![2024屆江蘇省泰州醫(yī)藥高新區(qū)六校聯(lián)考中考數(shù)學仿真試卷含解析_第1頁](http://file4.renrendoc.com/view10/M02/38/27/wKhkGWVwn_mACdP3AAICidiwypI905.jpg)
![2024屆江蘇省泰州醫(yī)藥高新區(qū)六校聯(lián)考中考數(shù)學仿真試卷含解析_第2頁](http://file4.renrendoc.com/view10/M02/38/27/wKhkGWVwn_mACdP3AAICidiwypI9052.jpg)
![2024屆江蘇省泰州醫(yī)藥高新區(qū)六校聯(lián)考中考數(shù)學仿真試卷含解析_第3頁](http://file4.renrendoc.com/view10/M02/38/27/wKhkGWVwn_mACdP3AAICidiwypI9053.jpg)
![2024屆江蘇省泰州醫(yī)藥高新區(qū)六校聯(lián)考中考數(shù)學仿真試卷含解析_第4頁](http://file4.renrendoc.com/view10/M02/38/27/wKhkGWVwn_mACdP3AAICidiwypI9054.jpg)
![2024屆江蘇省泰州醫(yī)藥高新區(qū)六校聯(lián)考中考數(shù)學仿真試卷含解析_第5頁](http://file4.renrendoc.com/view10/M02/38/27/wKhkGWVwn_mACdP3AAICidiwypI9055.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆江蘇省泰州醫(yī)藥高新區(qū)六校聯(lián)考中考數(shù)學仿真試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖數(shù)軸的A、B、C三點所表示的數(shù)分別為a、b、c.若|a﹣b|=3,|b﹣c|=5,且原點O與A、B的距離分別為4、1,則關(guān)于O的位置,下列敘述何者正確?()A.在A的左邊 B.介于A、B之間C.介于B、C之間 D.在C的右邊2.關(guān)于x的方程x2+(k2﹣4)x+k+1=0的兩個根互為相反數(shù),則k值是()A.﹣1 B.±2 C.2 D.﹣23.如圖,平面直角坐標系xOy中,四邊形OABC的邊OA在x軸正半軸上,BC∥x軸,∠OAB=90°,點C(3,2),連接OC.以O(shè)C為對稱軸將OA翻折到OA′,反比例函數(shù)y=的圖象恰好經(jīng)過點A′、B,則k的值是()A.9 B. C. D.34.下列各數(shù)中是無理數(shù)的是()A.cos60° B. C.半徑為1cm的圓周長 D.5.周末小麗從家里出發(fā)騎單車去公園,因為她家與公園之間是一條筆直的自行車道,所以小麗騎得特別放松.途中,她在路邊的便利店挑選一瓶礦泉水,耽誤了一段時間后繼續(xù)騎行,愉快地到了公園.圖中描述了小麗路上的情景,下列說法中錯誤的是()A.小麗從家到達公園共用時間20分鐘 B.公園離小麗家的距離為2000米C.小麗在便利店時間為15分鐘 D.便利店離小麗家的距離為1000米6.如圖,梯形ABCD中,AD∥BC,AB=DC,DE∥AB,下列各式正確的是()A. B. C. D.7.如圖,已知正方形ABCD的邊長為12,BE=EC,將正方形邊CD沿DE折疊到DF,延長EF交AB于G,連接DG,現(xiàn)在有如下4個結(jié)論:①≌;②;③∠GDE=45°;④DG=DE在以上4個結(jié)論中,正確的共有()個A.1個 B.2個 C.3個 D.4個8.如圖,直線AB∥CD,∠A=70°,∠C=40°,則∠E等于()A.30° B.40°C.60° D.70°9.運用乘法公式計算(3﹣a)(a+3)的結(jié)果是()A.a(chǎn)2﹣6a+9 B.a(chǎn)2﹣9 C.9﹣a2 D.a(chǎn)2﹣3a+910.