2024屆江蘇省興化市樂吾實(shí)驗(yàn)校中考數(shù)學(xué)猜題卷含解析_第1頁
2024屆江蘇省興化市樂吾實(shí)驗(yàn)校中考數(shù)學(xué)猜題卷含解析_第2頁
2024屆江蘇省興化市樂吾實(shí)驗(yàn)校中考數(shù)學(xué)猜題卷含解析_第3頁
2024屆江蘇省興化市樂吾實(shí)驗(yàn)校中考數(shù)學(xué)猜題卷含解析_第4頁
2024屆江蘇省興化市樂吾實(shí)驗(yàn)校中考數(shù)學(xué)猜題卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆江蘇省興化市樂吾實(shí)驗(yàn)校中考數(shù)學(xué)猜題卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖是一個放置在水平桌面的錐形瓶,它的俯視圖是()A. B. C. D.2.若一個三角形的兩邊長分別為5和7,則該三角形的周長可能是()A.12 B.14 C.15 D.253.如圖,在△ABC中,∠ABC=90°,AB=8,BC=1.若DE是△ABC的中位線,延長DE交△ABC的外角∠ACM的平分線于點(diǎn)F,則線段DF的長為()A.7 B.8 C.9 D.104.如圖,將周長為8的△ABC沿BC方向平移1個單位長度得到,則四邊形的周長為()A.8 B.10 C.12 D.165.tan45°的值等于()A. B. C. D.16.某幾何體的左視圖如圖所示,則該幾何體不可能是()A. B. C. D.7.點(diǎn)P(1,﹣2)關(guān)于y軸對稱的點(diǎn)的坐標(biāo)是()A.(1,2) B.(﹣1,2) C.(﹣1,﹣2) D.(﹣2,1)8.第24屆冬奧會將于2022年在北京和張家口舉行,冬奧會的項(xiàng)目有滑雪(如跳臺滑雪、高山滑雪、單板滑雪等)、滑冰(如短道速滑、速度滑冰、花樣滑冰等)、冰球、冰壺等.如圖,有5張形狀、大小、質(zhì)地均相同的卡片,正面分別印有高山滑雪、速度滑冰、冰球、單板滑雪、冰壺五種不同的圖案,背面完全相同.現(xiàn)將這5張卡片洗勻后正面向下放在桌子上,從中隨機(jī)抽取一張,抽出的卡片正面恰好是滑雪項(xiàng)目圖案的概率是()A. B. C. D.9.如圖,在直角坐標(biāo)系中,等腰直角△ABO的O點(diǎn)是坐標(biāo)原點(diǎn),A的坐標(biāo)是(﹣4,0),直角頂點(diǎn)B在第二象限,等腰直角△BCD的C點(diǎn)在y軸上移動,我們發(fā)現(xiàn)直角頂點(diǎn)D點(diǎn)隨之在一條直線上移動,這條直線的解析式是()A.y=﹣2x+1 B.y=﹣x+2 C.y=﹣3x﹣2 D.y=﹣x+210.下列運(yùn)算正確的是()A.=2 B.4﹣=1 C.=9 D.=2二、填空題(共7小題,每小題3分,滿分21分)11.已知xy=3,那么的值為______.12.如圖,在平面直角坐標(biāo)系中,將△ABO繞點(diǎn)A順時針旋轉(zhuǎn)到△AB1C1的位置,點(diǎn)B、O分別落在點(diǎn)B1、C1處,點(diǎn)B1在x軸上,再將△AB1C1繞點(diǎn)B1順時針旋轉(zhuǎn)到△A1B1C2的位置,點(diǎn)C2在x軸上,將△A1B1C2繞點(diǎn)C2順時針旋轉(zhuǎn)到△A2B2C2的位置,點(diǎn)A2在x軸上,依次進(jìn)行下去….若點(diǎn)A(,0),B(0,4),則點(diǎn)B4的坐標(biāo)為_____,點(diǎn)B2017的坐標(biāo)為_____.13.如圖,正方形ABCD邊長為3,連接AC,AE平分∠CAD,交BC的延長線于點(diǎn)E,F(xiàn)A⊥AE,交CB延長線于點(diǎn)F,則EF的長為__________.14.如圖,點(diǎn)G是△ABC的重心,CG的延長線交AB于D,GA=5cm,GC=4cm,GB=3cm,將△ADG繞點(diǎn)D旋轉(zhuǎn)180°得到△BDE,△ABC的面積=_____cm1.15.關(guān)于的一元二次方程有兩個相等的實(shí)數(shù)根,則________.16.如圖,將一對直角三角形卡片的斜邊AC重合擺放,直角頂點(diǎn)B,D在AC的兩側(cè),連接BD,交AC于點(diǎn)O,取AC,BD的中點(diǎn)E,F(xiàn),連接EF.若AB=12,BC=5,且AD=CD,則EF的長為_____.17.分解因式:__________.三、解答題(共7小題,滿分69分)18.(10分)某校決定加強(qiáng)羽毛球、籃球、乒乓球、排球、足球五項(xiàng)球類運(yùn)動,每位同學(xué)必須且只能選擇一項(xiàng)球類運(yùn)動,對該校學(xué)生隨機(jī)抽取進(jìn)行調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如下不完整的頻數(shù)分布表和扇形統(tǒng)計(jì)圖:運(yùn)動項(xiàng)目

