




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆浙江省逍林初中中考數(shù)學(xué)模擬預(yù)測(cè)題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.把多項(xiàng)式ax3﹣2ax2+ax分解因式,結(jié)果正確的是()A.a(chǎn)x(x2﹣2x) B.a(chǎn)x2(x﹣2)C.a(chǎn)x(x+1)(x﹣1) D.a(chǎn)x(x﹣1)22.用圓心角為120°,半徑為6cm的扇形紙片卷成一個(gè)圓錐形無底紙帽(如圖所示),則這個(gè)紙帽的高是()A.cm B.3cm C.4cm D.4cm3.如圖,在ABCD中,E為CD上一點(diǎn),連接AE、BD,且AE、BD交于點(diǎn)F,DE:EC=2:3,則S△DEF:S△ABF=()A.2:3 B.4:9 C.2:5 D.4:254.若正六邊形的半徑長(zhǎng)為4,則它的邊長(zhǎng)等于()A.4 B.2 C. D.5.正比例函數(shù)y=(k+1)x,若y隨x增大而減小,則k的取值范圍是()A.k>1 B.k<1 C.k>﹣1 D.k<﹣16.如圖,在平面直角坐標(biāo)系中,以O(shè)為圓心,適當(dāng)長(zhǎng)為半徑畫弧,交x軸于點(diǎn)M,交y軸于點(diǎn)N,再分別以點(diǎn)M、N為圓心,大于MN的長(zhǎng)為半徑畫弧,兩弧在第二象限交于點(diǎn)P.若點(diǎn)P的坐標(biāo)為(2a,b+1),則a與b的數(shù)量關(guān)系為A.a(chǎn)=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=17.如圖,該圖形經(jīng)過折疊可以圍成一個(gè)正方體,折好以后與“靜”字相對(duì)的字是()A.著 B.沉 C.應(yīng) D.冷8.關(guān)于的分式方程解為,則常數(shù)的值為()A. B. C. D.9.下列敘述,錯(cuò)誤的是()A.對(duì)角線互相垂直且相等的平行四邊形是正方形B.對(duì)角線互相垂直平分的四邊形是菱形C.對(duì)角線互相平分的四邊形是平行四邊形D.對(duì)角線相等的四邊形是矩形10.下面的幾何體中,主視圖為圓的是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,Rt△ABC紙片中,∠C=90°,AC=6,BC=8,點(diǎn)D在邊BC上,以AD為折痕將△ABD折疊得到△AB′D,AB′與邊BC交于點(diǎn)E.若△DEB′為直角三角形,則BD的長(zhǎng)是_______.12.如圖,AB是⊙O的直徑,C是⊙O上的點(diǎn),過點(diǎn)C作⊙O的切線交AB的延長(zhǎng)線于點(diǎn)D.若∠A=32°,則∠D=_____度.13.當(dāng)a,b互為相反數(shù),則代數(shù)式a2+ab﹣2的值為_____.14.如圖,已知點(diǎn)A(4,0),O為坐標(biāo)原點(diǎn),P是線段OA上任意一點(diǎn)(不含端點(diǎn)O,A),過P,O兩點(diǎn)的二次函數(shù)y1和過P,A兩點(diǎn)的二次函數(shù)y2的圖象開口均向下,它們的頂點(diǎn)分別為B,C,射線OB與射線AC相交于點(diǎn)D.當(dāng)△ODA是等邊三角形時(shí),這兩個(gè)二次函數(shù)的最大值之和等于__.15.如圖,在△ABC中,AB=3+,∠B=45°,∠C=105°,點(diǎn)D、E、F分別在AC、BC、AB上,且四邊形ADEF為菱形,若點(diǎn)P是AE上一個(gè)動(dòng)點(diǎn),則PF+PB的最小值為_____.16.如圖,若雙曲線()與邊長(zhǎng)為3的等邊△AOB(O為坐標(biāo)原點(diǎn))的邊OA、AB分別交于C、D兩點(diǎn),且OC=2BD,則k的值為_____.17.