若函數(shù)y=kx﹣b的圖象如圖所示,則關(guān)于x的不等式k(x﹣3)﹣b>0的解集為()A.x<2 B.x>2 C.x<5 D.x>5二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在矩形ABCD中,AD=5,AB=4,E是BC上的一點,BE=3,DF⊥AE,垂足為F,則tan∠FDC=_____.12.若關(guān)于的一元二次方程(m-1)x2-4x+1=0有兩個不相等的實數(shù)根,則m的取值范圍為_____________.13.如圖,點G是△ABC的重心,CG的延長線交AB于D,GA=5cm,GC=4cm,GB=3cm,將△ADG繞點D旋轉(zhuǎn)180°得到△BDE,△ABC的面積=_____cm1.14.如圖,在△ABC中,P,Q分別為AB,AC的中點.若S△APQ=1,則S四邊形PBCQ=__.15.對角線互相平分且相等的四邊形是()A.菱形 B.矩形 C.正方形 D.等腰梯形16.已知關(guān)于x的一元二次方程有兩個相等的實數(shù)根,則a的值是______.三、解答題(共8題,共72分)17.(8分)如圖,在中,,且,,為的中點,于點,連結(jié),.(1)求證:;(2)當為何值時,的值最大?并求此時的值.18.(8分)如圖所示,A、B兩地之間有一條河,原來從A地到B地需要經(jīng)過橋DC,沿折線A→D→C→B到達,現(xiàn)在新建了橋EF(EF=DC),可直接沿直線AB從A地到達B地,已知BC=12km,∠A=45°,∠B=30°,橋DC和AB平行.(1)求橋DC與直線AB的距離;(2)現(xiàn)在從A地到達B地可比原來少走多少路程?(以上兩問中的結(jié)果均精確到0.1km,參考數(shù)據(jù):≈1.14,≈1.73)19.(8分)如圖,在中,是的中點,過點的直線交于點,交的平行線于點,交于點,連接、.求證:;請你判斷與的大小關(guān)系,并說明理由.20.(8分)某商店經(jīng)營兒童益智玩具,已知成批購進時的單價是20元.調(diào)查發(fā)現(xiàn):銷售單價是30元時,月銷售量是230件,而銷售單價每上漲1元,月銷售量就減少10件,但每件玩具售價不能高于40元.設(shè)每件玩具的銷售單價上漲了x元時(x為正整數(shù)),月銷售利潤為y元.求y與x的函數(shù)關(guān)系式并直接寫出自變量x的取值范圍.每件玩具的售價定為多少元時,月銷售利潤恰為2520元?每件玩具的售價定為多少元時可使月銷售利潤最大?最大的月利潤是多少?21.(8分)如圖,正方形ABCD的邊長為4,點E,F(xiàn)分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點G,CE的延長線交DA的延長線于點H,連接AC,EF.,GH.(1)填空:∠AHC∠ACG;(填“>”或“<”或“=”)(2)線段AC,AG,AH什么關(guān)系?請說明理由;(3)設(shè)AE=m,①△AGH的面積S有變化嗎?如果變化.請求出S與m的函數(shù)關(guān)系式;如果不變化,請求出定值.②請直接寫出使△CGH是等腰三角形的m值.22.(10分)如圖,正方形ABCD中,M為BC上一點,F(xiàn)是AM的中點,EF⊥AM,垂足為F,交AD的延長線于點E,交DC于點N.求證:△ABM∽△EFA;若AB=12,BM=5,求DE的長.23.(12分)如圖1,點O是正方形ABCD兩對角線的交點,分別延長OD到點G,OC到點E,使OG=1OD,OE=1OC,然后以O(shè)G、OE為鄰邊作正方形OEFG,連接AG,DE.(1)求證:DE⊥AG;(1)正方形ABCD固定,將正方形OEFG繞點O逆時針旋轉(zhuǎn)α角(0°<α<360°)得到正方形OE′F′G′,如圖1.①在旋轉(zhuǎn)過程中,當∠OAG′是直角時,求α的度數(shù);②若正方形ABCD的邊長為1,在旋轉(zhuǎn)過程中,求AF′長的最大值和此時α的度數(shù),直接寫出結(jié)果不必說明理由.24.某青春黨支部在精準扶貧活動中,給結(jié)對幫扶的貧困家庭贈送甲、乙兩種樹苗讓其栽種.