威海市2024屆中考數(shù)學最后沖刺濃縮精華卷含解析_第1頁
威海市2024屆中考數(shù)學最后沖刺濃縮精華卷含解析_第2頁
威海市2024屆中考數(shù)學最后沖刺濃縮精華卷含解析_第3頁
威海市2024屆中考數(shù)學最后沖刺濃縮精華卷含解析_第4頁
威海市2024屆中考數(shù)學最后沖刺濃縮精華卷含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

威海市2024屆中考數(shù)學最后沖刺濃縮精華卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.已知關于x的方程x2+3x+a=0有一個根為﹣2,則另一個根為()A.5 B.﹣1 C.2 D.﹣52.下列幾何體中,主視圖和左視圖都是矩形的是()A. B. C. D.3.如圖,在△ABC中,以點B為圓心,以BA長為半徑畫弧交邊BC于點D,連接AD.若∠B=40°,∠C=36°,則∠DAC的度數(shù)是()A.70° B.44° C.34° D.24°4.的負倒數(shù)是()A. B.- C.3 D.﹣35.如圖是一個幾何體的三視圖,則這個幾何體是()A. B. C. D.6.某同學將自己7次體育測試成績(單位:分)繪制成折線統(tǒng)計圖,則該同學7次測試成績的眾數(shù)和中位數(shù)分別是()A.50和48 B.50和47 C.48和48 D.48和437.估計介于()A.0與1之間 B.1與2之間 C.2與3之間 D.3與4之間8.在中,,,,則的值是()A. B. C. D.9.若拋物線y=x2-(m-3)x-m能與x軸交,則兩交點間的距離最值是()A.最大值2, B.最小值2 C.最大值2 D.最小值210.如圖,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P點是BD的中點,若AD=6,則CP的長為()A.3.5 B.3 C.4 D.4.511.下列圖形中,既是中心對稱圖形又是軸對稱圖形的是()A. B.C. D.12.如圖,在直角坐標系中,等腰直角△ABO的O點是坐標原點,A的坐標是(﹣4,0),直角頂點B在第二象限,等腰直角△BCD的C點在y軸上移動,我們發(fā)現(xiàn)直角頂點D點隨之在一條直線上移動,這條直線的解析式是()A.y=﹣2x+1 B.y=﹣x+2 C.y=﹣3x﹣2 D.y=﹣x+2二、填空題:(本大題共6個小題,每小題4分,共24分.)13.化簡3m﹣2(m﹣n)的結(jié)果為_____.14.在平面直角坐標系中,如果點P坐標為(m,n),向量可以用點P的坐標表示為=(m,n),已知:=(x1,y1),=(x2,y2),如果x1?x2+y1?y2=0,那么與互相垂直,下列四組向量:①=(2,1),=(﹣1,2);②=(cos30°,tan45°),=(﹣1,sin60°);③=(﹣,﹣2),=(+,);④=(π0,2),=(2,﹣1).其中互相垂直的是______(填上所有正確答案的符號).15.當x=_____時,分式值為零.16.已知直線與拋物線交于A,B兩點,則_______.17.已知一組數(shù)據(jù)1,2,0,﹣1,x,1的平均數(shù)是1,則這組數(shù)據(jù)的中位數(shù)為_____.18.函數(shù)中,自變量的取值范圍是______三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在平行四邊形ABCD中,BD是對角線,∠ADB=90°,E、F分別為邊AB、CD的中點.(1)求證:四邊形DEBF是菱形;(2)若BE=4,∠DEB=120°,點M為BF的中點,當點P在BD邊上運動時,則PF+PM的最小值為,并在圖上標出此時點P的位置.20.