版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省江門市臺山市2024屆十校聯(lián)考最后數(shù)學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列圖形中,是軸對稱圖形但不是中心對稱圖形的是()A.直角梯形B.平行四邊形C.矩形D.正五邊形2.如圖,矩形ABCD內接于⊙O,點P是上一點,連接PB、PC,若AD=2AB,則cos∠BPC的值為()A. B. C. D.3.關于x的方程(a﹣1)x|a|+1﹣3x+2=0是一元二次方程,則()A.a≠±1 B.a=1 C.a=﹣1 D.a=±14.隨機擲一枚均勻的硬幣兩次,至少有一次正面朝上的概率為()A. B. C. D.5.如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公大樓頂端A測得旗桿頂端E的俯角α是45°,旗桿低端D到大樓前梯砍底邊的距離DC是20米,梯坎坡長BC是12米,梯坎坡度i=1:,則大樓AB的高度約為()(精確到0.1米,參考數(shù)據(jù):)A.30.6米 B.32.1米 C.37.9米 D.39.4米6.某班
30名學生的身高情況如下表:身高人數(shù)134787則這
30
名學生身高的眾數(shù)和中位數(shù)分別是A., B.,C., D.,7.下列調查中,最適合采用普查方式的是()A.對太原市民知曉“中國夢”內涵情況的調查B.對全班同學1分鐘仰臥起坐成績的調查C.對2018年央視春節(jié)聯(lián)歡晚會收視率的調查D.對2017年全國快遞包裹產生的包裝垃圾數(shù)量的調查8.如圖,若AB∥CD,CD∥EF,那么∠BCE=()A.∠1+∠2 B.∠2-∠1C.180°-∠1+∠2 D.180°-∠2+∠19.若一組數(shù)據(jù)2,3,4,5,x的平均數(shù)與中位數(shù)相等,則實數(shù)x的值不可能是()A.6 B.3.5 C.2.5 D.110.如果兩圓只有兩條公切線,那么這兩圓的位置關系是()A.內切 B.外切 C.相交 D.外離11.方程的解是A.3 B.2 C.1 D.012.如圖,在⊙O中,O為圓心,點A,B,C在圓上,若OA=AB,則∠ACB=()A.15° B.30° C.45° D.60°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.當x________時,分式有意義.14.如圖,在平面直角坐標系中,拋物線可通過平移變換向__________得到拋物線,其對稱軸與兩段拋物線所圍成的陰影部分(如圖所示)的面積是__________.15.某校九年級(1)班40名同學中,14歲的有1人,15歲的有21人,16歲的有16人,17歲的有2人,則這個班同學年齡的中位數(shù)是___歲.16.如圖,BC=6,點A為平面上一動點,且∠BAC=60°,點O為△ABC的外心,分別以AB、AC為腰向形外作等腰直角三角形△ABD與△ACE,連接BE、CD交于點P,則OP的最小值是_____17.如圖,這是由邊長為1的等邊三角形擺出的一系列圖形,按這種方式擺下去,則第n個圖形的周長是___.18.一個不透明的盒子里有n個除顏色外其他完全相同的小球,其中有9個黃球每次摸球前先將盒子里的球搖勻,任意摸出一個球記下顏色后放回盒子,通過大量重復摸球試驗后發(fā)現(xiàn),摸到黃球的頻率穩(wěn)定在,那么估計盒子中小球的個數(shù)是_______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,已知⊙O的直徑AB=10,弦AC=6,∠BAC的平分線交⊙O于點D,過點D作DE⊥AC交AC的延長線于點E.求證:DE是⊙O的切線.求DE的長.20.(6分)關于x的一元二次方程mx2﹣(2m﹣3)x+(m﹣1)=0有兩個實數(shù)根.求m的取值范圍;若m為正整數(shù),求此方程的根.21.