頻數(shù)(人數(shù))

羽毛球

30

籃球

乒乓球

36

排球

足球

12

請根據(jù)以上圖表信息解答下列問題:頻數(shù)分布表中的,;在扇形統(tǒng)計(jì)圖中,“排球”所在的扇形的圓心角為度;全校有多少名學(xué)生選擇參加乒乓球運(yùn)動?19.(5分)學(xué)校實(shí)施新課程改革以來,學(xué)生的學(xué)習(xí)能力有了很大提高.王老師為進(jìn)一步了解本班學(xué)生自主學(xué)習(xí)、合作交流的現(xiàn)狀,對該班部分學(xué)生進(jìn)行調(diào)查,把調(diào)查結(jié)果分成四類(A:特別好,B:好,C:一般,D:較差)后,再將調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖(如圖1,2).請根據(jù)統(tǒng)計(jì)圖解答下列問題:本次調(diào)查中,王老師一共調(diào)查了名學(xué)生;將條形統(tǒng)計(jì)圖補(bǔ)充完整;為了共同進(jìn)步,王老師從被調(diào)查的A類和D類學(xué)生中分別選取一名學(xué)生進(jìn)行“兵教兵”互助學(xué)習(xí),請用列表或畫樹狀圖的方法求出恰好選中一名男生和一名女生的概率.20.(8分)初三(5)班綜合實(shí)踐小組去湖濱花園測量人工湖的長,如圖A、D是人工湖邊的兩座雕塑,AB、BC是湖濱花園的小路,小東同學(xué)進(jìn)行如下測量,B點(diǎn)在A點(diǎn)北偏東60°方向,C點(diǎn)在B點(diǎn)北偏東45°方向,C點(diǎn)在D點(diǎn)正東方向,且測得AB=20米,BC=40米,求AD的長.(≈1.732,≈1.414,結(jié)果精確到0.01米)21.(10分)如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點(diǎn)E,作ED⊥EB交AB于點(diǎn)D,⊙O是△BED的外接圓.求證:AC是⊙O的切線;已知⊙O的半徑為2.5,BE=4,求BC,AD的長.22.(10分)如圖1,在圓中,垂直于弦,為垂足,作,與的延長線交于.(1)求證:是圓的切線;(2)如圖2,延長,交圓于點(diǎn),點(diǎn)是劣弧的中點(diǎn),,,求的長.23.(12分)如圖,在△ABC中,點(diǎn)D在邊BC上,聯(lián)結(jié)AD,∠ADB=∠CDE,DE交邊AC于點(diǎn)E,DE交BA延長線于點(diǎn)F,且AD2=DE?DF.(1)求證:△BFD∽△CAD;(2)求證:BF?DE=AB?AD.24.(14分)如圖,?ABCD的對角線AC,BD相交于點(diǎn)O.E,F(xiàn)是AC上的兩點(diǎn),并且AE=CF,連接DE,BF.(1)求證:△DOE≌△BOF;(2)若BD=EF,連接DE,BF.判斷四邊形EBFD的形狀,并說明理由.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解題分析】

