吉大附中達標名校2024屆中考數學模擬試題含解析_第1頁
吉大附中達標名校2024屆中考數學模擬試題含解析_第2頁
吉大附中達標名校2024屆中考數學模擬試題含解析_第3頁
吉大附中達標名校2024屆中考數學模擬試題含解析_第4頁
吉大附中達標名校2024屆中考數學模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

吉大附中達標名校2024屆中考數學模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,四邊形ABCD中,AC⊥BC,AD∥BC,BC=3,AC=4,AD=1.M是BD的中點,則CM的長為()A. B.2 C. D.32.為豐富學生課外活動,某校積極開展社團活動,開設的體育社團有:A:籃球,B:排球,C:足球,D:羽毛球,E:乒乓球.學生可根據自己的愛好選擇一項,李老師對八年級同學選擇體育社團情況進行調查統(tǒng)計,制成了兩幅不完整的統(tǒng)計圖(如圖),則以下結論不正確的是()A.選科目E的有5人B.選科目A的扇形圓心角是120°C.選科目D的人數占體育社團人數的D.據此估計全校1000名八年級同學,選擇科目B的有140人3.若數a,b在數軸上的位置如圖示,則()A.a+b>0 B.ab>0 C.a﹣b>0 D.﹣a﹣b>04.若一組數據2,3,4,5,x的平均數與中位數相等,則實數x的值不可能是()A.6 B.3.5 C.2.5 D.15.分式方程=1的解為()A.x=1 B.x=0 C.x=﹣ D.x=﹣16.下列說法:①平分弦的直徑垂直于弦;②在n次隨機實驗中,事件A出現m次,則事件A發(fā)生的頻率,就是事件A的概率;③各角相等的圓外切多邊形一定是正多邊形;④各角相等的圓內接多邊形一定是正多邊形;⑤若一個事件可能發(fā)生的結果共有n種,則每一種結果發(fā)生的可能性是.其中正確的個數()A.1 B.2 C.3 D.47.4的平方根是()A.2 B.±2 C.8 D.±88.將拋物線y=2x2向左平移3個單位得到的拋物線的解析式是()A.y=2x2+3 B.y=2x2﹣3C.y=2(x+3)2 D.y=2(x﹣3)29.在Rt△ABC中,∠C=90°,如果AC=2,cosA=,那么AB的長是()A.3 B. C. D.10.計算的結果是()A.1 B.-1 C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.若分式a2-9a+312.拋物線y=x2﹣2x+3的對稱軸是直線_____.13.點P的坐標是(a,b),從-2,-1,0,1,2這五個數中任取一個數作為a的值,再從余下的四個數中任取一個數作為b的值,則點P(a,b)在平面直角坐標系中第二象限內的概率是.14.已知關于x的二次函數y=x2-2x-2,當a≤x≤a+2時,函數有最大值1,則a的值為________.15.如圖,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,將△ABC繞點B順時針旋轉60°,得到△BDE,連接DC交AB于點F,則△ACF與△BDF的周長之和為_______cm.16.如圖,扇形OAB的圓心角為30°,半徑為1,將它沿箭頭方向無滑動滾動到O′A′B′的位置時,則點O到點O′所經過的路徑長為_____.三、解答題(共8題,共72分)17.(8分)解不等式:3x﹣1>2(x﹣1),并把它的解集在數軸上表示出來.18.(8分)某農場急需銨肥8噸,在該農場南北方向分別有一家化肥公司A、B,A公司有銨肥3噸,每噸售價750元;B公司有銨肥7噸,每噸售價700元,汽車每千米的運輸費用b(單位:元/千米)與運輸重量a(單位:噸)的關系如圖所示.(1)根據圖象求出b關于a的函數解析式(包括自變量的取值范圍);(2)若農場到B公司的路程是農場到A公司路程的2倍,農場到A公司的路程為m千米,設農場從A公司購買x噸銨肥,購買8噸銨肥的總費用為y元(總費用=購買銨肥費用+運輸費用),求出y關于x的函數解析式(m為常數),并向農場建議總費用最低的購買方案.19.(8分)﹣(﹣1)2018+﹣()﹣120.(8分)某新建小區(qū)要修一條1050米長的路,甲、乙兩個工程隊想承建這項工程.經了解得到以下信息(如表):工程隊每天修路的長度(米)單獨完成所需天數(天)每天所需費用(元)甲隊30n600乙隊mn﹣141160(1)甲隊單獨完成這項工程所需天數n=,乙隊每天修路的長度m=(米);(2)甲隊先修了x米之后,甲、乙兩隊一起修路,又用了y天完成這項工程(其中x,y為正整數).①當x=90時,求出乙隊修路的天數;②求y與x之間的函數關系式(不用寫出x的取值范圍);③若總費用不超過22800元,求甲隊至少先修了多少米.21.(8分)在平面直角坐標系中,二次函數y=ax2+bx+2的圖象與x軸交于A(﹣4,0),B(1,0)兩點,與y軸交于點C.(1)求這個二次函數的解析式;(2)連接AC、BC,判斷△ABC的形狀,并證明;(3)若點P為二次函數對稱軸上點,求出使△PBC周長最小時,點P的坐標.22.(10分)如圖,在平行四邊形ABCD中,E、F分別在AD、BC邊上,且AE=CF.求證:(1)△ABE≌△CDF;(2)四邊形BFDE是平行四邊形.23.(12分)如圖,在中,,的垂直平分線交于,交于,射線上,并且.()求證:;()當的大小滿足什么條件時,四邊形是菱形?請回答并證明你的結論.24.某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,如圖是水平放置的破裂管道有水部分的截面.(1)請你用直尺和圓規(guī)作出這個輸水管道的圓形截面的圓心(保留作圖痕跡);(2)若這個輸水管道有水部分的水面寬AB=8cm,水面最深地方的高度為2cm,求這個圓形截面的半徑.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解題分析】