(6分)先化簡,再求值:先化簡÷(﹣x+1),然后從﹣2<x<的范圍內選取一個合適的整數(shù)作為x的值代入求值.22.(8分)如圖,AB為⊙O的直徑,點E在⊙O上,C為的中點,過點C作直線CD⊥AE于D,連接AC、BC.(1)試判斷直線CD與⊙O的位置關系,并說明理由;(2)若AD=2,AC=,求AB的長.23.(8分)如圖,已知Rt△ABC中,∠C=90°,D為BC的中點,以AC為直徑的⊙O交AB于點E.(1)求證:DE是⊙O的切線;(2)若AE:EB=1:2,BC=6,求⊙O的半徑.24.(10分)已知一個二次函數(shù)的圖象經過A(0,﹣3),B(1,0),C(m,2m+3),D(﹣1,﹣2)四點,求這個函數(shù)解析式以及點C的坐標.25.(10分)為滿足市場需求,某超市在五月初五“端午節(jié)”來臨前夕,購進一種品牌粽子,每盒進價是40元.超市規(guī)定每盒售價不得少于45元.根據(jù)以往銷售經驗發(fā)現(xiàn);當售價定為每盒45元時,每天可以賣出700盒,每盒售價每提高1元,每天要少賣出20盒.試求出每天的銷售量y(盒)與每盒售價x(元)之間的函數(shù)關系式;當每盒售價定為多少元時,每天銷售的利潤P(元)最大?最大利潤是多少?為穩(wěn)定物價,有關管理部門限定:這種粽子的每盒售價不得高于58元.如果超市想要每天獲得不低于6000元的利潤,那么超市每天至少銷售粽子多少盒?26.(12分)如圖,已知二次函數(shù)的圖象經過,兩點.求這個二次函數(shù)的解析式;設該二次函數(shù)的對稱軸與軸交于點,連接,,求的面積.27.(12分)如圖,已知點A,B,C在半徑為4的⊙O上,過點C作⊙O的切線交OA的延長線于點D.(Ⅰ)若∠ABC=29°,求∠D的大??;(Ⅱ)若∠D=30°,∠BAO=15°,作CE⊥AB于點E,求:①BE的長;②四邊形ABCD的面積.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解題分析】分析:根據(jù)軸對稱圖形與中心對稱圖形的概念結合矩形、平行四邊形、直角梯形、正五邊形的性質求解.詳解:A.直角梯形不是軸對稱圖形,也不是中心對稱圖形,故此選項錯誤;B.平行四邊形不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;C.矩形是軸對稱圖形,也是中心對稱圖形,故此選項錯誤;D.正五邊形是軸對稱圖形,不是中心對稱圖形,故此選項正確.故選D.點睛:本題考查了軸對稱圖形和中心對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,圖形旋轉180°后與原圖形重合.2、A【解題分析】
連接BD,根據(jù)圓周角定理可得cos∠BDC=cos∠BPC,又BD為直徑,則∠BCD=90°,設DC為x,則BC為2x,根據(jù)勾股定理可得BD=x,再根據(jù)cos∠BDC===,即可得出結論.【題目詳解】連接BD,∵四邊形ABCD為矩形,∴BD過圓心O,∵∠BDC=∠BPC(圓周角定理)∴cos∠BDC=cos∠BPC∵BD為直徑,∴∠BCD=90°,∵=,∴設DC為x,則BC為2x,∴BD===x,∴cos∠BDC===,∵cos∠BDC=cos∠BPC,∴cos∠BPC=.故答案選A.【題目點撥】本題考查了圓周角定理與勾股定理,解題的關鍵是熟練的掌握圓周角定理與勾股定理的應用.3、C【解題分析】
根據(jù)一元一次方程的定義即可求出答案.【題目詳解】由題意可知:,解得a=?1故選C.【題目點撥】本題考查一元二次方程的定義,解題的關鍵是熟練運用一元二次方程的定義,本題屬于基礎題型.4、D【解題分析】