(6分)正方形ABCD的邊長是10,點E是AB的中點,動點F在邊BC上,且不與點B、C重合,將△EBF沿EF折疊,得到△EB′F.(1)如圖1,連接AB′.①若△AEB′為等邊三角形,則∠BEF等于多少度.②在運動過程中,線段AB′與EF有何位置關系?請證明你的結(jié)論.(2)如圖2,連接CB′,求△CB′F周長的最小值.(3)如圖3,連接并延長BB′,交AC于點P,當BB′=6時,求PB′的長度.21.(6分)如圖,在頂點為P的拋物線y=a(x-h)2+k(a≠0)的對稱軸1的直線上取點A(h,k+),過A作BC⊥l交拋物線于B、C兩點(B在C的左側(cè)),點和點A關于點P對稱,過A作直線m⊥l.又分別過點B,C作直線BE⊥m和CD⊥m,垂足為E,D.在這里,我們把點A叫此拋物線的焦點,BC叫此拋物線的直徑,矩形BCDE叫此拋物線的焦點矩形.(1)直接寫出拋物線y=x2的焦點坐標以及直徑的長.(2)求拋物線y=x2-x+的焦點坐標以及直徑的長.(3)已知拋物線y=a(x-h)2+k(a≠0)的直徑為,求a的值.(4)①已知拋物線y=a(x-h)2+k(a≠0)的焦點矩形的面積為2,求a的值.②直接寫出拋物線y=x2-x+的焦點短形與拋物線y=x2-2mx+m2+1公共點個數(shù)分別是1個以及2個時m的值.22.(8分)(1)計算:|﹣3|+(π﹣2018)0﹣2sin30°+()﹣1.(2)先化簡,再求值:(x﹣1)÷(﹣1),其中x為方程x2+3x+2=0的根.23.(8分)如圖,四邊形ABCD中,E點在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求證:△ABC與△DEC全等.24.(10分)如圖,已知點、在直線上,且,于點,且,以為直徑在的左側(cè)作半圓,于,且.若半圓上有一點,則的最大值為________;向右沿直線平移得到;①如圖,若截半圓的的長為,求的度數(shù);②當半圓與的邊相切時,求平移距離.25.(10分)在如圖的正方形網(wǎng)格中,每一個小正方形的邊長均為1.格點三角形ABC(頂點是網(wǎng)格線交點的三角形)的頂點A、C的坐標分別是(﹣2,0),(﹣3,3).(1)請在圖中的網(wǎng)格平面內(nèi)建立平面直角坐標系,寫出點B的坐標;(2)把△ABC繞坐標原點O順時針旋轉(zhuǎn)90°得到△A1B1C1,畫出△A1B1C1,寫出點B1的坐標;(3)以坐標原點O為位似中心,相似比為2,把△A1B1C1放大為原來的2倍,得到△A2B2C2畫出△A2B2C2,使它與△AB1C1在位似中心的同側(cè);請在x軸上求作一點P,使△PBB1的周長最小,并寫出點P的坐標.26.(12分)某工廠準備用圖甲所示的A型正方形板材和B型長方形板材,制作成圖乙所示的豎式和橫式兩種無蓋箱子.若該工廠準備用不超過10000元的資金去購買A,B兩種型號板材,并全部制作豎式箱子,已知A型板材每張30元,B型板材每張90元,求最多可以制作豎式箱子多少只?若該工廠倉庫里現(xiàn)有A型板材65張、B型板材110張,用這批板材制作兩種類型的箱子,問制作豎式和橫式兩種箱子各多少只,恰好將庫存的板材用完?若該工廠新購得65張規(guī)格為的C型正方形板材,將其全部切割成A型或B型板材不計損耗,用切割成的板材制作兩種類型的箱子,要求豎式箱子不少于20只,且材料恰好用完,則能制作兩種箱子共______只27.(12分)某市政府大力支持大學生創(chuàng)業(yè).李明在政府的扶持下投資銷售一種進價為20元的護眼臺燈.銷售過程中發(fā)現(xiàn),每月銷售量Y(件)與銷售單價x(元)之間的關系可近似的看作一次函數(shù):y=﹣10x+1.設李明每月獲得利潤為W(元),當銷售單價定為多少元時,每月獲得利潤最大?根據(jù)物價部門規(guī)定,這種護眼臺燈不得高于32元,如果李明想要每月獲得的利潤2000元,那么銷售單價應定為多少元?