延長BC到E使BE=AD,利用中點的性質得到CM=DE=AB,再利用勾股定理進行計算即可解答.【題目詳解】解:延長BC到E使BE=AD,∵BC//AD,∴四邊形ACED是平行四邊形,∴DE=AB,∵BC=3,AD=1,∴C是BE的中點,∵M是BD的中點,∴CM=DE=AB,∵AC⊥BC,∴AB==,∴CM=,故選:C.【題目點撥】此題考查平行四邊形的性質,勾股定理,解題關鍵在于作輔助線.2、B【解題分析】

A選項先求出調查的學生人數,再求選科目E的人數來判定,B選項先求出A科目人數,再利用×360°判定即可,C選項中由D的人數及總人數即可判定,D選項利用總人數乘以樣本中B人數所占比例即可判定.【題目詳解】解:調查的學生人數為:12÷24%=50(人),選科目E的人數為:50×10%=5(人),故A選項正確,選科目A的人數為50﹣(7+12+10+5)=16人,選科目A的扇形圓心角是×360°=115.2°,故B選項錯誤,選科目D的人數為10,總人數為50人,所以選科目D的人數占體育社團人數的,故C選項正確,估計全校1000名八年級同學,選擇科目B的有1000×=140人,故D選項正確;故選B.【題目點撥】本題主要考查了條形統(tǒng)計圖及扇形統(tǒng)計圖,解題的關鍵是讀懂統(tǒng)計圖,從統(tǒng)計圖中找到準確信息.3、D【解題分析】

首先根據有理數a,b在數軸上的位置判斷出a、b兩數的符號,從而確定答案.【題目詳解】由數軸可知:a<0<b,a<-1,0<b<1,所以,A.a+b<0,故原選項錯誤;B.ab<0,故原選項錯誤;C.a-b<0,故原選項錯誤;D.,正確.故選D.【題目點撥】本題考查了數軸及有理數的乘法,數軸上的數:右邊的數總是大于左邊的數,從而確定a,b的大小關系.4、C【解題分析】

因為中位數的值與大小排列順序有關,而此題中x的大小位置未定,故應該分類討論x所處的所有位置情況:從小到大(或從大到小)排列在中間;結尾;開始的位置.【題目詳解】(1)將這組數據從小到大的順序排列為2,3,4,5,x,

處于中間位置的數是4,

∴中位數是4,

平均數為(2+3+4+5+x)÷5,

∴4=(2+3+4+5+x)÷5,

解得x=6;符合排列順序;