從﹣2,﹣1,2,0這四個(gè)數(shù)中任取兩個(gè)不同的數(shù)作為點(diǎn)的坐標(biāo),該點(diǎn)不在第三象限的概率是_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,已知點(diǎn)B、E、C、F在一條直線上,AB=DF,AC=DE,∠A=∠D求證:AC∥DE;若BF=13,EC=5,求BC的長(zhǎng).19.(5分)“分組合作學(xué)習(xí)”已成為推動(dòng)課堂教學(xué)改革,打造自主高效課堂的重要措施.某中學(xué)從全校學(xué)生中隨機(jī)抽取部分學(xué)生對(duì)“分組合作學(xué)習(xí)”實(shí)施后的學(xué)習(xí)興趣情況進(jìn)行調(diào)查分析,統(tǒng)計(jì)圖如下:請(qǐng)結(jié)合圖中信息解答下列問題:求出隨機(jī)抽取調(diào)查的學(xué)生人數(shù);補(bǔ)全分組后學(xué)生學(xué)習(xí)興趣的條形統(tǒng)計(jì)圖;分組后學(xué)生學(xué)習(xí)興趣為“中”的所占的百分比和對(duì)應(yīng)扇形的圓心角.20.(8分)如圖,在△ABC中,∠BAC=90°,AD⊥BC于點(diǎn)D,BF平分∠ABC交AD于點(diǎn)E,交AC于點(diǎn)F,求證:AE=AF.21.(10分)已知:如圖,在菱形中,點(diǎn),,分別為,,的中點(diǎn),連接,,,.求證:;當(dāng)與滿足什么關(guān)系時(shí),四邊形是正方形?請(qǐng)說明理由.22.(10分)在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+2的圖象與x軸交于A(﹣4,0),B(1,0)兩點(diǎn),與y軸交于點(diǎn)C.(1)求這個(gè)二次函數(shù)的解析式;(2)連接AC、BC,判斷△ABC的形狀,并證明;(3)若點(diǎn)P為二次函數(shù)對(duì)稱軸上點(diǎn),求出使△PBC周長(zhǎng)最小時(shí),點(diǎn)P的坐標(biāo).23.(12分)如圖,在△ABC中,∠ABC=90°,BD為AC邊上的中線.(1)按如下要求尺規(guī)作圖,保留作圖痕跡,標(biāo)注相應(yīng)的字母:過點(diǎn)C作直線CE,使CE⊥BC于點(diǎn)C,交BD的延長(zhǎng)線于點(diǎn)E,連接AE;(2)求證:四邊形ABCE是矩形.24.(14分)某中學(xué)為了解八年級(jí)學(xué)習(xí)體能狀況,從八年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行體能測(cè)試,測(cè)試結(jié)果分為A、B、C、D四個(gè)等級(jí).請(qǐng)根據(jù)兩幅統(tǒng)計(jì)圖中的信息回答下列問題:(1)本次抽樣調(diào)查共抽取了多少名學(xué)生?(2)求測(cè)試結(jié)果為C等級(jí)的學(xué)生數(shù),并補(bǔ)全條形圖;(3)若該中學(xué)八年級(jí)共有700名學(xué)生,請(qǐng)你估計(jì)該中學(xué)八年級(jí)學(xué)生中體能測(cè)試結(jié)果為D等級(jí)的學(xué)生有多少名.
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、D【解題分析】
先提取公因式ax,再根據(jù)完全平方公式把x2﹣2x+1繼續(xù)分解即可.【題目詳解】原式=ax(x2﹣2x+1)=ax(x﹣1)2,故選D.【題目點(diǎn)撥】本題考查了因式分解,把一個(gè)多項(xiàng)式化成幾個(gè)整式的乘積的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分組分解法.因式分解必須分解到每個(gè)因式都不能再分解為止.2、C【解題分析】