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解題分析】

根據(jù)關于x的方程x2+3x+a=0有一個根為-2,可以設出另一個根,然后根據(jù)根與系數(shù)的關系可以求得另一個根的值,本題得以解決.【題目詳解】∵關于x的方程x2+3x+a=0有一個根為-2,設另一個根為m,

∴-2+m=?,

解得,m=-1,

故選B.2、C【解題分析】

主視圖、左視圖是分別從物體正面、左面和上面看,所得到的圖形.依此即可求解.【題目詳解】A.主視圖為圓形,左視圖為圓,故選項錯誤;B.主視圖為三角形,左視圖為三角形,故選項錯誤;C.主視圖為矩形,左視圖為矩形,故選項正確;D.主視圖為矩形,左視圖為圓形,故選項錯誤.故答案選:C.【題目點撥】本題考查的知識點是截一個幾何體,解題的關鍵是熟練的掌握截一個幾何體.3、C【解題分析】

易得△ABD為等腰三角形,根據(jù)頂角可算出底角,再用三角形外角性質(zhì)可求出∠DAC【題目詳解】∵AB=BD,∠B=40°,∴∠ADB=70°,∵∠C=36°,∴∠DAC=∠ADB﹣∠C=34°.故選C.【題目點撥】本題考查三角形的角度計算,熟練掌握三角形外角性質(zhì)是解題的關鍵.4、D【解題分析】

根據(jù)倒數(shù)的定義,互為倒數(shù)的兩數(shù)乘積為1,2×=1.再求出2的相反數(shù)即可解答.【題目詳解】根據(jù)倒數(shù)的定義得:2×=1.

因此的負倒數(shù)是-2.

故選D.【題目點撥】本題考查了倒數(shù),解題的關鍵是掌握倒數(shù)的概念.5、B【解題分析】試題分析:結(jié)合三個視圖發(fā)現(xiàn),應該是由一個正方體在一個角上挖去一個小正方體,且小正方體的位置應該在右上角,故選B.考點:由三視圖判斷幾何體.6、A【解題分析】

由折線統(tǒng)計圖,可得該同學7次體育測試成績,進而求出眾數(shù)和中位數(shù)即可.【題目詳解】由折線統(tǒng)計圖,得:42,43,47,48,49,50,50,7次測試成績的眾數(shù)為50,中位數(shù)為48,故選:A.【題目點撥】本題考查了眾數(shù)和中位數(shù),解題的關鍵是利用折線統(tǒng)計圖獲取有效的信息.7、C【解題分析】

解:∵,∴,即∴估計在2~3之間故選C.【題目點撥】本題考查估計無理數(shù)的大?。?、D【解題分析】

首先根據(jù)勾股定理求得AC的長,然后利用正弦函數(shù)的定義即可求解.【題目詳解】∵∠C=90°,BC=1,AB=4,

∴,∴,故選:D.【題目點撥】本題考查了三角函數(shù)的定義,求銳角的三角函數(shù)值的方法:利用銳角三角函數(shù)的定義,轉(zhuǎn)化成直角三角形的邊長的比.9、D【解題分析】設拋物線與x軸的兩交點間的橫坐標分別為:x1,x2,

由韋達定理得:x1+x2=m-3,x1?x2=-m,則兩交點間的距離d=|x1-x2|==,∴m=1時,dmin=2.故選D.10、B【解題分析】

解:∵∠ACB=90°,∠ABC=60°,∴∠A=10°,∵BD平分∠ABC,∴∠ABD=∠ABC=10°,∴∠A=∠ABD,∴BD=AD=6,∵在Rt△BCD中,P點是BD的中點,∴CP=BD=1.故選B.11、D【解題分析】

根據(jù)中心對稱圖形的定義旋轉(zhuǎn)180°后能夠與原圖形完全重合即是中心對稱圖形,以及軸對稱圖形的定義即可判斷出.【題目詳解】解:A.∵此圖形旋轉(zhuǎn)180°后不能與原圖形重合,∴此圖形不是中心對稱圖形,是軸對稱圖形,故此選項錯誤;B.∵此圖形旋轉(zhuǎn)180°后能與原圖形重合,∴此圖形是中心對稱圖形,不是軸對稱圖形,故此選項錯誤;C.∵此圖形旋轉(zhuǎn)180°后不能與原圖形重合,∴此圖形不是中心對稱圖形,是軸對稱圖形,故此選項錯誤;D.∵此圖形旋轉(zhuǎn)180°后能與原圖形重合,∴此圖形是中心對稱圖形,也是軸對稱圖形,故此選項正確.故選:D.【題目點撥】本題考查了中心對稱圖形與軸對稱圖形的定義,解題的關鍵是熟練的掌握中心對稱圖形與軸對稱圖形的定義.12、D【解題分析】