先求出兩次擲一枚硬幣落地后朝上的面的所有情況,再根據(jù)概率公式求解.【題目詳解】隨機擲一枚均勻的硬幣兩次,落地后情況如下:至少有一次正面朝上的概率是,故選:D.【題目點撥】本題考查了隨機事件的概率,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率.5、D【解題分析】解:延長AB交DC于H,作EG⊥AB于G,如圖所示,則GH=DE=15米,EG=DH,∵梯坎坡度i=1:,∴BH:CH=1:,設BH=x米,則CH=x米,在Rt△BCH中,BC=12米,由勾股定理得:,解得:x=6,∴BH=6米,CH=米,∴BG=GH﹣BH=15﹣6=9(米),EG=DH=CH+CD=+20(米),∵∠α=45°,∴∠EAG=90°﹣45°=45°,∴△AEG是等腰直角三角形,∴AG=EG=+20(米),∴AB=AG+BG=+20+9≈39.4(米).故選D.6、A【解題分析】
找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)或兩個數(shù)的平均數(shù)為中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù).【題目詳解】解:這組數(shù)據(jù)中,出現(xiàn)的次數(shù)最多,故眾數(shù)為,
共有30人,
第15和16人身高的平均數(shù)為中位數(shù),
即中位數(shù)為:,
故選:A.【題目點撥】本題考查了眾數(shù)和中位數(shù)的知識,一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù);將一組數(shù)據(jù)按照從小到大或從大到小的順序排列,如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).7、B【解題分析】分析:由普查得到的調查結果比較準確,但所費人力、物力和時間較多,而抽樣調查得到的調查結果比較近似.詳解:A、調查范圍廣適合抽樣調查,故A不符合題意;B、適合普查,故B符合題意;C、調查范圍廣適合抽樣調查,故C不符合題意;D、調查范圍廣適合抽樣調查,故D不符合題意;故選:B.點睛:本題考查了抽樣調查和全面調查的區(qū)別,選擇普查還是抽樣調查要根據(jù)所要考查的對象的特征靈活選用,一般來說,對于具有破壞性的調查、無法進行普查、普查的意義或價值不大,應選擇抽樣調查,對于精確度要求高的調查,事關重大的調查往往選用普查.8、D【解題分析】
先根據(jù)AB∥CD得出∠BCD=∠1,再由CD∥EF得出∠DCE=180°-∠2,再把兩式相加即可得出結論.【題目詳解】解:∵AB∥CD,∴∠BCD=∠1,∵CD∥EF,∴∠DCE=180°-∠2,∴∠BCE=∠BCD+∠DCE=180°-∠2+∠1.故選:D.【題目點撥】本題考查的是平行線的判定,用到的知識點為:兩直線平行,內錯角相等,同旁內角互補.9、C【解題分析】
因為中位數(shù)的值與大小排列順序有關,而此題中x的大小位置未定,故應該分類討論x所處的所有位置情況:從小到大(或從大到?。┡帕性谥虚g;結尾;開始的位置.【題目詳解】(1)將這組數(shù)據(jù)從小到大的順序排列為2,3,4,5,x,
處于中間位置的數(shù)是4,
∴中位數(shù)是4,
平均數(shù)為(2+3+4+5+x)÷5,
∴4=(2+3+4+5+x)÷5,
解得x=6;符合排列順序;
(2)將這組數(shù)據(jù)從小到大的順序排列后2,3,4,x,5,
中位數(shù)是4,
此時平均數(shù)是(2+3+4+5+x)÷5=4,
解得x=6,不符合排列順序;
(3)將這組數(shù)據(jù)從小到大的順序排列后2,3,x,4,5,
中位數(shù)是x,
平均數(shù)(2+3+4+5+x)÷5=x,
解得x=3.5,符合排列順序;
(4)將這組數(shù)據(jù)從小到大的順序排列后2,x,3,4,5,
中位數(shù)是3,
平均數(shù)(2+3+4+5+x)÷5=3,
解得x=1,不符合排列順序;
(5)將這組數(shù)據(jù)從小到大的順序排列后x,2,3,4,5,
中位數(shù)是3,
平均數(shù)(2+3+4+5+x)÷5=3,
解得x=1,符合排列順序;
∴x的值為6、3.5或1.
