鞍山市重點中學(xué)2024屆十校聯(lián)考最后數(shù)學(xué)試題含解析_第1頁
鞍山市重點中學(xué)2024屆十校聯(lián)考最后數(shù)學(xué)試題含解析_第2頁
鞍山市重點中學(xué)2024屆十校聯(lián)考最后數(shù)學(xué)試題含解析_第3頁
鞍山市重點中學(xué)2024屆十校聯(lián)考最后數(shù)學(xué)試題含解析_第4頁
鞍山市重點中學(xué)2024屆十校聯(lián)考最后數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

鞍山市重點中學(xué)2024屆十校聯(lián)考最后數(shù)學(xué)試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.某反比例函數(shù)的圖象經(jīng)過點(-2,3),則此函數(shù)圖象也經(jīng)過()A.(2,-3) B.(-3,3) C.(2,3) D.(-4,6)2.如圖,△ABC為直角三角形,∠C=90°,BC=2cm,∠A=30°,四邊形DEFG為矩形,DE=2cm,EF=6cm,且點C、B、E、F在同一條直線上,點B與點E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的邊EF向右平移,當(dāng)點C與點F重合時停止.設(shè)Rt△ABC與矩形DEFG的重疊部分的面積為ycm2,運動時間xs.能反映ycm2與xs之間函數(shù)關(guān)系的大致圖象是()A. B. C. D.3.剪紙是水族的非物質(zhì)文化遺產(chǎn)之一,下列剪紙作品是中心對稱圖形的是()A. B.C. D.4.下列運算結(jié)果正確的是()A.(x3﹣x2+x)÷x=x2﹣xB.(﹣a2)?a3=a6C.(﹣2x2)3=﹣8x6D.4a2﹣(2a)2=2a25.如圖,將長方形紙片ABCD折疊,使邊DC落在對角線AC上,折痕為CE,且D點落在對角線D′處.若AB=3,AD=4,則ED的長為A. B.3 C.1 D.6.扇形的半徑為30cm,圓心角為120°,用它做成一個圓錐的側(cè)面,則圓錐底面半徑為()A.10cm B.20cm C.10πcm D.20πcm7.某校對初中學(xué)生開展的四項課外活動進行了一次抽樣調(diào)查(每人只參加其中的一項活動),調(diào)查結(jié)果如圖所示,根據(jù)圖形所提供的樣本數(shù)據(jù),可得學(xué)生參加科技活動的頻率是()A.0.15 B.0.2 C.0.25 D.0.38.7的相反數(shù)是()A.7 B.-7 C. D.-9.如圖,在矩形紙片ABCD中,已知AB=,BC=1,點E在邊CD上移動,連接AE,將多邊形ABCE沿直線AE折疊,得到多邊形AFGE,點B、C的對應(yīng)點分別為點F、G.在點E從點C移動到點D的過程中,則點F運動的路徑長為()A.π B.π C.π D.π10.如圖,△ABC是⊙O的內(nèi)接三角形,AC是⊙O的直徑,∠C=50°,∠ABC的平分線BD交⊙O于點D,則∠BAD的度數(shù)是()A.45° B.85° C.90° D.95°二、填空題(本大題共6個小題,每小題3分,共18分)11.關(guān)于x的一元二次方程x2-2x+m-1=0有兩個相等的實數(shù)根,則m的值為_________12.若一組數(shù)據(jù)1,2,3,的平均數(shù)是2,則的值為______.13.如圖,把一塊直角三角板的直角頂點放在直尺的一邊上,若∠1=50°,則∠2=_____°.14.在今年的春節(jié)黃金周中,全國零售和餐飲企業(yè)實現(xiàn)銷售額約9260億元,比去年春節(jié)黃金周增長10.2%,將9260億用科學(xué)記數(shù)法表示為_____________.15.在數(shù)軸上,點A和點B分別表示數(shù)a和b,且在原點的兩側(cè),若=2016,AO=2BO,則a+b=_____16.分解因式:x2y﹣6xy+9y=_____.三、解答題(共8題,共72分)17.(8分)如圖,是的直徑,是圓上一點,弦于點,且.過點作的切線,過點作的平行線,兩直線交于點,的延長線交的延長線于點.(1)求證:與相切;(2)連接,求的值.18.(8分)如圖,在Rt△ABC中,CD,CE分別是斜邊AB上的高,中線,BC=a,AC=b.若a=3,b=4,求DE的長;直接寫出:CD=(用含a,b的代數(shù)式表示);若b=3,tan∠DCE=,求a的值.19.(8分)如圖,在等腰直角△ABC中,∠C是直角,點A在直線MN上,過點C作CE⊥MN于點E,過點B作BF⊥MN于點F.(1)如圖1,當(dāng)C,B兩點均在直線MN的上方時,①直接寫出線段AE,BF與CE的數(shù)量關(guān)系.②猜測線段AF,BF與CE的數(shù)量關(guān)系,不必寫出證明過程.(2)將等腰直角△ABC繞著點A順時針旋轉(zhuǎn)至圖2位置時,線段AF,BF與CE又有怎樣的數(shù)量關(guān)系,請寫出你的猜想,并寫出證明過程.(3)將等腰直角△ABC繞著點A繼續(xù)旋轉(zhuǎn)至圖3位置時,BF與AC交于點G,若AF=3,BF=7,直接寫出FG的長度.20.(8分)為落實“垃圾分類”,環(huán)衛(wèi)部門要求垃圾要按A,B,C三類分別裝袋,投放,其中A類指廢電池,過期藥品等有毒垃圾,B類指剩余食品等廚余垃圾,C類指塑料,廢紙等可回收垃圾.甲投放了一袋垃圾,乙投放了兩袋垃圾,這兩袋垃圾不同類.直接寫出甲投放的垃圾恰好是A類的概率;求乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率.21.(8分)如圖,某高速公路建設(shè)中需要確定隧道AB的長度.已知在離地面1500m高度C處的飛機上,測量人員測得正前方A、B兩點處的俯角分別為60°和45°.求隧道AB的長(≈1.73).22.(10分)在汕頭市中小學(xué)標(biāo)準(zhǔn)化建設(shè)工程中,某學(xué)校計劃購進一批電腦和電子白板,經(jīng)過市場考察得知,電子白板的價格是電腦的3倍,購買5臺電腦和10臺電子白板需要17.5萬元,求每臺電腦、每臺電子白板各多少萬元?23.(12分)某商品的進價為每件50元.當(dāng)售價為每件70元時,每星期可賣出300件,現(xiàn)需降價處理,且經(jīng)市場調(diào)查:每降價1元,每星期可多賣出20件.在確保盈利的前提下,解答下列問題:(1)若設(shè)每件降價x元、每星期售出商品的利潤為y元,請寫出y與x的函數(shù)關(guān)系式,并求出自變量x的取值范圍;(2)當(dāng)降價多少元時,每星期的利潤最大?最大利潤是多少?24.某工廠計劃生產(chǎn),兩種產(chǎn)品共10件,其生產(chǎn)成本和利潤如下表.種產(chǎn)品種產(chǎn)品成本(萬元件)25利潤(萬元件)13(1)若工廠計劃獲利14萬元,問,兩種產(chǎn)品應(yīng)分別生產(chǎn)多少件?(2)若工廠計劃投入資金不多于44萬元,且獲利多于22萬元,問工廠有哪幾種生產(chǎn)方案?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解題分析】