抓住兩個特殊位置:當BC與x軸平行時,求出D的坐標;C與原點重合時,D在y軸上,求出此時D的坐標,設所求直線解析式為y=kx+b,將兩位置D坐標代入得到關于k與b的方程組,求出方程組的解得到k與b的值,即可確定出所求直線解析式.【題目詳解】當BC與x軸平行時,過B作BE⊥x軸,過D作DF⊥x軸,交BC于點G,如圖1所示.∵等腰直角△ABO的O點是坐標原點,A的坐標是(﹣4,0),∴AO=4,∴BC=BE=AE=EO=GF=OA=1,OF=DG=BG=CG=BC=1,DF=DG+GF=3,∴D坐標為(﹣1,3);當C與原點O重合時,D在y軸上,此時OD=BE=1,即D(0,1),設所求直線解析式為y=kx+b(k≠0),將兩點坐標代入得:,解得:.則這條直線解析式為y=﹣x+1.故選D.【題目點撥】本題屬于一次函數(shù)綜合題,涉及的知識有:待定系數(shù)法確定一次函數(shù)解析式,等腰直角三角形的性質(zhì),坐標與圖形性質(zhì),熟練運用待定系數(shù)法是解答本題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、m+2n【解題分析】分析:先去括號,再合并同類項即可得.詳解:原式=3m-2m+2n=m+2n,故答案為:m+2n.點睛:本題主要考查整式的加減,解題的關鍵是掌握去括號與合并同類項的法則.14、①③④【解題分析】分析:根據(jù)兩個向量垂直的判定方法一一判斷即可;詳解:①∵2×(?1)+1×2=0,∴與垂直;②∵∴與不垂直.③∵∴與垂直.④∵∴與垂直.故答案為:①③④.點睛:考查平面向量,解題的關鍵是掌握向量垂直的定義.15、﹣1.【解題分析】試題解析:分式的值為0,則:解得:故答案為16、【解題分析】

將一次函數(shù)解析式代入二次函數(shù)解析式中,得出關于x的一元二次方程,根據(jù)根與系數(shù)的關系得出“x+x=-=,xx==-1”,將原代數(shù)式通分變形后代入數(shù)據(jù)即可得出結(jié)論.【題目詳解】將代入到中得,,整理得,,∴,,∴.【題目點撥】此題考查了二次函數(shù)的性質(zhì)和一次函數(shù)的性質(zhì),解題關鍵在于將一次函數(shù)解析式代入二次函數(shù)解析式17、2【解題分析】

解:這組數(shù)據(jù)的平均數(shù)為2,

有(2+2+0-2+x+2)=2,

可求得x=2.

將這組數(shù)據(jù)從小到大重新排列后,觀察數(shù)據(jù)可知最中間的兩個數(shù)是2與2,

其平均數(shù)即中位數(shù)是(2+2)÷2=2.

故答案是:2.18、x≠1【解題分析】

解:∵有意義,∴x-1≠0,∴x≠1;故答案是:x≠1.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)詳見解析;(2).【解題分析】

(1)根據(jù)直角三角形斜邊上的中線等于斜邊的一半,以及平行四邊形的對邊相等證明四邊形DEBF的四邊相等即可證得;(2)連接EM,EM與BD的交點就是P,F(xiàn)F+PM的最小值就是EM的長,證明△BEF是等邊三角形,利用三角函數(shù)求解.【題目詳解】(1)∵平行四邊形ABCD中,AD∥BC,∴∠DBC=∠ADB=90°.∵△ABD中,∠ADB=90°,E時AB的中點,∴DE=AB=AE=BE.同理,BF=DF.∵平行四邊形ABCD中,AB=CD,∴DE=BE=BF=DF,∴四邊形DEBF是菱形;(2)連接BF.∵菱形DEBF中,∠DEB=120°,∴∠EFB=60°,∴△BEF是等邊三角形.∵M是BF的中點,∴EM⊥BF.則EM=BE?sin60°=4×=2.即PF+PM的最小值是2.故答案為:2.【題目點撥】本題考查了菱形的判定與性質(zhì)以及圖形的對稱,根據(jù)菱形的對稱性,理解PF+PM的最小值就是EM的長是關鍵.20、(1)①∠BEF=60°;②AB'∥EF,證明見解析;(2)△CB′F周長的最小值5+5;(3)PB′=.【解題分析】

