版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
浙江省寧波市李興貴中學(xué)2024屆中考三模數(shù)學(xué)試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,AB為⊙O直徑,已知為∠DCB=20°,則∠DBA為()A.50° B.20° C.60° D.70°2.如圖,將甲、乙、丙、丁四個小正方形中的一個剪掉,使余下的部分不能圍成一個正方體,剪掉的這個小正方形是A.甲 B.乙C.丙 D.丁3.如圖,在平面直角坐標(biāo)系中,把△ABC繞原點O旋轉(zhuǎn)180°得到△CDA,點A,B,C的坐標(biāo)分別為(﹣5,2),(﹣2,﹣2),(5,﹣2),則點D的坐標(biāo)為()A.(2,2) B.(2,﹣2) C.(2,5) D.(﹣2,5)4.某春季田徑運動會上,參加男子跳高的15名運動員的成績?nèi)缦卤硭荆撼煽內(nèi)藬?shù)這些運動員跳高成績的中位數(shù)是()A. B. C. D.5.觀察下列圖形,其中既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.6.某公園里鮮花的擺放如圖所示,第①個圖形中有3盆鮮花,第②個圖形中有6盆鮮花,第③個圖形中有11盆鮮花,……,按此規(guī)律,則第⑦個圖形中的鮮花盆數(shù)為()A.37 B.38 C.50 D.517.估計的值在()A.2和3之間 B.3和4之間 C.4和5之間 D.5和6之間8.圓錐的底面半徑為2,母線長為4,則它的側(cè)面積為()A.8π B.16π
C.4π D.4π9.如圖,是一個工件的三視圖,則此工件的全面積是()A.60πcm2 B.90πcm2 C.96πcm2 D.120πcm210.如圖,若AB∥CD,CD∥EF,那么∠BCE=()A.∠1+∠2 B.∠2-∠1C.180°-∠1+∠2 D.180°-∠2+∠1二、填空題(本大題共6個小題,每小題3分,共18分)11.已知扇形的弧長為2π,圓心角為60°,則它的半徑為________.12.如圖,在邊長相同的小正方形網(wǎng)格中,點A、B、C、D都在這些小正方形的頂點上,AB與CD相交于點P,則tan∠APD的值為______.13.如果一個直角三角形的兩條直角邊的長分別為5、12,則斜邊上的高的長度為______.14.規(guī)定:[x]表示不大于x的最大整數(shù),(x)表示不小于x的最小整數(shù),[x)表示最接近x的整數(shù)(x≠n+0.5,n為整數(shù)),例如:[1.3]=1,(1.3)=3,[1.3)=1.則下列說法正確的是________.(寫出所有正確說法的序號)①當(dāng)x=1.7時,[x]+(x)+[x)=6;②當(dāng)x=﹣1.1時,[x]+(x)+[x)=﹣7;③方程4[x]+3(x)+[x)=11的解為1<x<1.5;④當(dāng)﹣1<x<1時,函數(shù)y=[x]+(x)+x的圖象與正比例函數(shù)y=4x的圖象有兩個交點.15.如圖,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=4,點D是AC邊上一動點,連接BD,以AD為直徑的圓交BD于點E,則線段CE長度的最小值為___.16.關(guān)于x的一元二次方程x2-2x+m-1=0有兩個相等的實數(shù)根,則m的值為_________三、解答題(共8題,共72分)17.(8分)某公司銷售部有營銷人員15人,銷售部為了制定某種商品的月銷售定額,統(tǒng)計了這15人某月的銷售量如下:每人銷售件數(shù)1800510250210150120人數(shù)113532(1)求這15位營銷人員該月銷售量的平均數(shù)、中位數(shù)和眾數(shù);假設(shè)銷售負(fù)責(zé)人把每位營銷員的月銷售額定為320件,你認(rèn)為是否合理,為什么?如不合理,請你制定一個較合理的銷售定額,并說明理由.18.(8分)如圖,已知一次函數(shù)的圖象與反比例函數(shù)的圖象交于點,與軸、軸交于兩點,過作垂直于軸于點.