(2)將這組數據從小到大的順序排列后2,3,4,x,5,

中位數是4,

此時平均數是(2+3+4+5+x)÷5=4,

解得x=6,不符合排列順序;

(3)將這組數據從小到大的順序排列后2,3,x,4,5,

中位數是x,

平均數(2+3+4+5+x)÷5=x,

解得x=3.5,符合排列順序;

(4)將這組數據從小到大的順序排列后2,x,3,4,5,

中位數是3,

平均數(2+3+4+5+x)÷5=3,

解得x=1,不符合排列順序;

(5)將這組數據從小到大的順序排列后x,2,3,4,5,

中位數是3,

平均數(2+3+4+5+x)÷5=3,

解得x=1,符合排列順序;

∴x的值為6、3.5或1.

故選C.【題目點撥】考查了確定一組數據的中位數,涉及到分類討論思想,較難,要明確中位數的值與大小排列順序有關,一些學生往往對這個概念掌握不清楚,計算方法不明確而解答不完整.注意找中位數的時候一定要先排好順序,然后再根據奇數和偶數個來確定中位數.如果數據有奇數個,則正中間的數字即為所求;如果是偶數個,則找中間兩位數的平均數.5、C【解題分析】

首先找出分式的最簡公分母,進而去分母,再解分式方程即可.【題目詳解】解:去分母得:x2-x-1=(x+1)2,整理得:-3x-2=0,解得:x=-,檢驗:當x=-時,(x+1)2≠0,故x=-是原方程的根.故選C.【題目點撥】此題主要考查了解分式方程的解法,正確掌握解題方法是解題關鍵.6、A【解題分析】

根據垂徑定理、頻率估計概率、圓的內接多邊形、外切多邊形的性質與正多邊形的定義、概率的意義逐一判斷可得.【題目詳解】①平分弦(不是直徑)的直徑垂直于弦,故此結論錯誤;②在n次隨機實驗中,事件A出現m次,則事件A發(fā)生的頻率,試驗次數足夠大時可近似地看做事件A的概率,故此結論錯誤;③各角相等的圓外切多邊形是正多邊形,此結論正確;④各角相等的圓內接多邊形不一定是正多邊形,如圓內接矩形,各角相等,但不是正多邊形,故此結論錯誤;⑤若一個事件可能發(fā)生的結果共有n種,再每種結果發(fā)生的可能性相同是,每一種結果發(fā)生的可能性是.故此結論錯誤;故選:A.【題目點撥】本題主要考查命題的真假,解題的關鍵是掌握垂徑定理、頻率估計概率、圓的內接多邊形、外切多邊形的性質與正多邊形的定義、概率的意義.7、B【解題分析】

依據平方根的定義求解即可.【題目詳解】∵(±1)1=4,∴4的平方根是±1.故選B.【題目點撥】本題主要考查的是平方根的定義,掌握平方根的定義是解題的關鍵.8、C【解題分析】

按照“左加右減,上加下減”的規(guī)律,從而選出答案.【題目詳解】y=2x2向左平移3個單位得到的拋物線的解析式是y=2(x+3)2,故答案選C.【題目點撥】本題主要考查了拋物線的平移以及拋物線解析式的變換規(guī)律,解本題的要點在于熟知“左加右減,上加下減”的變化規(guī)律.9、A【解題分析】根據銳角三角函數的性質,可知cosA==,然后根據AC=2,解方程可求得AB=3.故選A.點睛:此題主要考查了解直角三角形,解題關鍵是明確直角三角形中,余弦值cosA=,然后帶入數值即可求解.10、C【解題分析】

原式通分并利用同分母分式的減法法則計算,即可得到結果.【題目詳解】解:==,故選:C.【題目點撥】此題考查了分式的混合運算,熟練掌握運算法則是解本題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、1.【解題分析】試題分析:根據分式的值為0的條件列出關于a的不等式組,求出a的值即可.試題解析:∵分式a2∴a2解得a=1.考點:分式的值為零的條件.12、x=1【解題分析】