設(shè)反比例函數(shù)y=(k為常數(shù),k≠0),由于反比例函數(shù)的圖象經(jīng)過點(-2,3),則k=-6,然后根據(jù)反比例函數(shù)圖象上點的坐標(biāo)特征分別進行判斷.【題目詳解】設(shè)反比例函數(shù)y=(k為常數(shù),k≠0),∵反比例函數(shù)的圖象經(jīng)過點(-2,3),∴k=-2×3=-6,而2×(-3)=-6,(-3)×(-3)=9,2×3=6,-4×6=-24,∴點(2,-3)在反比例函數(shù)y=-的圖象上.故選A.【題目點撥】本題考查了反比例函數(shù)圖象上點的坐標(biāo)特征:反比例函數(shù)y=(k為常數(shù),k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標(biāo)的積是定值k,即xy=k.2、A【解題分析】∵∠C=90°,BC=2cm,∠A=30°,∴AB=4,由勾股定理得:AC=2,∵四邊形DEFG為矩形,∠C=90,∴DE=GF=2,∠C=∠DEF=90°,∴AC∥DE,此題有三種情況:(1)當(dāng)0<x<2時,AB交DE于H,如圖∵DE∥AC,∴,即,解得:EH=x,所以y=?x?x=x2,∵x、y之間是二次函數(shù),所以所選答案C錯誤,答案D錯誤,∵a=>0,開口向上;(2)當(dāng)2≤x≤6時,如圖,此時y=×2×2=2,(3)當(dāng)6<x≤8時,如圖,設(shè)△ABC的面積是s1,△FNB的面積是s2,BF=x﹣6,與(1)類同,同法可求FN=X﹣6,∴y=s1﹣s2,=×2×2﹣×(x﹣6)×(X﹣6),=﹣x2+6x﹣16,∵﹣<0,∴開口向下,所以答案A正確,答案B錯誤,故選A.點睛:本題考查函數(shù)的圖象.在運動的過程中正確區(qū)分函數(shù)圖象是解題的關(guān)鍵.3、D【解題分析】