(1)①當△AEB′為等邊三角形時,∠AEB′=60°,由折疊可得,∠BEF=∠BEB′=×120°=60°;②依據(jù)AE=B′E,可得∠EAB′=∠EB′A,再根據(jù)∠BEF=∠B′EF,即可得到∠BEF=∠BAB′,進而得出EF∥AB′;(2)由折疊可得,CF+B′F=CF+BF=BC=10,依據(jù)B′E+B′C≥CE,可得B′C≥CE﹣B′E=5﹣5,進而得到B′C最小值為5﹣5,故△CB′F周長的最小值=10+5﹣5=5+5;(3)將△ABB′和△APB′分別沿AB、AC翻折到△ABM和△APN處,延長MB、NP相交于點Q,由∠MAN=2∠BAC=90°,∠M=∠N=90°,AM=AN,可得四邊形AMQN為正方形,設PB′=PN=x,則BP=6+x,BQ=8﹣6=2,QP=8﹣x.依據(jù)∠BQP=90°,可得方程22+(8﹣x)2=(6+x)2,即可得出PB′的長度.【題目詳解】(1)①當△AEB′為等邊三角形時,∠AEB′=60°,由折疊可得,∠BEF=∠BEB′=×120°=60°,故答案為60;②AB′∥EF,證明:∵點E是AB的中點,∴AE=BE,由折疊可得BE=B′E,∴AE=B′E,∴∠EAB′=∠EB′A,又∵∠BEF=∠B′EF,∴∠BEF=∠BAB′,∴EF∥AB′;(2)如圖,點B′的軌跡為半圓,由折疊可得,BF=B′F,∴CF+B′F=CF+BF=BC=10,∵B′E+B′C≥CE,∴B′C≥CE﹣B′E=5﹣5,∴B′C最小值為5﹣5,∴△CB′F周長的最小值=10+5﹣5=5+5;(3)如圖,連接AB′,易得∠AB′B=90°,將△ABB′和△APB′分別沿AB、AC翻折到△ABM和△APN處,延長MB、NP相交于點Q,由∠MAN=2∠BAC=90°,∠M=∠N=90°,AM=AN,可得四邊形AMQN為正方形,由AB=10,BB′=6,可得AB′=8,∴QM=QN=AB′=8,設PB′=PN=x,則BP=6+x,BQ=8﹣6=2,QP=8﹣x.∵∠BQP=90°,∴22+(8﹣x)2=(6+x)2,解得:x=,∴PB′=x=.【題目點撥】本題屬于四邊形綜合題,主要考查了折疊的性質(zhì),等邊三角形的性質(zhì),正方形的判定與性質(zhì)以及勾股定理的綜合運用,解題的關鍵是設要求的線段長為x,然后根據(jù)折疊和軸對稱的性質(zhì)用含x的代數(shù)式表示其他線段的長度,選擇適當?shù)闹苯侨切?,運用勾股定理列出方程求出答案.21、(1)4(1)4(3)(4)①a=±;②當m=1-或m=5+時,1個公共點,當1-<m≤1或5≤m<5+時,1個公共點,【解題分析】