已知.(1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;(2)觀察圖象:當(dāng)時,比較.19.(8分)某中學(xué)為了提高學(xué)生的消防意識,舉行了消防知識競賽,所有參賽學(xué)生分別設(shè)有一、二、三等獎和紀(jì)念獎,獲獎情況已繪制成如圖所示的兩幅不完整的統(tǒng)計圖,根據(jù)圖中所經(jīng)信息解答下列問題:(1)這次知識競賽共有多少名學(xué)生?(2)“二等獎”對應(yīng)的扇形圓心角度數(shù),并將條形統(tǒng)計圖補充完整;(3)小華參加了此次的知識競賽,請你幫他求出獲得“一等獎或二等獎”的概率.20.(8分)為了保障市民安全用水,我市啟動自來水管改造工程,該工程若甲隊單獨施工,恰好在規(guī)定時間內(nèi)完成;若由乙隊單獨施工,則完成工程所需天數(shù)是規(guī)定天數(shù)的3倍.若甲、乙兩隊先合作施工45天,則余下的工程甲隊還需單獨施工23天才能完成.這項工程的規(guī)定時間是多少天?21.(8分)某小學(xué)為每個班級配備了一種可以加熱的飲水機(jī),該飲水機(jī)的工作程序是:放滿水后,接通電源,則自動開始加熱,每分鐘水溫上升10℃,待加熱到100℃,飲水機(jī)自動停止加熱,水溫開始下降,水溫y(℃)和通電時間x(min)成反比例關(guān)系,直至水溫降至室溫,飲水機(jī)再次自動加熱,重復(fù)上述過程.設(shè)某天水溫和室溫為20℃,接通電源后,水溫和時間的關(guān)系如下圖所示,回答下列問題:(1)分別求出當(dāng)0≤x≤8和8<x≤a時,y和x之間的關(guān)系式;(2)求出圖中a的值;(3)李老師這天早上7:30將飲水機(jī)電源打開,若他想再8:10上課前能喝到不超過40℃的開水,問他需要在什么時間段內(nèi)接水.22.(10分)如圖,△ABC是⊙O的內(nèi)接三角形,AB是⊙O的直徑,OF⊥AB,交AC于點F,點E在AB的延長線上,射線EM經(jīng)過點C,且∠ACE+∠AFO=180°.求證:EM是⊙O的切線;若∠A=∠E,BC=,求陰影部分的面積.(結(jié)果保留和根號).23.(12分)先化簡,再求值,,其中x=1.24.已知矩形ABCD的一條邊AD=8,將矩形ABCD折疊,使得頂點B落在CD邊上的P點處.如圖,已知折痕與邊BC交于點O,連接AP、OP、OA.(1)求證:;(2)若△OCP與△PDA的面積比為1:4,求邊AB的長.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解題分析】題解析:∵AB為⊙O直徑,∴∠ACB=90°,∴∠ACD=90°-∠DCB=90°-20°=70°,∴∠DBA=∠ACD=70°.故選D.【題目點撥】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.2、D【解題分析】解:將如圖所示的圖形剪去一個小正方形,使余下的部分不能圍成一個正方體,編號為甲乙丙丁的小正方形中剪去的是?。蔬xD.3、A【解題分析】分析:依據(jù)四邊形ABCD是平行四邊形,即可得到BD經(jīng)過點O,依據(jù)B的坐標(biāo)為(﹣2,﹣2),即可得出D的坐標(biāo)為(2,2).詳解:∵點A,C的坐標(biāo)分別為(﹣5,2),(5,﹣2),∴點O是AC的中點,∵AB=CD,AD=BC,∴四邊形ABCD是平行四邊形,∴BD經(jīng)過點O,∵B的坐標(biāo)為(﹣2,﹣2),∴D的坐標(biāo)為(2,2),故選A.點睛:本題主要考查了坐標(biāo)與圖形變化,圖形或點旋轉(zhuǎn)之后要結(jié)合旋轉(zhuǎn)的角度和圖形的特殊性質(zhì)來求出旋轉(zhuǎn)后的點的坐標(biāo).4、C【解題分析】
根據(jù)中位數(shù)的定義解答即可.【題目詳解】解:在這15個數(shù)中,處于中間位置的第8個數(shù)是1.1,所以中位數(shù)是1.1.
所以這些運動員跳高成績的中位數(shù)是1.1.