根據(jù)把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形,這個點叫做對稱中心進行分析即可.【題目詳解】解:A、不是中心對稱圖形,故此選項錯誤;B、不是中心對稱圖形,故此選項錯誤;C、不是中心對稱圖形,故此選項錯誤;D、是中心對稱圖形,故此選項正確;故選:D.【題目點撥】此題主要考查了中心對稱圖形,關(guān)鍵是掌握中心對稱圖形的定義.4、C【解題分析】

根據(jù)多項式除以單項式法則、同底數(shù)冪的乘法、積的乘方與冪的乘方及合并同類項法則計算可得.【題目詳解】A、(x3-x2+x)÷x=x2-x+1,此選項計算錯誤;B、(-a2)?a3=-a5,此選項計算錯誤;C、(-2x2)3=-8x6,此選項計算正確;D、4a2-(2a)2=4a2-4a2=0,此選項計算錯誤.故選:C.【題目點撥】本題主要考查整式的運算,解題的關(guān)鍵是掌握多項式除以單項式法則、同底數(shù)冪的乘法、積的乘方與冪的乘方及合并同類項法則.5、A【解題分析】

首先利用勾股定理計算出AC的長,再根據(jù)折疊可得△DEC≌△D′EC,設(shè)ED=x,則D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根據(jù)勾股定理可得方程22+x2=(4﹣x)2,再解方程即可【題目詳解】∵AB=3,AD=4,∴DC=3∴根據(jù)勾股定理得AC=5根據(jù)折疊可得:△DEC≌△D′EC,∴D′C=DC=3,DE=D′E設(shè)ED=x,則D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,在Rt△AED′中:(AD′)2+(ED′)2=AE2,即22+x2=(4﹣x)2,解得:x=故選A.6、A【解題分析】試題解析:扇形的弧長為:=20πcm,∴圓錐底面半徑為20π÷2π=10cm,故選A.考點:圓錐的計算.7、B【解題分析】讀圖可知:參加課外活動的人數(shù)共有(15+30+20+35)=100人,其中參加科技活動的有20人,所以參加科技活動的頻率是=0.2,故選B.8、B【解題分析】

根據(jù)只有符號不同的兩個數(shù)互為相反數(shù),可得答案.【題目詳解】7的相反數(shù)是?7,故選:B.【題目點撥】此題考查相反數(shù),解題關(guān)鍵在于掌握其定義.9、D【解題分析】

點F的運動路徑的長為弧FF'的長,求出圓心角、半徑即可解決問題.【題目詳解】如圖,點F的運動路徑的長為弧FF'的長,在Rt△ABC中,∵tan∠BAC=,∴∠BAC=30°,∵∠CAF=∠BAC=30°,∴∠BAF=60°,∴∠FAF′=120°,∴弧FF'的長=.故選D.【題目點撥】本題考查了矩形的性質(zhì)、特殊角的三角函數(shù)值、含30°角的直角三角形的性質(zhì)、弧長公式等知識,解題的關(guān)鍵是判斷出點F運動的路徑.10、B【解題分析】