故選C.【題目點撥】考查了確定一組數(shù)據(jù)的中位數(shù),涉及到分類討論思想,較難,要明確中位數(shù)的值與大小排列順序有關,一些學生往往對這個概念掌握不清楚,計算方法不明確而解答不完整.注意找中位數(shù)的時候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個來確定中位數(shù).如果數(shù)據(jù)有奇數(shù)個,則正中間的數(shù)字即為所求;如果是偶數(shù)個,則找中間兩位數(shù)的平均數(shù).10、C【解題分析】
兩圓內含時,無公切線;兩圓內切時,只有一條公切線;兩圓外離時,有4條公切線;兩圓外切時,有3條公切線;兩圓相交時,有2條公切線.【題目詳解】根據(jù)兩圓相交時才有2條公切線.故選C.【題目點撥】本題考查了圓與圓的位置關系.熟悉兩圓的不同位置關系中的外公切線和內公切線的條數(shù).11、A【解題分析】試題分析:分式方程去分母轉化為整式方程,求出整式方程的解得到x的值,經檢驗即可得到分式方程的解:去分母得:2x=3x﹣3,解得:x=3,經檢驗x=3是分式方程的解.故選A.12、B【解題分析】
根據(jù)題意得到△AOB是等邊三角形,求出∠AOB的度數(shù),根據(jù)圓周角定理計算即可.【題目詳解】解:∵OA=AB,OA=OB,∴△AOB是等邊三角形,∴∠AOB=60°,∴∠ACB=30°,故選B.【題目點撥】本題考查的是圓周角定理和等邊三角形的判定,掌握在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、x≠3【解題分析】由題意得x-3≠0,∴x≠3.14、先向右平移2個單位再向下平移2個單位;4【解題分析】.平移后頂點坐標是(2,-2),利用割補法,把x軸上方陰影部分補到下方,可以得到矩形面積,面積是.15、1.【解題分析】
根據(jù)中位數(shù)的定義找出第20和21個數(shù)的平均數(shù),即可得出答案.【題目詳解】解:∵該班有40名同學,∴這個班同學年齡的中位數(shù)是第20和21個數(shù)的平均數(shù).∵14歲的有1人,1歲的有21人,∴這個班同學年齡的中位數(shù)是1歲.【題目點撥】此題考查了中位數(shù),中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(shù)(最中間兩個數(shù)的平均數(shù)),熟練掌握中位數(shù)的定義是本題的關鍵.16、【解題分析】試題分析:如圖,∵∠BAD=∠CAE=90°,∴∠DAC=∠BAE,在△DAC和△BAE中,∵AD=AB,∠DAC=∠BAE,AC=AE,∴△DAC≌△BAE(SAS),∴∠ADC=∠ABE,∴∠PDB+∠PBD=90°,∴∠DPB=90°,∴點P在以BC為直徑的圓上,∵外心為O,∠BAC=60°,∴∠BOC=120°,又BC=6,∴OH=,所以OP的最小值是.故答案為.考點:1.三角形的外接圓與外心;2.全等三角形的判定與性質.17、2n+1【解題分析】觀察擺放的一系列圖形,可得到依次的周長分別是3,4,5,6,7,…,從中得到規(guī)律,根據(jù)規(guī)律寫出第n個圖形的周長.解:由已知一系列圖形觀察圖形依次的周長分別是:(1)2+1=3,(2)2+2=4,(3)2+3=5,(4)2+4=6,(5)2+5=7,…,所以第n個圖形的周長為:2+n.故答案為2+n.此題考查的是圖形數(shù)字的變化類問題,關鍵是通過觀察分析得出規(guī)律,根據(jù)規(guī)律求解.18、1【解題分析】