利用扇形的弧長(zhǎng)公式可得扇形的弧長(zhǎng);讓扇形的弧長(zhǎng)除以2π即為圓錐的底面半徑,利用勾股定理可得圓錐形筒的高.【題目詳解】L==4π(cm);圓錐的底面半徑為4π÷2π=2(cm),∴這個(gè)圓錐形筒的高為(cm).故選C.【題目點(diǎn)撥】此題考查了圓錐的計(jì)算,用到的知識(shí)點(diǎn)為:圓錐側(cè)面展開圖的弧長(zhǎng)=;圓錐的底面周長(zhǎng)等于側(cè)面展開圖的弧長(zhǎng);圓錐的底面半徑,母線長(zhǎng),高組成以母線長(zhǎng)為斜邊的直角三角形.3、D【解題分析】試題分析:先根據(jù)平行四邊形的性質(zhì)及相似三角形的判定定理得出△DEF∽△BAF,從而DE:AB=DE:DC=2:5,所以S△DEF:S△ABF=4:25試題解析:∵四邊形ABCD是平行四邊形,∴AB∥CD,BA=DC∴∠EAB=∠DEF,∠AFB=∠DFE,∴△DEF∽△BAF,∴DE:AB=DE:DC=2:5,∴S△DEF:S△ABF=4:25,考點(diǎn):1.相似三角形的判定與性質(zhì);2.三角形的面積;3.平行四邊形的性質(zhì).4、A【解題分析】試題分析:正六邊形的中心角為360°÷6=60°,那么外接圓的半徑和正六邊形的邊長(zhǎng)將組成一個(gè)等邊三角形,故正六邊形的半徑等于1,則正六邊形的邊長(zhǎng)是1.故選A.考點(diǎn):正多邊形和圓.5、D【解題分析】
根據(jù)正比例函數(shù)圖象與系數(shù)的關(guān)系列出關(guān)于k的不等式k+1<0,然后解不等式即可.【題目詳解】解:∵正比例函數(shù)y=(k+1)x中,y的值隨自變量x的值增大而減小,∴k+1<0,解得,k<-1;故選D.【題目點(diǎn)撥】本題主要考查正比例函數(shù)圖象在坐標(biāo)平面內(nèi)的位置與k的關(guān)系.解答本題注意理解:直線y=kx所在的位置與k的符號(hào)有直接的關(guān)系.k>0時(shí),直線必經(jīng)過一、三象限,y隨x的增大而增大;k<0時(shí),直線必經(jīng)過二、四象限,y隨x的增大而減小.6、B【解題分析】試題分析:根據(jù)作圖方法可得點(diǎn)P在第二象限角平分線上,則P點(diǎn)橫縱坐標(biāo)的和為0,即2a+b+1=0,∴2a+b=﹣1.故選B.7、A【解題分析】
正方體的平面展開圖中,相對(duì)面的特點(diǎn)是中間必須間隔一個(gè)正方形,據(jù)此作答【題目詳解】這是一個(gè)正方體的平面展開圖,共有六個(gè)面,其中面“沉”與面“考”相對(duì),面“著”與面“靜”相對(duì),“冷”與面“應(yīng)”相對(duì).故選:A【題目點(diǎn)撥】本題主要考查了利用正方體及其表面展開圖的特點(diǎn)解題,明確正方體的展開圖的特征是解決此題的關(guān)鍵8、D【解題分析】
根據(jù)分式方程的解的定義把x=4代入原分式方程得到關(guān)于a的一次方程,解得a的值即可.【題目詳解】解:把x=4代入方程,得,解得a=1.經(jīng)檢驗(yàn),a=1是原方程的解故選D.點(diǎn)睛:此題考查了分式方程的解,分式方程注意分母不能為2.9、D【解題分析】【分析】根據(jù)正方形的判定、平行四邊形的判定、菱形的判定和矩形的判定定理對(duì)選項(xiàng)逐一進(jìn)行分析,即可判斷出答案.【題目詳解】A.對(duì)角線互相垂直且相等的平行四邊形是正方形,正確,不符合題意;B.對(duì)角線互相垂直平分的四邊形是菱形,正確,不符合題意;C.對(duì)角線互相平分的四邊形是平行四邊形,正確,不符合題意;D.對(duì)角線相等的平行四邊形是矩形,故D選項(xiàng)錯(cuò)誤,符合題意,故選D.【題目點(diǎn)撥】本題考查了正方形的判定、平行四邊形的判定、菱形的判定和矩形的判定等,熟練掌握相關(guān)判定定理是解答此類問題的關(guān)鍵.10、C【解題分析】試題解析:A、的主視圖是矩形,故A不符合題意;B、的主視圖是正方形,故B不符合題意;C、的主視圖是圓,故C符合題意;D、的主視圖是三角形,故D不符合題意;故選C.考點(diǎn):簡(jiǎn)單幾何體的三視圖.二、填空題(共7小題,每小題3分,滿分21分)11、5或1.【解題分析】