解:∵AC是⊙O的直徑,∴∠ABC=90°,∵∠C=50°,∴∠BAC=40°,∵∠ABC的平分線BD交⊙O于點D,∴∠ABD=∠DBC=45°,∴∠CAD=∠DBC=45°,∴∠BAD=∠BAC+∠CAD=40°+45°=85°,故選B.【題目點撥】本題考查圓周角定理;圓心角、弧、弦的關(guān)系.二、填空題(本大題共6個小題,每小題3分,共18分)11、2.【解題分析】試題分析:已知方程x2-2x=0有兩個相等的實數(shù)根,可得:△=4-4(m-1)=-4m+8=0,所以,m=2.考點:一元二次方程根的判別式.12、1【解題分析】

根據(jù)這組數(shù)據(jù)的平均數(shù)是1和平均數(shù)的計算公式列式計算即可.【題目詳解】∵數(shù)據(jù)1,1,3,的平均數(shù)是1,∴,解得:.故答案為:1.【題目點撥】本題考查了平均數(shù)的定義,根據(jù)平均數(shù)的定義建立方程求解是解題的關(guān)鍵.13、40【解題分析】如圖,∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°﹣50°=40°,故答案為:40.14、9.26×1011【解題分析】試題解析:9260億=9.26×1011故答案為:9.26×1011點睛:科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值大于1時,n是正數(shù);當(dāng)原數(shù)的絕對值小于1時,n是負(fù)數(shù).15、-672或672【解題分析】∵,∴a-b=±2016,∵AO=2BO,A和點B分別在原點的兩側(cè)∴a=-2b.當(dāng)a-b=2016時,∴-2b-b=2016,解得:b=-672.∴a=?2×(-672)=1342,∴a+b=1344+(-672)=672.同理可得當(dāng)a-b=-2016時,a+b=-672,∴a+b=±672,故答案為:?672或672.16、y(x﹣3)2【解題分析】本題考查因式分解.解答:.三、解答題(共8題,共72分)17、(1)見解析;(2)【解題分析】

(1)連接,,易證為等邊三角形,可得,由等腰三角形的性質(zhì)及角的和差關(guān)系可得∠1=30°,由于可得∠DCG=∠CDA=∠60°,即可求出∠OCG=90°,可得與相切;(2)作于點.設(shè),則,.根據(jù)兩組對邊互相平行可證明四邊形為平行四邊形,由可證四邊形為菱形,由(1)得,從而可求出、的值,從而可知的長度,利用銳角三角函數(shù)的定義即可求出的值.【題目詳解】(1)連接,.∵是的直徑,弦于點,∴,.∵,∴.∴為等邊三角形.∴,∠DAE=∠EAC=30°,∵OA=OC,∴∠OAC=∠OCA=30°,∴∠1=∠DCA-∠OCA=30°,∵,∴∠DCG=∠CDA=∠60°,∴∠OCG=∠DCG+∠1=60°+30°=90°,∴.∴與相切.(2)連接EF,作于點.設(shè),則,.∵與相切,∴.又∵,∴.又∵,∴四邊形為平行四邊形.∵,∴四邊形為菱形.∴,.由(1)得,∴,.∴.∵在中,,∴.【題目點撥】本題考查圓的綜合問題,涉及切線的判定與性質(zhì),菱形的判定與性質(zhì),等邊三角形的性質(zhì)及銳角三角函數(shù),考查學(xué)生綜合運用知識的能力,熟練掌握相關(guān)性質(zhì)是解題關(guān)鍵.18、(1);(2);(3).【解題分析】

(1)求出BE,BD即可解決問題.(2)利用勾股定理,面積法求高CD即可.(3)根據(jù)CD=3DE,構(gòu)建方程即可解決問題.【題目詳解】解:(1)在Rt△ABC中,∵∠ACB=91°,a=3,b=4,∴.∵CD,CE是斜邊AB上的高,中線,∴∠BDC=91°,.∴在Rt△BCD中,(2)在Rt△ABC中,∵∠ACB=91°,BC=a,AC=b,故答案為:.(3)在Rt△BCD中,,∴,又,∴CD=3DE,即.∵b=3,∴2a=9﹣a2,即a2+2a﹣9=1.由求根公式得(負(fù)值舍去),即所求a的值是.【題目點撥】本題考查解直角三角形的應(yīng)用,直角三角形斜邊中線的性質(zhì),勾股定理等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.19、(1)①AE+BF=EC;②AF+BF=2CE;(2)AF﹣BF=2CE,證明見解析;(3)FG=.【解題分析】