把解析式化為頂點式可求得答案.【題目詳解】解:∵y=x2-2x+3=(x-1)2+2,∴對稱軸是直線x=1,故答案為x=1.【題目點撥】本題主要考查二次函數的性質,掌握二次函數的頂點式是解題的關鍵,即在y=a(x-h)2+k中,對稱軸為x=h,頂點坐標為(h,k).13、【解題分析】畫樹狀圖為:共有20種等可能的結果數,其中點P(a,b)在平面直角坐標系中第二象限內的結果數為4,所以點P(a,b)在平面直角坐標系中第二象限內的概率==.故答案為.14、-1或1【解題分析】

利用二次函數圖象上點的坐標特征找出當y=1時x的值,結合當a≤x≤a+2時函數有最大值1,即可得出關于a的一元一次方程,解之即可得出結論.【題目詳解】解:當y=1時,x2-2x-2=1,

解得:x1=-1,x2=3,

∵當a≤x≤a+2時,函數有最大值1,

∴a=-1或a+2=3,即a=1.

故答案為-1或1.【題目點撥】本題考查了二次函數圖象上點的坐標特征以及二次函數的最值,利用二次函數圖象上點的坐標特征找出當y=1時x的值是解題的關鍵.15、1.【解題分析】試題分析:∵將△ABC繞點B順時針旋轉60°,得到△BDE,∴△ABC≌△BDE,∠CBD=60°,∴BD=BC=12cm,∴△BCD為等邊三角形,∴CD=BC=CD=12cm,在Rt△ACB中,AB===13,△ACF與△BDF的周長之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=1(cm),故答案為1.考點:旋轉的性質.16、【解題分析】

點O到點O′所經過的路徑長分三段,先以A為圓心,1為半徑,圓心角為90度的弧長,再平移了AB弧的長,最后以B為圓心,1為半徑,圓心角為90度的弧長.根據弧長公式計算即可.【題目詳解】解:∵扇形OAB的圓心角為30°,半徑為1,∴AB弧長=∴點O到點O′所經過的路徑長=故答案為:【題目點撥】本題考查了弧長公式:.也考查了旋轉的性質和圓的性質.三、解答題(共8題,共72分)17、【解題分析】試題分析:按照解一元一次不等式的步驟解不等式即可.試題解析:,,.解集在數軸上表示如下點睛:解一元一次不等式一般步驟:去分母,去括號,移項,合并同類項,把系數化為1.18、(1)b=;(2)詳見解析.【解題分析】

(1)分別設兩段函數圖象的解析式,代入圖象上點的坐標求解即可;(2)先求出農場從A、B公司購買銨肥的費用,再求出農場從A、B公司購買銨肥的運輸費用,兩者之和即為總費用,可以求出總費用關于x的解析式是一次函數,根據m的取值范圍不同分兩類討論,可得出結論.【題目詳解】(1)有圖象可得,函數圖象分為兩部分,設第一段函數圖象為y=k1x,代入點(4,12),即12=k1×4,可得k1=3,設第二段函數圖象為y=k2x+c,代入點(4,12)、(8,32)可列出二元一次方程組,解得:k2=5,c=-8,所以函數解析式為:b=;(2)農場從A公司購買銨肥的費用為750x元,因為B公司有銨肥7噸,1≤x≤3,故農場從B公司購買銨肥的重量(8-x)肯定大于5噸,農場從B公司購買銨肥的費用為700(8-x)元,所以購買銨肥的總費用=750x+700(8-x)=50x+5600(0≤x≤3);農場從A公司購買銨肥的運輸費用為3xm元,且滿足1≤x≤3,農場從B公司購買銨肥的運輸費用為[5(8-x)-8]×2m元,所以購買銨肥的總運輸費用為3xm+[5(8-x)-8]×2m=-7mx+64m元,因此農場購買銨肥的總費用y=50x+5600-7mx+64m=(50-7m)x+5600+64m(1≤x≤3),分一下兩種情況進行討論;①當50-7m≥0即m≤時,y隨x的增加而增加,則x=1使得y取得最小值即總費用最低,此時農場銨肥的購買方案為:從A公司購買1噸,從B公司購買7噸,②當50-7m<0即m>時,y隨x的增加而減少,則x=3使得y取得最小值即總費用最低,此時農場銨肥的購買方案為:從A公司購買3噸,從B公司購買5噸.【題目點撥】本題主要考查了方案比較以及函數解析式的求解,解本題的要點在于根據題意列出相關方程式.19、-1.【解題分析】