根據(jù)俯視圖是從上面看到的圖形解答即可.【題目詳解】錐形瓶從上面往下看看到的是兩個同心圓.故選B.【題目點(diǎn)撥】本題考查三視圖的知識,解決此類圖的關(guān)鍵是由三視圖得到相應(yīng)的平面圖形.從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖,能看到的線畫實(shí)線,被遮擋的線畫虛線.2、C【解題分析】

先根據(jù)三角形三條邊的關(guān)系求出第三條邊的取值范圍,進(jìn)而求出周長的取值范圍,從而可的求出符合題意的選項(xiàng).【題目詳解】∴三角形的兩邊長分別為5和7,∴2<第三條邊<12,∴5+7+2<三角形的周長<5+7+12,即14<三角形的周長<24,故選C.【題目點(diǎn)撥】本題考查了三角形三條邊的關(guān)系:三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊,據(jù)此解答即可.3、B【解題分析】

根據(jù)三角形中位線定理求出DE,得到DF∥BM,再證明EC=EF=AC,由此即可解決問題.【題目詳解】在RT△ABC中,∵∠ABC=90°,AB=2,BC=1,∴AC===10,∵DE是△ABC的中位線,∴DF∥BM,DE=BC=3,∴∠EFC=∠FCM,∵∠FCE=∠FCM,∴∠EFC=∠ECF,∴EC=EF=AC=5,∴DF=DE+EF=3+5=2.故選B.4、B【解題分析】根據(jù)平移的基本性質(zhì),得出四邊形ABFD的周長=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.根據(jù)題意,將周長為8個單位的△ABC沿邊BC向右平移1個單位得到△DEF,

∴AD=1,BF=BC+CF=BC+1,DF=AC;

又∵AB+BC+AC=8,

∴四邊形ABFD的周長=AD+AB+BF+DF=1+AB+BC+1+AC=1.

故選C.“點(diǎn)睛”本題考查平移的基本性質(zhì):①平移不改變圖形的形狀和大小;②經(jīng)過平移,對應(yīng)點(diǎn)所連的線段平行且相等,對應(yīng)線段平行且相等,對應(yīng)角相等.得到CF=AD,DF=AC是解題的關(guān)鍵.5、D【解題分析】

根據(jù)特殊角三角函數(shù)值,可得答案.【題目詳解】解:tan45°=1,故選D.【題目點(diǎn)撥】本題考查了特殊角三角函數(shù)值,熟記特殊角三角函數(shù)值是解題關(guān)鍵.6、D【解題分析】

解:幾何體的左視圖是從左面看幾何體所得到的圖形,選項(xiàng)A、B、C的左視圖均為從左往右正方形個數(shù)為2,1,符合題意,選項(xiàng)D的左視圖從左往右正方形個數(shù)為2,1,1,故選D.【題目點(diǎn)撥】本題考查幾何體的三視圖.7、C【解題分析】關(guān)于y軸對稱的點(diǎn),縱坐標(biāo)相同,橫坐標(biāo)互為相反數(shù),由此可得P(1,﹣2)關(guān)于y軸對稱的點(diǎn)的坐標(biāo)是(﹣1,﹣2),故選C.【題目點(diǎn)撥】本題考查了關(guān)于坐標(biāo)軸對稱的點(diǎn)的坐標(biāo),正確地記住關(guān)于坐標(biāo)軸對稱的點(diǎn)的坐標(biāo)特征是關(guān)鍵.關(guān)于x軸對稱的點(diǎn)的坐標(biāo)特點(diǎn):橫坐標(biāo)不變,縱坐標(biāo)互為相反數(shù);關(guān)于y軸對稱的點(diǎn)的坐標(biāo)特點(diǎn):縱坐標(biāo)不變,橫坐標(biāo)互為相反數(shù).8、B【解題分析】

先找出滑雪項(xiàng)目圖案的張數(shù),結(jié)合5張形狀、大小、質(zhì)地均相同的卡片,再根據(jù)概率公式即可求解.【題目詳解】∵有5張形狀、大小、質(zhì)地均相同的卡片,滑雪項(xiàng)目圖案的有高山滑雪和單板滑雪2張,∴從中隨機(jī)抽取一張,抽出的卡片正面恰好是滑雪項(xiàng)目圖案的概率是.故選B.【題目點(diǎn)撥】本題考查了簡單事件的概率.用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.9、D【解題分析】