先依據(jù)勾股定理求得AB的長(zhǎng),然后由翻折的性質(zhì)可知:AB′=5,DB=DB′,接下來分為∠B′DE=90°和∠B′ED=90°,兩種情況畫出圖形,設(shè)DB=DB′=x,然后依據(jù)勾股定理列出關(guān)于x的方程求解即可.【題目詳解】∵Rt△ABC紙片中,∠C=90°,AC=6,BC=8,∴AB=5,∵以AD為折痕△ABD折疊得到△AB′D,∴BD=DB′,AB′=AB=5.如圖1所示:當(dāng)∠B′DE=90°時(shí),過點(diǎn)B′作B′F⊥AF,垂足為F.設(shè)BD=DB′=x,則AF=6+x,F(xiàn)B′=8-x.在Rt△AFB′中,由勾股定理得:AB′5=AF5+FB′5,即(6+x)5+(8-x)5=55.解得:x1=5,x5=0(舍去).∴BD=5.如圖5所示:當(dāng)∠B′ED=90°時(shí),C與點(diǎn)E重合.∵AB′=5,AC=6,∴B′E=5.設(shè)BD=DB′=x,則CD=8-x.在Rt△′BDE中,DB′5=DE5+B′E5,即x5=(8-x)5+55.解得:x=1.∴BD=1.綜上所述,BD的長(zhǎng)為5或1.12、1【解題分析】分析:連接OC,根據(jù)圓周角定理得到∠COD=2∠A,根據(jù)切線的性質(zhì)計(jì)算即可.詳解:連接OC,由圓周角定理得,∠COD=2∠A=64°,∵CD為⊙O的切線,∴OC⊥CD,∴∠D=90°-∠COD=1°,故答案為:1.點(diǎn)睛:本題考查的是切線的性質(zhì)、圓周角定理,掌握?qǐng)A的切線垂直于經(jīng)過切點(diǎn)的半徑是解題的關(guān)鍵.13、﹣1.【解題分析】分析:由已知易得:a+b=0,再把代數(shù)式a1+ab-1化為為a(a+b)-1即可求得其值了.詳解:∵a與b互為相反數(shù),∴a+b=0,∴a1+ab-1=a(a+b)-1=0-1=-1.故答案為:-1.點(diǎn)睛:知道“互為相反數(shù)的兩數(shù)的和為0”及“能夠把a(bǔ)1+ab-1化為為a(a+b)-1”是正確解答本題的關(guān)鍵.14、2【解題分析】
連接PB、PC,根據(jù)二次函數(shù)的對(duì)稱性可知OB=PB,PC=AC,從而判斷出△POB和△ACP是等邊三角形,再根據(jù)等邊三角形的性質(zhì)求解即可.【題目詳解】解:如圖,連接PB、PC,由二次函數(shù)的性質(zhì),OB=PB,PC=AC,∵△ODA是等邊三角形,∴∠AOD=∠OAD=60°,∴△POB和△ACP是等邊三角形,∵A(4,0),∴OA=4,∴點(diǎn)B、C的縱坐標(biāo)之和為:OB×sin60°+PC×sin60°=4×=2,即兩個(gè)二次函數(shù)的最大值之和等于2.故答案為2.【題目點(diǎn)撥】本題考查了二次函數(shù)的最值問題,等邊三角形的判定與性質(zhì),解直角三角形,作輔助線構(gòu)造出等邊三角形并利用等邊三角形的知識(shí)求解是解題的關(guān)鍵.15、【解題分析】
如圖,連接OD,BD,作DH⊥AB于H,EG⊥AB于G.由四邊形ADEF是菱形,推出F,D關(guān)于直線AE對(duì)稱,推出PF=PD,推出PF+PB=PA+PB,由PD+PB≥BD,推出PF+PB的最小值是線段BD的長(zhǎng).【題目詳解】如圖,連接OD,BD,作DH⊥AB于H,EG⊥AB于G.∵四邊形ADEF是菱形,∴F,D關(guān)于直線AE對(duì)稱,∴PF=PD,∴PF+PB=PA+PB,∵PD+PB≥BD,∴PF+PB的最小值是線段BD的長(zhǎng),∵∠CAB=180°-105°-45°=30°,設(shè)AF=EF=AD=x,則DH=EG=x,F(xiàn)G=x,∵∠EGB=45°,EG⊥BG,∴EG=BG=x,∴x+x+x=3+,∴x=2,∴DH=1,BH=3,∴BD==,∴PF+PB的最小值為,故答案為.【題目點(diǎn)撥】本題考查軸對(duì)稱-最短問題,菱形的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)用轉(zhuǎn)化的思想思考問題,學(xué)會(huì)利用軸對(duì)稱解決最短問題.16、.【解題分析】