故選:C.【題目點撥】本題考查了中位數(shù)的意義.中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻螅钪虚g的那個數(shù)(最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù).5、C【解題分析】
根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【題目詳解】解:A、既不是軸對稱圖形,也不是中心對稱圖形.故本選項錯誤;B、是軸對稱圖形,不是中心對稱圖形.故本選項錯誤;C、是軸對稱圖形,也是中心對稱圖形.故本選項正確;D、既不是軸對稱圖形,也不是中心對稱圖形.故本選項錯誤.故選C.【題目點撥】本題考查了中心對稱圖形與軸對稱圖形的概念:軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.6、D【解題分析】試題解析:第①個圖形中有盆鮮花,第②個圖形中有盆鮮花,第③個圖形中有盆鮮花,…第n個圖形中的鮮花盆數(shù)為則第⑥個圖形中的鮮花盆數(shù)為故選C.7、D【解題分析】
尋找小于26的最大平方數(shù)和大于26的最小平方數(shù)即可.【題目詳解】解:小于26的最大平方數(shù)為25,大于26的最小平方數(shù)為36,故,即:,故選擇D.【題目點撥】本題考查了二次根式的相關(guān)定義.8、A【解題分析】
解:底面半徑為2,底面周長=4π,側(cè)面積=×4π×4=8π,故選A.9、C【解題分析】
先根據(jù)三視圖得到圓錐的底面圓的直徑為12cm,高為8cm,再計算母線長為10,根據(jù)圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形半徑等于圓錐的母線長計算圓錐的側(cè)面積和底面積的和即可.【題目詳解】圓錐的底面圓的直徑為12cm,高為8cm,所以圓錐的母線長==10,所以此工件的全面積=π62+2π610=96π(cm2).故答案選C.【題目點撥】本題考查的知識點是圓錐的面積及由三視圖判斷幾何體,解題的關(guān)鍵是熟練的掌握圓錐的面積及由三視圖判斷幾何體.10、D【解題分析】
先根據(jù)AB∥CD得出∠BCD=∠1,再由CD∥EF得出∠DCE=180°-∠2,再把兩式相加即可得出結(jié)論.【題目詳解】解:∵AB∥CD,∴∠BCD=∠1,∵CD∥EF,∴∠DCE=180°-∠2,∴∠BCE=∠BCD+∠DCE=180°-∠2+∠1.故選:D.【題目點撥】本題考查的是平行線的判定,用到的知識點為:兩直線平行,內(nèi)錯角相等,同旁內(nèi)角互補.二、填空題(本大題共6個小題,每小題3分,共18分)11、6.【解題分析】分析:設(shè)扇形的半徑為r,根據(jù)扇形的面積公式及扇形的面積列出方程,求解即可.詳解:設(shè)扇形的半徑為r,根據(jù)題意得:60πr解得:r=6故答案為6.點睛:此題考查弧長公式,關(guān)鍵是根據(jù)弧長公式解答.12、1【解題分析】
首先連接BE,由題意易得BF=CF,△ACP∽△BDP,然后由相似三角形的對應(yīng)邊成比例,易得DP:CP=1:3,即可得PF:CF=PF:BF=1:1,在Rt△PBF中,即可求得tan∠BPF的值,繼而求得答案.【題目詳解】如圖:,連接BE,∵四邊形BCED是正方形,∴DF=CF=12CD,BF=1∴BF=CF,根據(jù)題意得:AC∥BD,∴△ACP∽△BDP,∴DP:CP=BD:AC=1:3,∴DP:DF=1:1,∴DP=PF=12CF=1在Rt△PBF中,tan∠BPF=BFPF∵∠APD=∠BPF,∴tan∠APD=1.
故答案為:1【題目點撥】此題考查了相似三角形的判定與性質(zhì),三角函數(shù)的定義.此題難度適中,解題的關(guān)鍵是準(zhǔn)確作出輔助線,注意轉(zhuǎn)化思想與數(shù)形結(jié)合思想的應(yīng)用.13、【解題分析】
利用勾股定理求出斜邊長,再利用面積法求出斜邊上的高即可.【題目詳解】解:∵直角三角形的兩條直角邊的長分別為5,12,∴斜邊為=13,∵三角形的面積=×5×12=×13h(h為斜邊上的高),∴h=.故答案為:.【題目點撥】考查了勾股定理,以及三角形面積公式,熟練掌握勾股定理是解本題的關(guān)鍵.14、②③【解題分析】試題解析:①當(dāng)x=1.7時,[x]+(x)+[x)=[1.7]+(1.7)+[1.7)=1+1+1=5,故①錯誤;②當(dāng)x=﹣1.1時,[x]+(x)+[x)=[﹣1.1]+(﹣1.1)+[﹣1.1)=(﹣3)+(﹣1)+(﹣1)=﹣7,故②正確;③當(dāng)1<x<1.5時,4[x]+3(x)+[x)=4×1+3×1+1=4+6+1=11,故③正確;④∵﹣1<x<1時,∴當(dāng)﹣1<x<﹣0.5時,y=[x]+(x)+x=﹣1+0+x=x﹣1,當(dāng)﹣0.5<x<0時,y=[x]+(x)+x=﹣1+0+x=x﹣1,當(dāng)x=0時,y=[x]+(x)+x=0+0+0=0,當(dāng)0<x<0.5時,y=[x]+(x)+x=0+1+x=x+1,當(dāng)0.5<x<1時,y=[x]+(x)+x=0+1+x=x+1,∵y=4x,則x﹣1=4x時,得x=;x+1=4x時,得x=;當(dāng)x=0時,y=4x=0,∴當(dāng)﹣1<x<1時,函數(shù)y=[x]+(x)+x的圖象與正比例函數(shù)y=4x的圖象有三個交點,故④錯誤,故答案為②③.考點:1.兩條直線相交或平行問題;1.有理數(shù)大小比較;3.解一元一次不等式組.15、﹣2【解題分析】