抓住兩個特殊位置:當(dāng)BC與x軸平行時,求出D的坐標(biāo);C與原點(diǎn)重合時,D在y軸上,求出此時D的坐標(biāo),設(shè)所求直線解析式為y=kx+b,將兩位置D坐標(biāo)代入得到關(guān)于k與b的方程組,求出方程組的解得到k與b的值,即可確定出所求直線解析式.【題目詳解】當(dāng)BC與x軸平行時,過B作BE⊥x軸,過D作DF⊥x軸,交BC于點(diǎn)G,如圖1所示.∵等腰直角△ABO的O點(diǎn)是坐標(biāo)原點(diǎn),A的坐標(biāo)是(﹣4,0),∴AO=4,∴BC=BE=AE=EO=GF=OA=1,OF=DG=BG=CG=BC=1,DF=DG+GF=3,∴D坐標(biāo)為(﹣1,3);當(dāng)C與原點(diǎn)O重合時,D在y軸上,此時OD=BE=1,即D(0,1),設(shè)所求直線解析式為y=kx+b(k≠0),將兩點(diǎn)坐標(biāo)代入得:,解得:.則這條直線解析式為y=﹣x+1.故選D.【題目點(diǎn)撥】本題屬于一次函數(shù)綜合題,涉及的知識有:待定系數(shù)法確定一次函數(shù)解析式,等腰直角三角形的性質(zhì),坐標(biāo)與圖形性質(zhì),熟練運(yùn)用待定系數(shù)法是解答本題的關(guān)鍵.10、A【解題分析】

根據(jù)二次根式的性質(zhì)對A進(jìn)行判斷;根據(jù)二次根式的加減法對B進(jìn)行判斷;根據(jù)二次根式的除法法則對C進(jìn)行判斷;根據(jù)二次根式的乘法法則對D進(jìn)行判斷.【題目詳解】A、原式=2,所以A選項(xiàng)正確;B、原式=4-3=,所以B選項(xiàng)錯誤;C、原式==3,所以C選項(xiàng)錯誤;D、原式=,所以D選項(xiàng)錯誤.故選A.【題目點(diǎn)撥】本題考查了二次根式的混合運(yùn)算:先把二次根式化為最簡二次根式,然后進(jìn)行二次根式的乘除運(yùn)算,再合并即可.在二次根式的混合運(yùn)算中,如能結(jié)合題目特點(diǎn),靈活運(yùn)用二次根式的性質(zhì),選擇恰當(dāng)?shù)慕忸}途徑,往往能事半功倍.二、填空題(共7小題,每小題3分,滿分21分)11、±2【解題分析】分析:先化簡,再分同正或同負(fù)兩種情況作答.詳解:因?yàn)閤y=3,所以x、y同號,于是原式==,當(dāng)x>0,y>0時,原式==2;當(dāng)x<0,y<0時,原式==?2故原式=±2.點(diǎn)睛:本題考查的是二次根式的化簡求值,能夠正確的判斷出化簡過程中被開方數(shù)底數(shù)的符號是解答此題的關(guān)鍵.12、(20,4)(10086,0)【解題分析】

首先利用勾股定理得出AB的長,進(jìn)而得出三角形的周長,進(jìn)而求出B2,B4的橫坐標(biāo),進(jìn)而得出變化規(guī)律,即可得出答案.【題目詳解】解:由題意可得:∵AO=,BO=4,∴AB=,∴OA+AB1+B1C2=++4=6+4=10,∴B2的橫坐標(biāo)為:10,B4的橫坐標(biāo)為:2×10=20,B2016的橫坐標(biāo)為:×10=1.∵B2C2=B4C4=OB=4,∴點(diǎn)B4的坐標(biāo)為(20,4),∴B2017的橫坐標(biāo)為1++=10086,縱坐標(biāo)為0,∴點(diǎn)B2017的坐標(biāo)為:(10086,0).故答案為(20,4)、(10086,0).【題目點(diǎn)撥】本題主要考查了點(diǎn)的坐標(biāo)以及圖形變化類,根據(jù)題意得出B點(diǎn)橫坐標(biāo)變化規(guī)律是解題的關(guān)鍵.13、6【解題分析】