根據(jù)利用頻率估計概率得到摸到黃球的概率為1%,然后根據(jù)概率公式計算n的值.【題目詳解】解:根據(jù)題意得=1%,解得n=1,所以這個不透明的盒子里大約有1個除顏色外其他完全相同的小球.故答案為1.【題目點撥】本題考查了利用頻率估計概率:大量重復實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據(jù)這個頻率穩(wěn)定性定理,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.當實驗的所有可能結果不是有限個或結果個數(shù)很多,或各種可能結果發(fā)生的可能性不相等時,一般通過統(tǒng)計頻率來估計概率.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)詳見解析;(2)4.【解題分析】試題分析:(1)連結OD,由AD平分∠BAC,OA=OD,可證得∠ODA=∠DAE,由平行線的性質可得OD∥AE,再由DE⊥AC即可得OE⊥DE,即DE是⊙O的切線;(2)過點O作OF⊥AC于點F,由垂徑定理可得AF=CF=3,再由勾股定理求得OF=4,再判定四邊形OFED是矩形,即可得DE=OF=4.試題解析:(1)連結OD,∵AD平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC∴OE⊥DE∴DE是⊙O的切線;(2)過點O作OF⊥AC于點F,∴AF=CF=3,∴OF=,∵∠OFE=∠DEF=∠ODE=90°,∴四邊形OFED是矩形,∴DE=OF=4.考點:切線的判定;垂徑定理;勾股定理;矩形的判定及性質.20、(1)且;(2),.【解題分析】
(1)根據(jù)一元二次方程的定義和判別式的意義得到m≠0且≥0,然后求出兩個不等式的公共部分即可;
(2)利用m的范圍可確定m=1,則原方程化為x2+x=0,然后利用因式分解法解方程.【題目詳解】(1)∵.解得且.(2)∵為正整數(shù),∴.∴原方程為.解得,.【題目點撥】考查一元二次方程根的判別式,當時,方程有兩個不相等的實數(shù)根.當時,方程有兩個相等的實數(shù)根.當時,方程沒有實數(shù)根.21、﹣,﹣.【解題分析】
根據(jù)分式的減法和除法可以化簡題目中的式子,然后在-2<x<中選取一個使得原分式有意義的整數(shù)值代入化簡后的式子即可求出最后答案,值得注意的是,本題答案不唯一,x的值可以取-2、2中的任意一個.【題目詳解】原式====,∵-2<x<(x為整數(shù))且分式要有意義,所以x+1≠0,x-1≠0,x≠0,即x≠-1,1,0,因此可以選取x=2時,此時原式=-.【題目點撥】本題主要考查了求代數(shù)式的值,解本題的要點在于在化解過程中,求得x的取值范圍,從而再選取x=2得到答案.22、(1)證明見解析(2)3【解題分析】
(1)連接,由為的中點,得到,等量代換得到,根據(jù)平行線的性質得到,即可得到結論;(2)連接,由勾股定理得到,根據(jù)切割線定理得到,根據(jù)勾股定理得到,由圓周角定理得到,即可得到結論.【題目詳解】相切,連接,∵為的中點,∴,∵,∴,∴,∴,∵,∴,∴直線與相切;方法:連接,∵,,∵,∴,∵是的切線,∴,∴,∴,∵為的中點,∴,∵為的直徑,∴,∴.方法:∵,易得,∴,∴.【題目點撥】本題考查了直線與圓的位置關系,切線的判定和性質,圓周角定理,勾股定理,平行線的性質,切割線定理,熟練掌握各定理是解題的關鍵.23、(1)證明見解析;(1)32【解題分析】試題分析:(1)求出∠OED=∠BCA=90°,根據(jù)切線的判定即可得出結論;(1)求出△BEC∽△BCA,得出比例式,代入求出即可.試題解析:(1)證明:連接OE、EC.∵AC是⊙O的直徑,∴∠AEC=∠BEC=90°.∵D為BC的中點,∴ED=DC=BD,∴∠1=∠1.∵OE=OC,∴∠3=∠4,∴∠1+∠3=∠1+∠4,即∠OED=∠ACB.∵∠ACB=90°,∴∠OED=90°,∴DE是⊙O的切線;(1)由(1)知:∠BEC=90°.在Rt△BEC與Rt△BCA中,∵∠B=∠B,∠BEC=∠BCA,∴△BEC∽△BCA,∴BE:BC=BC:BA,∴BC1=BE?BA.∵AE:EB=1:1,設AE=x,則BE=1x,BA=3x.∵BC=6,∴61=1x?3x,解得:x=6,即AE=6,∴AB=36,∴AC=AB2-BC2=點睛:本題考查了切線的判定和相似三角形的性質和判定,能求出∠OED=∠BCA和△BEC∽△BCA是解答此題的關鍵.24、y=2x2+x﹣3,C點坐標為(﹣,0)或(2,7)【解題分析】
