<0是焦點(diǎn)在SKIPIF1<0軸上的橢圓,則SKIPIF1<010.(2023春·廣東廣州·高三廣州科學(xué)城中學(xué)??茧A段練習(xí))已知點(diǎn)SKIPIF1<0在雙曲線SKIPIF1<0上,SKIPIF1<0分別是左?右焦點(diǎn),若SKIPIF1<0的面積為20,則下列判斷正確的有(

)A.點(diǎn)SKIPIF1<0到SKIPIF1<0軸的距離為SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0為鈍角三角形D.SKIPIF1<0三、填空題11.(2023秋·高二單元測試)設(shè)雙曲線SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為雙曲線右支上一點(diǎn),且SKIPIF1<0,則SKIPIF1<0的大小為.12.(2023秋·福建三明·高二統(tǒng)考期末)已知圓SKIPIF1<0,圓SKIPIF1<0,若動圓E與SKIPIF1<0,SKIPIF1<0都外切,則圓心E的軌跡方程為.四、解答題13.(2023·高二課時練習(xí))(1)求焦點(diǎn)在x軸上,長軸長為6,焦距為4的橢圓標(biāo)準(zhǔn)方程;(2)求離心率SKIPIF1<0,焦點(diǎn)在x軸,且經(jīng)過點(diǎn)SKIPIF1<0的雙曲線標(biāo)準(zhǔn)方程.14.(2023·高二單元測試)若雙曲線C:SKIPIF1<0上一點(diǎn)SKIPIF1<0到左、右焦點(diǎn)的距離之差的絕對值為2.(1)求雙曲線C的方程;(2)設(shè)SKIPIF1<0、SKIPIF1<0是雙曲線的左、右焦點(diǎn),點(diǎn)P是雙曲線上的點(diǎn),若SKIPIF1<0,求SKIPIF1<0的面積.15.(2023·全國·高二專題練習(xí))求適合下列條件的雙曲線的標(biāo)準(zhǔn)方程:(1)焦點(diǎn)為SKIPIF1<0,SKIPIF1<0,且雙曲線上的一點(diǎn)到兩個焦點(diǎn)距離之差為2;(2)焦點(diǎn)在y軸上,焦距為10,且經(jīng)過點(diǎn)SKIPIF1<0;(3)經(jīng)過點(diǎn)SKIPIF1<0,SKIPIF1<0.B能力提升1.(2023春·江西宜春·高二校聯(lián)考期末)已知SKIPIF1<0,SKIPIF1<0分別為雙曲線SKIPIF1<0:SKIPIF1<0的左、右焦點(diǎn),左右頂點(diǎn)分別為SKIPIF1<0,離心率為SKIPIF1<0,點(diǎn)SKIPIF1<0為雙曲線C上一點(diǎn),直線SKIPIF1<0的斜率之和為SKIPIF1<0,SKIPIF1<0的面積為SKIPIF1<0,則SKIPIF1<0(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論