已知乙種樹苗的價格比甲種樹苗貴10元,用480元購買乙種樹苗的棵數(shù)恰好與用360元購買甲種樹苗的棵數(shù)相同.求甲、乙兩種樹苗每棵的價格各是多少元?在實際幫扶中,他們決定再次購買甲、乙兩種樹苗共50棵,此時,甲種樹苗的售價比第一次購買時降低了10%,乙種樹苗的售價不變,如果再次購買兩種樹苗的總費用不超過1500元,那么他們最多可購買多少棵乙種樹苗?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解題分析】分析:由A、B、C三點表示的數(shù)之間的關(guān)系結(jié)合三點在數(shù)軸上的位置即可得出b=a+3,c=b+5,再根據(jù)原點O與A、B的距離分別為1、1,即可得出a=±1、b=±1,結(jié)合a、b、c間的關(guān)系即可求出a、b、c的值,由此即可得出結(jié)論.解析:∵|a﹣b|=3,|b﹣c|=5,∴b=a+3,c=b+5,∵原點O與A、B的距離分別為1、1,∴a=±1,b=±1,∵b=a+3,∴a=﹣1,b=﹣1,∵c=b+5,∴c=1.∴點O介于B、C點之間.故選C.點睛:本題考查了數(shù)值以及絕對值,解題的關(guān)鍵是確定a、b、c的值.本題屬于基礎(chǔ)題,難度不大,解決該題型題目時,根據(jù)數(shù)軸上點的位置關(guān)系分別找出各點代表的數(shù)是關(guān)鍵.2、D【解題分析】
根據(jù)一元二次方程根與系數(shù)的關(guān)系列出方程求解即可.【題目詳解】設(shè)方程的兩根分別為x1,x1,
∵x1+(k1-4)x+k-1=0的兩實數(shù)根互為相反數(shù),
∴x1+x1,=-(k1-4)=0,解得k=±1,
當k=1,方程變?yōu)椋簒1+1=0,△=-4<0,方程沒有實數(shù)根,所以k=1舍去;
當k=-1,方程變?yōu)椋簒1-3=0,△=11>0,方程有兩個不相等的實數(shù)根;
∴k=-1.
故選D.【題目點撥】本題考查的是根與系數(shù)的關(guān)系.x1,x1是一元二次方程ax1+bx+c=0(a≠0)的兩根時,x1+x1=?,x1x1=,反過來也成立.3、C【解題分析】
設(shè)B(,2),由翻折知OC垂直平分AA′,A′G=2EF,AG=2AF,由勾股定理得OC=,根據(jù)相似三角形或銳角三角函數(shù)可求得A′(,),根據(jù)反比例函數(shù)性質(zhì)k=xy建立方程求k.【題目詳解】如圖,過點C作CD⊥x軸于D,過點A′作A′G⊥x軸于G,連接AA′交射線OC于E,過E作EF⊥x軸于F,設(shè)B(,2),在Rt△OCD中,OD=3,CD=2,∠ODC=90°,∴OC==,由翻折得,AA′⊥OC,A′E=AE,∴sin∠COD=,∴AE=,∵∠OAE+∠AOE=90°,∠OCD+∠AOE=90°,∴∠OAE=∠OCD,∴sin∠OAE==sin∠OCD,∴EF=,∵cos∠OAE==cos∠OCD,∴,∵EF⊥x軸,A′G⊥x軸,∴EF∥A′G,∴,∴,,∴,∴A′(,),∴,∵k≠0,∴,故選C.【題目點撥】本題是反比例函數(shù)綜合題,常作為考試題中選擇題壓軸題,考查了反比例函數(shù)點的坐標特征、相似三角形、翻折等,解題關(guān)鍵是通過設(shè)點B的坐標,表示出點A′的坐標.4、C【解題分析】分析:根據(jù)“無理數(shù)”的定義進行判斷即可.詳解:A選項中,因為,所以A選項中的數(shù)是有理數(shù),不能選A;B選項中,因為是無限循環(huán)小數(shù),屬于有理數(shù),所以不能選B;C選項中,因為半徑為1cm的圓的周長是cm,是個無理數(shù),所以可以選C;D選項中,因為,2是有理數(shù),所以不能選D.故選.C.點睛:正確理解無理數(shù)的定義:“無限不循環(huán)小數(shù)叫做無理數(shù)”是解答本題的關(guān)鍵.5、C【解題分析】解:A.小麗從家到達公園共用時間20分鐘,正確;B.公園離小麗家的距離為2000米,正確;C.小麗在便利店時間為15﹣10=5分鐘,錯誤;D.