設拋物線的解析式為y=ax2+bx+c,把A(0,﹣3),B(1,0),D(﹣1,﹣2)代入可求出解析式,進而求出點C的坐標即可.【題目詳解】設拋物線的解析式為y=ax2+bx+c,把A(0,﹣3),B(1,0),D(﹣1,﹣2)代入得,解得,∴拋物線的解析式為y=2x2+x﹣3,把C(m,2m+3)代入得2m2+m﹣3=2m+3,解得m1=﹣,m2=2,∴C點坐標為(﹣,0)或(2,7).【題目點撥】本題考查了用待定系數(shù)法求二次函數(shù)的解析式:在利用待定系數(shù)法求二次函數(shù)關系式時,要根據(jù)題目給定的條件,選擇恰當?shù)姆椒ㄔO出關系式,從而代入數(shù)值求解.25、(1)y=﹣20x+1600;(2)當每盒售價定為60元時,每天銷售的利潤P(元)最大,最大利潤是8000元;(3)超市每天至少銷售粽子440盒.【解題分析】試題分析:(1)根據(jù)“當售價定為每盒45元時,每天可以賣出700盒,每盒售價每提高1元,每天要少賣出20盒”即可得出每天的銷售量y(盒)與每盒售價x(元)之間的函數(shù)關系式;(2)根據(jù)利潤=1盒粽子所獲得的利潤×銷售量列式整理,再根據(jù)二次函數(shù)的最值問題解答;(3)先由(2)中所求得的P與x的函數(shù)關系式,根據(jù)這種粽子的每盒售價不得高于58元,且每天銷售粽子的利潤不低于6000元,求出x的取值范圍,再根據(jù)(1)中所求得的銷售量y(盒)與每盒售價x(元)之間的函數(shù)關系式即可求解.試題解析:(1)由題意得,==;(2)P===,∵x≥45,a=﹣20<0,∴當x=60時,P最大值=8000元,即當每盒售價定為60元時,每
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度廠房租賃保證金退還協(xié)議4篇
- 2025年度智能設備價格信息保密及市場推廣協(xié)議4篇
- 2025年度廠房租賃合同附帶員工宿舍租賃條款4篇
- 二零二四唐山骨瓷品牌創(chuàng)新設計研發(fā)合作協(xié)議3篇
- 2025年度企業(yè)品牌策劃合同范本(十)4篇
- 2024年04月江蘇上海浦發(fā)銀行南京分行在線視頻筆試歷年參考題庫附帶答案詳解
- 2024美容美發(fā)店加盟合同
- 2025年茶葉出口基地承包經營合同范本4篇
- 專項工程承攬協(xié)議樣本(2024年版)版B版
- 2024年03月浙江中國農業(yè)銀行浙江省分行春季招考筆試歷年參考題庫附帶答案詳解
- 地理2024-2025學年人教版七年級上冊地理知識點
- 2024 消化內科專業(yè) 藥物臨床試驗GCP管理制度操作規(guī)程設計規(guī)范應急預案
- 2024-2030年中國電子郵箱行業(yè)市場運營模式及投資前景預測報告
- 基礎設施零星維修 投標方案(技術方案)
- 人力資源 -人效評估指導手冊
- 大疆80分鐘在線測評題
- 2024屆廣東省廣州市高三上學期調研測試英語試題及答案
- 中煤平朔集團有限公司招聘筆試題庫2024
- 2023年成都市青白江區(qū)村(社區(qū))“兩委”后備人才考試真題
- 不付租金解除合同通知書
- 區(qū)域合作伙伴合作協(xié)議書范本
評論
0/150
提交評論