(1)①只要證明△ACE≌△BCD(AAS),推出AE=BD,CE=CD,推出四邊形CEFD為正方形,即可解決問題;②利用①中結(jié)論即可解決問題;(2)首先證明BF-AF=2CE.由AF=3,BF=7,推出CE=EF=2,AE=AF+EF=5,由FG∥EC,可知,由此即可解決問題;【題目詳解】解:(1)證明:①如圖1,過點C做CD⊥BF,交FB的延長線于點D,∵CE⊥MN,CD⊥BF,∴∠CEA=∠D=90°,∵CE⊥MN,CD⊥BF,BF⊥MN,∴四邊形CEFD為矩形,∴∠ECD=90°,又∵∠ACB=90°,∴∠ACB-∠ECB=∠ECD-∠ECB,即∠ACE=∠BCD,又∵△ABC為等腰直角三角形,∴AC=BC,在△ACE和△BCD中,,∴△ACE≌△BCD(AAS),∴AE=BD,CE=CD,又∵四邊形CEFD為矩形,∴四邊形CEFD為正方形,∴CE=EF=DF=CD,∴AE+BF=DB+BF=DF=EC.②由①可知:AF+BF=AE+EF+BF=BD+EF+BF=DF+EF=2CE,(2)AF-BF=2CE圖2中,過點C作CG⊥BF,交BF延長線于點G,∵AC=BC可得∠AEC=∠CGB,∠ACE=∠BCG,在△CBG和△CAE中,,∴△CBG≌△CAE(AAS),∴AE=BG,∵AF=AE+EF,∴AF=BG+CE=BF+FG+CE=2CE+BF,∴AF-BF=2CE;(3)如圖3,過點C做CD⊥BF,交FB的于點D,∵AC=BC可得∠AEC=∠CDB,∠ACE=∠BCD,在△CBD和△CAE中,,∴△CBD≌△CAE(AAS),∴AE=BD,∵AF=AE-EF,∴AF=BD-CE=BF-FD-CE=BF-2CE,∴BF-AF=2CE.∵AF=3,BF=7,∴CE=EF=2,AE=AF+EF=5,∵FG∥EC,∴,∴,∴FG=.【題目點撥】本題考查幾何變換綜合題、正方形的判定和性質(zhì)、全等三角形的判定和性質(zhì)、平行線分線段成比例定理、等腰直角三角形的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題.20、(1)(2).【解題分析】

(1)根據(jù)總共三種,A只有一種可直接求概率;(2)列出其樹狀圖,然后求出能出現(xiàn)的所有可能,及符合條件的可能,根據(jù)概率公式求解即可.【題目詳解】解:(1)甲投放的垃圾恰好是A類的概率是.(2)列出樹狀圖如圖所示:由圖可知,共有18種等可能結(jié)果,其中乙投放的垃圾恰有一袋與甲投放的垃圾是同類的結(jié)果有12種.所以,(乙投放的垃圾恰有一袋與甲投放的垃圾是同類).即,乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率是.21、簡答:∵OA,OB=OC=1500,∴AB=(m).答:隧道AB的長約為635m.【解題分析】試題分析:首先過點C作CO⊥AB,根據(jù)Rt△AOC求出OA的長度,根據(jù)Rt△CBO求出OB的長度,然后進行計算.試題解析:如圖,過點C作CO⊥直線AB,垂足為O,則CO="1500m"∵BC∥OB∴∠DCA=∠CAO=60°,∠DCB=∠CBO=45°∴在Rt△CAO中,OA=1500tan60°=1500×3在Rt△CBO中,OB=1500×tan45°=1500m∴AB=1500-5003≈1500-865=635(m)答:隧道AB的長約為635m.考點:銳角三角函數(shù)的應(yīng)用.22、每臺電腦0.5萬元;每臺電子白板1.5萬元.【解題分析】

先設(shè)每臺電腦x萬元,每臺電子白板y萬

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論