便利店離小麗家的距離為1000米,正確.故選C.6、D【解題分析】∵AD//BC,DE//AB,∴四邊形ABED是平行四邊形,∴,,∴選項A、C錯誤,選項D正確,選項B錯誤,故選D.7、C【解題分析】【分析】根據(jù)正方形的性質(zhì)和折疊的性質(zhì)可得AD=DF,∠A=∠GFD=90°,于是根據(jù)“HL”判定△ADG≌△FDG,再由GF+GB=GA+GB=12,EB=EF,△BGE為直角三角形,可通過勾股定理列方程求出AG=4,BG=8,根據(jù)全等三角形性質(zhì)可求得∠GDE==45?,再抓住△BEF是等腰三角形,而△GED顯然不是等腰三角形,判斷④是錯誤的.【題目詳解】由折疊可知,DF=DC=DA,∠DFE=∠C=90°,∴∠DFG=∠A=90°,∴△ADG≌△FDG,①正確;∵正方形邊長是12,∴BE=EC=EF=6,設(shè)AG=FG=x,則EG=x+6,BG=12﹣x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12﹣x)2,解得:x=4∴AG=GF=4,BG=8,BG=2AG,②正確;∵△ADG≌△FDG,△DCE≌△DFE,∴∠ADG=∠FDG,∠FDE=∠CDE∴∠GDE==45?.③正確;BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,④錯誤;∴正確說法是①②③故選:C【題目點撥】本題綜合性較強,考查了翻折變換的性質(zhì)和正方形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理,有一定的難度.8、A【解題分析】
∵AB∥CD,∠A=70°,∴∠1=∠A=70°,∵∠1=∠C+∠E,∠C=40°,∴∠E=∠1﹣∠C=70°﹣40°=30°.故選A.9、C【解題分析】
根據(jù)平方差公式計算可得.【題目詳解】解:(3﹣a)(a+3)=32﹣a2=9﹣a2,故選C.【題目點撥】本題主要考查平方差公式,解題的關(guān)鍵是應用平方差公式計算時,應注意以下幾個問題:①左邊是兩個二項式相乘,并且這兩個二項式中有一項完全相同,另一項互為相反數(shù);②右邊是相同項的平方減去相反項的平方.10、C【解題分析】
根據(jù)函數(shù)圖象知:一次函數(shù)過點(2,0);將此點坐標代入一次函數(shù)的解析式中,可求出k、b的關(guān)系式;然后將k、b的關(guān)系式代入k(x﹣3)﹣b>0中進行求解即可.【題目詳解】解:∵一次函數(shù)y=kx﹣b經(jīng)過點(2,0),∴2k﹣b=0,b=2k.函數(shù)值y隨x的增大而減小,則k<0;解關(guān)于k(x﹣3)﹣b>0,移項得:kx>3k+b,即kx>1k;兩邊同時除以k,因為k<0,因而解集是x<1.故選C.【題目點撥】本題考查一次函數(shù)與一元一次不等式.二、填空題(本大題共6個小題,每小題3分,共18分)11、4【解題分析】
首先根據(jù)矩形的性質(zhì)以及垂線的性質(zhì)得到∠FDC=∠ABE,進而得出tan∠FDC=tan∠AEB=ABBE【題目詳解】∵DF⊥AE,垂足為F,∴∠AFD=90°,∵∠ADF+∠DAF=90°,∠ADF+∠CDF=90°,∴∠DAF=∠CDF,∵∠DAF=∠AEB,∴∠FDC=∠ABE,∴tan∠FDC=tan∠AEB=ABBE,∵在矩形ABCD中,AB=4,E是BC上的一點,BE=3,∴tan∠FDC=43.故答案為【題目點撥】本題主要考查了銳角三角函數(shù)的關(guān)系以及矩形的性質(zhì),根據(jù)已知得出tan∠FDC=tan∠AEB是解題關(guān)鍵.12、且【解題分析】試題解析:∵一元二次方程有兩個不相等的實數(shù)根,∴m?1≠0且△=16?4(m?1)>0,解得m<5且m≠1,∴m的取值范圍為m<5且m≠1.故答案為:m<5且m≠1.點睛:一元二次方程方程有兩個不相等的實數(shù)根時:13、18【解題分析】