過點(diǎn)C作CE⊥x軸于點(diǎn)E,過點(diǎn)D作DF⊥x軸于點(diǎn)F,設(shè)OC=2x,則BD=x,在Rt△OCE中,∠COE=60°,則OE=x,CE=,則點(diǎn)C坐標(biāo)為(x,),在Rt△BDF中,BD=x,∠DBF=60°,則BF=,DF=,則點(diǎn)D的坐標(biāo)為(,),將點(diǎn)C的坐標(biāo)代入反比例函數(shù)解析式可得:,將點(diǎn)D的坐標(biāo)代入反比例函數(shù)解析式可得:,則,解得:,(舍去),故=.故答案為.考點(diǎn):1.反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征;2.等邊三角形的性質(zhì).17、【解題分析】
列舉出所有情況,看在第四象限的情況數(shù)占總情況數(shù)的多少即可.【題目詳解】如圖:共有12種情況,在第三象限的情況數(shù)有2種,
故不再第三象限的共10種,
不在第三象限的概率為,
故答案為.【題目點(diǎn)撥】本題考查了樹狀圖法的知識(shí),解題的關(guān)鍵是列出樹狀圖求出概率.三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2)4.【解題分析】
(1)首先證明△ABC≌△DFE可得∠ACE=∠DEF,進(jìn)而可得AC∥DE;(2)根據(jù)△ABC≌△DFE可得BC=EF,利用等式的性質(zhì)可得EB=CF,再由BF=13,EC=5進(jìn)而可得EB的長(zhǎng),然后可得答案.【題目詳解】解:(1)在△ABC和△DFE中,∴△ABC≌△DFE(SAS),∴∠ACE=∠DEF,∴AC∥DE;(2)∵△ABC≌△DFE,∴BC=EF,∴CB﹣EC=EF﹣EC,∴EB=CF,∵BF=13,EC=5,∴EB=4,∴CB=4+5=1.【題目點(diǎn)撥】考點(diǎn):全等三角形的判定與性質(zhì).19、(1)200人;(2)補(bǔ)圖見解析;(3)分組后學(xué)生學(xué)習(xí)興趣為“中”的所占的百分比為30%;對(duì)應(yīng)扇形的圓心角為108°.【解題分析】試題分析:(1)用“極高”的人數(shù)所占的百分比,即可解答;
(2)求出“高”的人數(shù),即可補(bǔ)全統(tǒng)計(jì)圖;
(3)用“中”的人數(shù)調(diào)查的學(xué)生人數(shù),即可得到所占的百分比,所占的百分比即可求出對(duì)應(yīng)的扇形圓心角的度數(shù).試題解析:(人).學(xué)生學(xué)習(xí)興趣為“高”的人數(shù)為:(人).補(bǔ)全統(tǒng)計(jì)圖如下:分組后學(xué)生學(xué)習(xí)興趣為“中”的所占的百分比為:學(xué)生學(xué)習(xí)興趣為“中”對(duì)應(yīng)扇形的圓心角為:20、見解析【解題分析】
根據(jù)角平分線的定義可得∠ABF=∠CBF,由已知條件可得∠ABF+∠AFB=∠CBF+∠BED=90°,根據(jù)余角的性質(zhì)可得∠AFB=∠BED,即可求得∠AFE=∠AEF,由等腰三角形的判定即可證得結(jié)論.【題目詳解】∵BF平分∠ABC,∴∠ABF=∠CBF,∵∠BAC=90°,AD⊥BC,∴∠ABF+∠AFB=∠CBF+∠BED=90°,∴∠AFB=∠BED,∵∠AEF=∠BED,∴∠AFE=∠AEF,∴AE=AF.【題目點(diǎn)撥】本題考查了等腰三角形的判定、直角三角形的性質(zhì),根據(jù)余角的性質(zhì)證得∠AFB=∠BED是解題的關(guān)鍵.21、見解析【解題分析】
(1)由菱形的性質(zhì)得出∠B=∠D,AB=BC=DC=AD,由已知和三角形中位線定理證出AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,由(SAS)證明△BCE≌△DCF即可;