利用正方形的性質(zhì)和勾股定理可得AC的長,由角平分線的性質(zhì)和平行線的性質(zhì)可得∠CAE=∠E,易得CE=CA,由FA⊥AE,可得∠FAC=∠F,易得CF=AC,可得EF的長.【題目詳解】解:∵四邊形ABCD為正方形,且邊長為3,∴AC=3,∵AE平分∠CAD,∴∠CAE=∠DAE,∵AD∥CE,∴∠DAE=∠E,∴∠CAE=∠E,∴CE=CA=3,∵FA⊥AE,∴∠FAC+∠CAE=90°,∠F+∠E=90°,∴∠FAC=∠F,∴CF=AC=3,∴EF=CF+CE=3+3=614、18【解題分析】

三角形的重心是三條中線的交點(diǎn),根據(jù)中線的性質(zhì),S△ACD=S△BCD;再利用勾股定理逆定理證明BG⊥CE,從而得出△BCD的高,可求△BCD的面積.【題目詳解】∵點(diǎn)G是△ABC的重心,∴∵GB=3,EG=GC=4,BE=GA=5,∴,即BG⊥CE,∵CD為△ABC的中線,∴∴故答案為:18.【題目點(diǎn)撥】考查三角形重心的性質(zhì),中線的性質(zhì),旋轉(zhuǎn)的性質(zhì),勾股定理逆定理等,綜合性比較強(qiáng),對學(xué)生要求較高.15、-1.【解題分析】

根據(jù)根的判別式計(jì)算即可.【題目詳解】解:依題意得:∵關(guān)于的一元二次方程有兩個相等的實(shí)數(shù)根,∴==4-41(-k)=4+4k=0解得,k=-1.故答案為:-1.【題目點(diǎn)撥】本題考查了一元二次方程根的判別式,當(dāng)=>0時,方程有兩個不相等的實(shí)數(shù)根;當(dāng)==0時,方程有兩個相等的實(shí)數(shù)根;當(dāng)=<0時,方程無實(shí)數(shù)根.16、.【解題分析】

先求出BE的值,作DM⊥AB,DN⊥BC延長線,先證明△ADM≌△CDN(AAS),得出AM=CN,DM=DN,再根據(jù)正方形的性質(zhì)得BM=BN,設(shè)AM=CN=x,BM=AB-AM=12-x=BN=5+x,求出x=,BN=,根據(jù)BD為正方形的對角線可得出BD=,BF=BD=,EF==.【題目詳解】∵∠ABC=∠ADC,∴A,B,C,D四點(diǎn)共圓,∴AC為直徑,∵E為AC的中點(diǎn),∴E為此圓圓心,∵F為弦BD中點(diǎn),∴EF⊥BD,連接BE,∴BE=AC===;作DM⊥AB,DN⊥BC延長線,∠BAD=∠BCN,在△ADM和△CDN中,,∴△ADM≌△CDN(AAS),∴AM=CN,DM=DN,∵∠DMB=∠DNC=∠ABC=90°,∴四邊形BNDM為矩形,又∵DM=DN,∴矩形BNDM為正方形,∴BM=BN,設(shè)AM=CN=x,BM=AB-AM=12-x=BN=5+x,∴12-x=5+x,x=,BN=,∵BD為正方形BNDM的對角線,∴BD=BN=,BF=BD=,∴EF===.故答案為.【題目點(diǎn)撥】本題考查了正方形的性質(zhì)與全等三角形的性質(zhì),解題的關(guān)鍵是熟練的掌握正方形與全等三角形的性質(zhì)與應(yīng)用.17、3(m-1)2【解題分析】試題分析:根據(jù)因式分解的方法,先提公因式,再根據(jù)完全平方公式分解因式即可,即3m2-6m+3=3(m2-2m+1)=3(m-1)2.故答案為:3(m-1)2點(diǎn)睛:因式分解是把一個多項(xiàng)式化為幾個因式積的形式.根據(jù)因式分解的一般步驟:一提(公因式)、二套(平方差公式,完全平方公式)、三檢查(徹底分解).三、解答題(共7小題,滿分69分)18、(1)24,1;(2)54;(3)360.【解題分析】