三角形的重心是三條中線的交點,根據(jù)中線的性質(zhì),S△ACD=S△BCD;再利用勾股定理逆定理證明BG⊥CE,從而得出△BCD的高,可求△BCD的面積.【題目詳解】∵點G是△ABC的重心,∴∵GB=3,EG=GC=4,BE=GA=5,∴,即BG⊥CE,∵CD為△ABC的中線,∴∴故答案為:18.【題目點撥】考查三角形重心的性質(zhì),中線的性質(zhì),旋轉(zhuǎn)的性質(zhì),勾股定理逆定理等,綜合性比較強,對學生要求較高.14、1【解題分析】
根據(jù)三角形的中位線定理得到PQ=BC,得到相似比為,再根據(jù)相似三角形面積之比等于相似比的平方,可得到結(jié)果.【題目詳解】解:∵P,Q分別為AB,AC的中點,∴PQ∥BC,PQ=BC,∴△APQ∽△ABC,∴=()2=,∵S△APQ=1,∴S△ABC=4,∴S四邊形PBCQ=S△ABC﹣S△APQ=1,故答案為1.【題目點撥】本題考查相似三角形的判定和性質(zhì),三角形中位線定理等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考常考題型.15、B【解題分析】
根據(jù)平行四邊形的判定與矩形的判定定理,即可求得答案.【題目詳解】∵對角線互相平分的四邊形是平行四邊形,對角線相等的平行四邊形是矩形,∴對角線相等且互相平分的四邊形一定是矩形.故選B.【題目點撥】此題考查了平行四邊形,矩形,菱形以及等腰梯形的判定定理.此題比較簡單,解題的關(guān)鍵是熟記定理.16、.【解題分析】試題分析:∵關(guān)于x的一元二次方程有兩個相等的實數(shù)根,∴.考點:一元二次方程根的判別式.三、解答題(共8題,共72分)17、(1)見解析;(2)時,的值最大,【解題分析】
(1)延長BA、CF交于點G,利用可證△AFG≌△DFC得出,,根據(jù),可證出,得出,利用,,點是的中點,得出,,則有,可得出,得出,即可得出結(jié)論;(2)設(shè)BE=x,則,,由勾股定理得出,,得出,求出,由二次函數(shù)的性質(zhì)得出當x=1,即BE=1時,CE2-CF2有最大值,,由三角函數(shù)定義即可得出結(jié)果.【題目詳解】解:(1)證明:如圖,延長交的延長線于點,∵為的中點,∴.在中,,∴.在和中,∴,∴,,∵.∴,∴,∵,,點是的中點,∴,.∴.∴.∴.在中,,又∵,∴.∴(2)設(shè),則,∵,∴,在中,,在中,,∵,∴,∴,∴當,即時,的值最大,∴.在中,【題目點撥】本題考查了平行四邊形的性質(zhì)、全等三角形的判定與性質(zhì)、等腰直角三角形的判定與性質(zhì)、勾股定理、等腰三角形的判定與性質(zhì)等知識;證明三角形全等和等腰三角形是解題的關(guān)鍵.18、(1)橋DC與直線AB的距離是6.0km;(2)現(xiàn)在從A地到達B地可比原來少走的路程是4.1km.【解題分析】
(1)過C向AB作垂線構(gòu)建三角形,求出垂線段的長度即可;(2)過點D向AB作垂線,然后根據(jù)解三角形求出AD,CB的長,進而求出現(xiàn)在從A地到達B地可比原來少走的路程.【題目詳解】解:(1)作CH⊥AB于點H,如圖所示,∵BC=12km,∠B=30°,∴km,BH=km,即橋DC與直線AB的距離是6.0km;(2)作DM⊥AB于點M,如圖所示,∵橋DC和AB平行,CH=6km,∴DM=CH=6km,∵∠DMA=90°,∠B=45°,MH=EF=DC,∴AD=km,AM=DM=6km,∴現(xiàn)在從A地到達B地可比原來少走的路程是:(AD+DC+BC)﹣(AM+MH+BH)=AD+DC+BC﹣AM﹣MH﹣BH=AD+BC﹣AM﹣BH=km,即現(xiàn)在從A地到達B地可比原來少走的路程是4.1km.【題目點撥】做輔助線,構(gòu)建直角三角形,根據(jù)邊角關(guān)系解三角形,是解答本題的關(guān)鍵.19、(1)證明見解析;(2)證明見解析.【解題分析】