(2)由(1)得:AE=OE=OF=AF,證出四邊形AEOF是菱形,再證出∠AEO=90°,四邊形AEOF是正方形.【題目詳解】(1)證明:∵四邊形ABCD是菱形,∴∠B=∠D,AB=BC=DC=AD,∵點(diǎn)E,O,F(xiàn)分別為AB,AC,AD的中點(diǎn),∴AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,在△BCE和△DCF中,,∴△BCE≌△DCF(SAS);(2)當(dāng)AB⊥BC時(shí),四邊形AEOF是正方形,理由如下:由(1)得:AE=OE=OF=AF,∴四邊形AEOF是菱形,∵AB⊥BC,OE∥BC,∴OE⊥AB,∴∠AEO=90°,∴四邊形AEOF是正方形.【題目點(diǎn)撥】本題考查了全等三角形、菱形、正方形的性質(zhì),解題的關(guān)鍵是熟練的掌握菱形、正方形、全等三角形的性質(zhì).22、(1)拋物線解析式為y=﹣x2﹣x+2;(2)△ABC為直角三角形,理由見解析;(3)當(dāng)P點(diǎn)坐標(biāo)為(﹣,)時(shí),△PBC周長(zhǎng)最小【解題分析】
(1)設(shè)交點(diǎn)式y(tǒng)=a(x+4)(x-1),展開得到-4a=2,然后求出a即可得到拋物線解析式;
(2)先利用兩點(diǎn)間的距離公式計(jì)算出AC2=42+22,BC2=12+22,AB2=25,然后利用勾股定理的逆定理可判斷△ABC為直角三角形;
(3)拋物線的對(duì)稱軸為直線x=-,連接AC交直線x=-于P點(diǎn),如圖,利用兩點(diǎn)之間線段最短得到PB+PC的值最小,則△PBC周長(zhǎng)最小,接著利用待定系數(shù)法求出直線AC的解析式為y=x+2,然后進(jìn)行自變量為-所對(duì)應(yīng)的函數(shù)值即可得到P點(diǎn)坐標(biāo).【題目詳解】(1)拋物線的解析式為y=a(x+4)(x﹣1),即y=ax2+3ax﹣4a,∴﹣4a=2,解得a=﹣,∴拋物線解析式為y=﹣x2﹣x+2;(2)△ABC為直角三角形.理由如下:當(dāng)x=0時(shí),y=﹣x2﹣x+2=2,則C(0,2),∵A(﹣4,0),B(1,0),∴AC2=42+22,BC2=12+22,AB2=52=25,∴AC2+BC2=AB2,∴△ABC為直角三角形,∠ACB=90°;(3)拋物線的對(duì)稱軸為直線x=﹣,連接AC交直線x=﹣于P點(diǎn),如圖,∵P
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 橙色可愛卡通節(jié)約糧食模板
- 股權(quán)轉(zhuǎn)讓協(xié)議
- 產(chǎn)品業(yè)務(wù)提成合同范例
- 人事部經(jīng)理工作總結(jié)模版
- 醫(yī)療健康大數(shù)據(jù)驅(qū)動(dòng)的個(gè)性化醫(yī)療解決方案
- 2025年小學(xué)體育教師年度考核個(gè)人工作總結(jié)模版
- 運(yùn)輸新質(zhì)生產(chǎn)力
- 預(yù)留、預(yù)埋、防雷等施工技術(shù)總結(jié)
- 中藥柜銷售合同范例
- 醫(yī)院科室質(zhì)控工作總結(jié)模版
- 部編人教版五年級(jí)語文下冊(cè)第18課《威尼斯的小艇》精美課件
- 消防(電動(dòng)車)火災(zāi)安全知識(shí)課件
- VSM(價(jià)值流圖中文)課件
- 上海交通大學(xué)醫(yī)學(xué)院附屬仁濟(jì)醫(yī)院-日間手術(shù)管理信息化實(shí)踐與發(fā)展
- 有源、無源濾波器實(shí)驗(yàn)報(bào)告
- 供應(yīng)室手工清洗操作流程課件
- 核電站入廠安全培訓(xùn)課件
- 節(jié)日主題班會(huì) 《感恩母親節(jié)》教學(xué)課件
- 新加坡sm214th面經(jīng)44緋的同學(xué)
- 全國(guó)第七屆中小學(xué)音樂優(yōu)質(zhì)課比賽教學(xué)設(shè)計(jì)跳圓舞曲的小貓
- 圍術(shù)期過敏反應(yīng)診治的專家共識(shí)(全文)
評(píng)論
0/150
提交評(píng)論