直接利用負指數冪的性質以及算術平方根的性質分別化簡得出答案.【題目詳解】原式=﹣1+1﹣3=﹣1.【題目點撥】本題主要考查了實數運算,正確化簡各數是解題的關鍵.20、(1)35,50;(2)①12;②y=﹣x+;③150米.【解題分析】

(1)用總長度÷每天修路的長度可得n的值,繼而可得乙隊單獨完成時間,再用總長度÷乙單獨完成所需時間可得乙隊每天修路的長度m;(2)①根據:甲隊先修建的長度+(甲隊每天修建長度+乙隊每天修建長度)×兩隊合作時間=總長度,列式計算可得;②由①中的相等關系可得y與x之間的函數關系式;③根據:甲隊先修x米的費用+甲、乙兩隊每天費用×合作時間≤22800,列不等式求解可得.【題目詳解】解:(1)甲隊單獨完成這項工程所需天數n=1050÷30=35(天),則乙單獨完成所需天數為21天,∴乙隊每天修路的長度m=1050÷21=50(米),故答案為35,50;(2)①乙隊修路的天數為=12(天);②由題意,得:x+(30+50)y=1050,∴y與x之間的函數關系式為:y=﹣x+;③由題意,得:600×+(600+1160)(﹣x+)≤22800,解得:x≥150,答:若總費用不超過22800元,甲隊至少先修了150米.【題目點撥】本題考查了一次函數的應用,解題的關鍵是熟練的掌握一次函數的應用.21、(1)拋物線解析式為y=﹣x2﹣x+2;(2)△ABC為直角三角形,理由見解析;(3)當P點坐標為(﹣,)時,△PBC周長最小【解題分析】

(1)設交點式y(tǒng)=a(x+4)(x-1),展開得到-4a=2,然后求出a即可得到拋物線解析式;

(2)先利用兩點間的距離公式計算出AC2=42+22,BC2=12+22,AB2=25,然后利用勾股定理的逆定理可判斷△ABC為直角三角形;

(3)拋物線的對稱軸為直線x=-,連接AC交直線x=-于P點,如圖,利用兩點之間線段最短得到PB+PC的值最小,則△PBC周長最小,接著利用待定系數法求出直線AC的解析式為y=x+2,然后進行自變量為-所對應的函數值即可得到P點坐標.【題目詳解】(1)拋物線的解析式為y=a(x+4)(x﹣1),即y=ax2+3ax﹣4a,∴﹣4a=2,解得a=﹣,∴拋物線解析式為y=﹣x2﹣x+2;(2)△ABC為直角三角形.理由如下:當x=0時,y=﹣x2﹣x+2=2,則C(0,2),∵A(﹣4,0),B(1,0),∴AC2=42+22,BC2=12+22,AB2=52=25,∴AC2+BC2=AB2,∴△ABC為直角三角形,∠ACB=90°;(3)拋物線的對稱軸為直線x=﹣,連接AC交直線x=﹣于P點,如圖,∵PA=PB,∴PB+PC=PA+PC=AC,∴此時PB+PC的值最小,△PBC周長最小,設直線AC的解析式為y=kx+m,把A(﹣4,0),C(0,2)代入得,解得,∴直線AC的解析式為y=x+2,當x=﹣時,y=x+2=,則P(﹣,)∴當P點坐標為(﹣,)時,△PBC周長最小.【題目點撥】本題考查了拋物線與x軸的交點:把求二次函數y=ax2+bx+c(a,b,c是常數,a≠0)與x軸的交點坐標問題轉化解.關于x的一元二次方程即可求得交點橫坐標.也考查了待定系數法求二次函數解析式和最短路徑問題.22、(1)見解析;(2)見解析;【解題分析】

(1)由四邊形ABCD是平行四邊形,根據平行四邊形的對邊相等,對角相等的性質,即可證得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF.(2)由四邊形ABCD是平行四邊形,根據平行四邊形對邊平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可證得DE=BF.根據對邊平行且相等的四邊形是平行四邊形,即可證得四邊形BFD

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論