(1)利用平行線的性質(zhì)和中點的定義得到,進而得到三角形全等,從而求證結(jié)論;(2)利用中垂線的性質(zhì)和三角形的三邊關(guān)系進行判斷即可.【題目詳解】證明:(1)∵BG∥AC∴∵是的中點∴又∵∴△BDG≌△CDF∴(2)由(1)中△BDG≌△CDF∴GD=FD,BG=CF又∵∴ED垂直平分DF∴EG=EF∵在△BEG中,BE+BG>GE,∴>【題目點撥】本題考查平行線性質(zhì)的應用、全等三角形的判定和性質(zhì)的應用及三角形三邊關(guān)系,熟練掌握相關(guān)知識點是解題關(guān)鍵.20、(1)y=﹣10x2+130x+2300,0<x≤10且x為正整數(shù);(2)每件玩具的售價定為32元時,月銷售利潤恰為2520元;(3)每件玩具的售價定為36元或37元時,每個月可獲得最大利潤,最大的月利潤是2720元.【解題分析】
(1)根據(jù)題意知一件玩具的利潤為(30+x-20)元,月銷售量為(230-10x),然后根據(jù)月銷售利潤=一件玩具的利潤×月銷售量即可求出函數(shù)關(guān)系式.(2)把y=2520時代入y=-10x2+130x+2300中,求出x的值即可.(3)把y=-10x2+130x+2300化成頂點式,求得當x=6.5時,y有最大值,再根據(jù)0<x≤10且x為正整數(shù),分別計算出當x=6和x=7時y的值即可.【題目詳解】(1)根據(jù)題意得:y=(30+x﹣20)(230﹣10x)=﹣10x2+130x+2300,自變量x的取值范圍是:0<x≤10且x為正整數(shù);(2)當y=2520時,得﹣10x2+130x+2300=2520,解得x1=2,x2=11(不合題意,舍去)當x=2時,30+x=32(元)答:每件玩具的售價定為32元時,月銷售利潤恰為2520元.(3)根據(jù)題意得:y=﹣10x2+130x+2300=﹣10(x﹣6.5)2+2722.5,∵a=﹣10<0,∴當x=6.5時,y有最大值為2722.5,∵0<x≤10且x為正整數(shù),∴當x=6時,30+x=36,y=2720(元),當x=7時,30+x=37,y=2720(元),答:每件玩具的售價定為36元或37元時,每個月可獲得最大利潤,最大的月利潤是2720元.【題目點撥】本題主要考查了二次函數(shù)的實際應用,解題的關(guān)鍵是分析題意,找到關(guān)鍵描述語,求出函數(shù)的解析式,用到的知識點是二次函數(shù)的性質(zhì)和解一元二次方程.21、(1)=;(2)結(jié)論:AC2=AG?AH.理由見解析;(3)①△AGH的面積不變.②m的值為或2或8﹣4..【解題分析】
(1)證明∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,即可推出∠AHC=∠ACG;(2)結(jié)論:AC2=AG?AH.只要證明△AHC∽△ACG即可解決問題;(3)①△AGH的面積不變.理由三角形的面積公式計算即可;②分三種情形分別求解即可解決問題.【題目詳解】(1)∵四邊形ABCD是正方形,∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=43°,∴AC=,∵∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,∴∠AHC=∠ACG.故答案為=.(2)結(jié)論:AC2=AG?AH.理由:∵∠AHC=∠ACG,∠CAH=∠CAG=133°,∴△AHC∽△ACG,∴,∴AC2=AG?AH.(3)①△AGH的面積不變.理由:∵S△AGH=?AH?AG=AC2=×(4)2=1.∴△AGH的面積為1.②如圖1中,當GC=GH時,易證△AHG≌△BGC,可得AG=BC=4,AH=BG=8,∵BC∥AH,∴,∴AE=AB=.如圖2中,當CH=HG時,易證AH=BC=4,∵BC∥AH,∴=1,∴AE=BE=2.如圖3中,當CG=CH時,易證∠ECB=∠DCF=22.3.在BC上取一點M,使得BM=BE,∴∠BME=∠BEM=43°,∵∠BME=∠MCE+∠MEC,∴∠MCE=∠MEC=22.3°,∴CM=EM,設(shè)BM=BE=m,則CM=EMm,∴m+m=4,∴m=4(﹣1),∴AE=4﹣4(﹣1)=8﹣4,綜上所述,滿足條件的m的值為或2或8﹣4.【題目點撥】本題屬于四邊形綜合題,考查了正方形的性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是靈活運用所學知識解決問題.22、(1)見解析;(2)4.1【解題分析】