(1)根據(jù)選擇乒乓球運(yùn)動的人數(shù)是36人,對應(yīng)的百分比是30%,即可求得總?cè)藬?shù),然后利用百分比的定義求得a,用總?cè)藬?shù)減去其它組的人數(shù)求得b;(2)利用360°乘以對應(yīng)的百分比即可求得;(3)求得全???cè)藬?shù),然后利用總?cè)藬?shù)乘以對應(yīng)的百分比求解.【題目詳解】(1)抽取的人數(shù)是36÷30%=120(人),則a=120×20%=24,b=120﹣30﹣24﹣36﹣12=1.故答案是:24,1;(2)“排球”所在的扇形的圓心角為360°×=54°,故答案是:54;(3)全校總?cè)藬?shù)是120÷10%=1200(人),則選擇參加乒乓球運(yùn)動的人數(shù)是1200×30%=360(人).19、(1)20;(2)作圖見試題解析;(3).【解題分析】

(1)由A類的學(xué)生數(shù)以及所占的百分比即可求得答案;(2)先求出C類的女生數(shù)、D類的男生數(shù),繼而可補(bǔ)全條形統(tǒng)計(jì)圖;(3)首先根據(jù)題意列出表格,再利用表格求得所有等可能的結(jié)果與恰好選中一名男生和一名女生的情況,繼而求得答案.【題目詳解】(1)根據(jù)題意得:王老師一共調(diào)查學(xué)生:(2+1)÷15%=20(名);故答案為20;(2)∵C類女生:20×25%﹣2=3(名);D類男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);如圖:(3)列表如下:A類中的兩名男生分別記為A1和A2,男A1男A2女A男D男A1男D男A2男D女A男D女D男A1女D男A2女D女A女D共有6種等可能的結(jié)果,其中,一男一女的有3種,所以所選兩位同學(xué)恰好是一位男生和一位女生的概率為:.20、AD=38.28米.【解題分析】

過點(diǎn)B作BE⊥DA,BF⊥DC,垂足分別為E、F,已知AD=AE+ED,則分別求得AE、DE的長即可求得AD的長.【題目詳解】過點(diǎn)B作BE⊥DA,BF⊥DC,垂足分別為E,F(xiàn),由題意知,AD⊥CD∴四邊形BFDE為矩形∴BF=ED在Rt△ABE中,AE=AB?cos∠EAB在Rt△BCF中,BF=BC?cos∠FBC∴AD=AE+BF=20?cos60°+40?cos45°=20×+40×=10+20=10+20×1.414=38.28(米).即AD=38.28米.【題目點(diǎn)撥】解一般三角形,求三角形的邊或高的問題一般可以轉(zhuǎn)化為解直角三角形的問題,解決的方法就是作高線.21、(1)證明見解析;(2)BC=,AD=.【解題分析】分析:(1)連接OE,由OB=OE知∠OBE=∠OEB、由BE平分∠ABC知∠OBE=∠CBE,據(jù)此得∠OEB=∠CBE,從而得出OE∥BC,進(jìn)一步即可得證;(2)證△BDE∽△BEC得,據(jù)此可求得BC的長度,再證△AOE∽△ABC得,據(jù)此可得AD的長.詳解:(1)如圖,連接OE,∵OB=OE,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠OBE=∠CBE,∴∠OEB=∠CBE,∴OE∥BC,又∵∠C=90°,∴∠AEO=90°,即OE⊥AC,∴AC為⊙O的切線;(2)∵ED⊥BE,∴∠BED=∠C=90°,又∵∠DBE=∠EBC,∴△BDE∽△BEC,∴,即,∴BC=;∵∠AEO=∠C=90°,∠A=∠A,∴△AOE∽△ABC,∴,即,解得:AD=.點(diǎn)睛:本題主要考查切線的判定與性質(zhì),解題的關(guān)鍵是掌握切線的判定與性質(zhì)及相似三角形的判定與性質(zhì).22、(1)詳見解析;(2)【解題分析】

(1)連接OA,利用切線的判定證明即可;

(2)分別連結(jié)OP、PE、AE

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論