(1)根據(jù)題意可以求得拋物線y=x1的焦點坐標以及直徑的長;(1)根據(jù)題意可以求得拋物線y=x1-x+的焦點坐標以及直徑的長;(3)根據(jù)題意和y=a(x-h)1+k(a≠0)的直徑為,可以求得a的值;(4)①根據(jù)題意和拋物線y=ax1+bx+c(a≠0)的焦點矩形的面積為1,可以求得a的值;②根據(jù)(1)中的結(jié)果和圖形可以求得拋物線y=x1-x+的焦點矩形與拋物線y=x1-1mx+m1+1公共點個數(shù)分別是1個以及1個時m的值.【題目詳解】(1)∵拋物線y=x1,∴此拋物線焦點的橫坐標是0,縱坐標是:0+=1,∴拋物線y=x1的焦點坐標為(0,1),將y=1代入y=x1,得x1=-1,x1=1,∴此拋物線的直徑是:1-(-1)=4;(1)∵y=x1-x+=(x-3)1+1,∴此拋物線的焦點的橫坐標是:3,縱坐標是:1+=3,∴焦點坐標為(3,3),將y=3代入y=(x-3)1+1,得3=(x-3)1+1,解得,x1=5,x1=1,∴此拋物線的直徑時5-1=4;(3)∵焦點A(h,k+),∴k+=a(x-h)1+k,解得,x1=h+,x1=h-,∴直徑為:h+-(h-)==,解得,a=±,即a的值是;(4)①由(3)得,BC=,又CD=A'A=.所以,S=BC?CD=?==1.解得,a=±;②當m=1-或m=5+時,1個公共點,當1-<m≤1或5≤m<5+時,1個公共點,理由:由(1)知拋,物線y=x1-x+的焦點矩形頂點坐標分別為:B(1,3),C(5,3),E(1,1),D(5,1),當y=x1-1mx+m1+1=(x-m)1+1過B(1,3)時,m=1-或m=1+(舍去),過C(5,3)時,m=5-(舍去)或m=5+,∴當m=1-或m=5+時,1個公共點;當1-<m≤1或5≤m<5+時,1個公共點.由圖可知,公共點個數(shù)隨m的變化關系為當m<1-時,無公共點;當m=1-時,1個公共點;當1-<m≤1時,1個公共點;當1<m<5時,3個公共點;當5≤m<5+時,1個公共點;當m=5+時,1個公共點;當m>5+時,無公共點;由上可得,當m=1-或m=5+時,1個公共點;當1-<m≤1或5≤m<5+時,1個公共點.【題目點撥】考查了二次函數(shù)綜合題,解答本題的關鍵是明確題意,知道什么是拋物線的焦點、直徑、焦點四邊形,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想和二次函數(shù)的性質(zhì)、矩形的性質(zhì)解答.22、(1)6;(2)﹣(x+1),1.【解題分析】

(1)原式=3+1﹣2×+3=6(2)由題意可知:x2+3x+2=0,解得:x=﹣1或x=﹣2原式=(x﹣1)÷=﹣(x+1)當x=﹣1時,x+1=0,分式無意義,當x=﹣2時,原式=123、證明過程見解析【解題分析】

由∠BAE=∠BCE=∠ACD=90°,可求得∠DCE=∠ACB,且∠B+∠CEA=∠CEA+∠DEC=180°,可求得∠DEC=∠ABC,再結(jié)合條件可證明△ABC≌△DEC.【題目詳解】∵∠BAE=∠BCE=∠ACD=90°,∴∠5+∠4=∠4+∠3,∴∠5=∠3,且∠B+∠CEA=180°,又∠7+∠CEA=180°,∴∠B=∠7,在△ABC和△DEC中,∴△ABC≌△DEC(ASA).24、(1);(2)①;②【解題分析】

(1)由圖可知當點F與點D重合時,AF最大,根據(jù)勾股定理即可求出此時AF的長;(2)①連接EG、EH.根據(jù)的長為π可求得∠GEH=60°,可得△GEH是等邊三角形,根據(jù)等邊三角形的三個角都等于60°得出∠HGE=60°,可得EG//A'O,求得∠GEO=90°,得出△GEO是等腰直角三角形,求得∠EGO=45°,根據(jù)平角的定義即可求出∠A'GO的度數(shù);②分C'A'與半圓相切和B'A'與半圓相切兩種情況進行討論,利用切線的性質(zhì)、勾股定理、切斜長定理等知識進行解答即可得出答案.【題目詳解】解:(1)當點F與點D重合時,AF最大,AF最大=AD==,故答案為:;(2)①連接、.∵,∴.∵,∴是等邊三角形,∴.∵,∴,∴,∵,∴,∵,∴,∴.②當切半圓于時,連接,則.∵,∴切半圓于點,∴.∵,∴,∴平移距離為.當切半圓于時,連接并延長于點,∵,,,∴,∵,∴,∵,∴,∵,∴.∵,∴.【題目點撥】本題主要考查了弧長公式、勾股定理、切線的性質(zhì),作出過切點的半徑構(gòu)造出直角三角形是解決此題的關鍵.25、(1)(﹣4,1);(2)(1,4);(3)見解析;(4)P(﹣3,0).【解題分析】

(1)先建立平面直角坐標系,再確定B的坐標;(2)根據(jù)旋轉(zhuǎn)要求畫出△A1B1C1,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論