試題分析:(1)由正方形的性質(zhì)得出AB=AD,∠B=10°,AD∥BC,得出∠AMB=∠EAF,再由∠B=∠AFE,即可得出結(jié)論;(2)由勾股定理求出AM,得出AF,由△ABM∽△EFA得出比例式,求出AE,即可得出DE的長.試題解析:(1)∵四邊形ABCD是正方形,∴AB=AD,∠B=10°,AD∥BC,∴∠AMB=∠EAF,又∵EF⊥AM,∴∠AFE=10°,∴∠B=∠AFE,∴△ABM∽△EFA;(2)∵∠B=10°,AB=12,BM=5,∴AM==13,AD=12,∵F是AM的中點,∴AF=AM=6.5,∵△ABM∽△EFA,∴,即,∴AE=16.1,∴DE=AE-AD=4.1.考點:1.相似三角形的判定與性質(zhì);2.正方形的性質(zhì).23、(1)見解析;(1)30°或150°,的長最大值為,此時.【解題分析】
(1)延長ED交AG于點H,易證△AOG≌△DOE,得到∠AGO=∠DEO,然后運用等量代換證明∠AHE=90°即可;(1)①在旋轉(zhuǎn)過程中,∠OAG′成為直角有兩種情況:α由0°增大到90°過程中,當∠OAG′=90°時,α=30°,α由90°增大到180°過程中,當∠OAG′=90°時,α=150°;②當旋轉(zhuǎn)到A、O、F′在一條直線上時,AF′的長最大,AF′=AO+OF′=+1,此時α=315°.【題目詳解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030全球電子鎮(zhèn)痛泵行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國正照式CMOS制冷相機行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球生活用紙頭膠行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國奧美沙坦酯氫氯噻嗪片行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球帆布繪畫套件行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國防靜電HPL架空地板行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球ADAS清洗系統(tǒng)行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國TGV激光微孔設(shè)備行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國導熱平臺和導熱板行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國13C-尿素呼氣測試試劑盒行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 城市基礎(chǔ)設(shè)施修繕工程的重點與應對措施
- GB 12710-2024焦化安全規(guī)范
- 【??途W(wǎng)】2024秋季校園招聘白皮書
- 2024-2025銀行對公業(yè)務(wù)場景金融創(chuàng)新報告
- 2025屆鄭州市高三一診考試英語試卷含解析
- 《我國個人所得稅制下稅收征管問題研究》
- 腫瘤中醫(yī)治療及調(diào)養(yǎng)
- 【課件】免疫系統(tǒng)組成和功能(人教版2019選擇性必修1)
- 土力學與地基基礎(chǔ)(課件)
- IT系統(tǒng)災備和容災解決方案項目設(shè)計方案
- 青島版二年級數(shù)學下冊(六三制)全冊課件【完整版】
評論
0/150
提交評論