連結(jié)AE,如圖1,先根據(jù)等腰直角三角形的性質(zhì)得到AB=AC=4,再根據(jù)圓周角定理,由AD為直徑得到∠AED=90°,接著由∠AEB=90°得到點E在以AB為直徑的O上,于是當(dāng)點O、E、C共線時,CE最小,如圖2,在Rt△AOC中利用勾股定理計算出OC=2,從而得到CE的最小值為2﹣2.【題目詳解】連結(jié)AE,如圖1,∵∠BAC=90°,AB=AC,BC=,∴AB=AC=4,∵AD為直徑,∴∠AED=90°,∴∠AEB=90°,∴點E在以AB為直徑的O上,∵O的半徑為2,∴當(dāng)點O、E.C共線時,CE最小,如圖2在Rt△AOC中,∵OA=2,AC=4,∴OC=,∴CE=OC?OE=2﹣2,即線段CE長度的最小值為2﹣2.故答案為:2﹣2.【題目點撥】此題考查等腰直角三角形的性質(zhì),圓周角定理,勾股定理,解題關(guān)鍵在于結(jié)合實際運用圓的相關(guān)性質(zhì).16、2.【解題分析】試題分析:已知方程x2-2x=0有兩個相等的實數(shù)根,可得:△=4-4(m-1)=-4m+8=0,所以,m=2.考點:一元二次方程根的判別式.三、解答題(共8題,共72分)17、(1)平均數(shù)為320件,中位數(shù)是210件,眾數(shù)是210件;(2)不合理,定210件【解題分析】試題分析:(1)根據(jù)平均數(shù)、中位數(shù)和眾數(shù)的定義即可求得結(jié)果;(2)把月銷售額320件與大部分員工的工資比較即可判斷.(1)平均數(shù)件,∵最中間的數(shù)據(jù)為210,∴這組數(shù)據(jù)的中位數(shù)為210件,∵210是這組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),∴眾數(shù)為210件;(2)不合理,理由:在15人中有13人銷售額達(dá)不到320件,定210件較為合理.考點:本題考查的是平均數(shù)、眾數(shù)和中位數(shù)點評:解答本題的關(guān)鍵是熟練掌握找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)或兩個數(shù)的平均數(shù)為中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個.18、(1);(2)【解題分析】
(1)由一次函數(shù)的解析式可得出D點坐標(biāo),從而得出OD長度,再由△ODC與△BAC相似及AB與BC的長度得出C、B、A的坐標(biāo),進(jìn)而算出一次函數(shù)與反比例函數(shù)的解析式;
(2)以A點為分界點,直接觀察函數(shù)圖象的高低即可知道答案.【題目詳解】解:(1)對于一次函數(shù)y=kx-2,令x=0,則y=-2,即D(0,-2),
∴OD=2,
∵AB⊥x軸于B,
∴,
∵AB=1,BC=2,
∴OC=4,OB=6,
∴C(4,0),A(6,1)
將C點坐標(biāo)代入y=kx-2得4k-2=0,
∴k=,
∴一次函數(shù)解析式為y=x-2;
將A點坐標(biāo)代入反比例函數(shù)解析式得m=6,
∴反比例函數(shù)解析式為y=;
(2)由函數(shù)圖象可知:
當(dāng)0<x<6時,y1<y2;
當(dāng)x=6時,y1=y2;
當(dāng)x>6時,y1>y2;【題目點撥】本題考查了反比例函數(shù)與一次函數(shù)的交點問題.熟悉函數(shù)圖象上點的坐標(biāo)特征和待定系數(shù)法解函數(shù)解析式的方法是解答本題的關(guān)鍵,同時注意對數(shù)形結(jié)合思想的認(rèn)識和掌握.19、(1)200;(2)72°,作圖見解析;(3).【解題分析】
(1)用一等獎的人數(shù)除以所占的百分比求出總?cè)藬?shù);(2)用總?cè)藬?shù)乘以二等獎的人數(shù)所占的百分比求出二等獎的人數(shù),補全統(tǒng)計圖,再用360°乘以二等獎的人數(shù)所占的百分比即可求出“二等獎”對應(yīng)的扇形圓心角度數(shù);(3)用獲得一等獎和二等獎的人數(shù)除以總?cè)藬?shù)即可得出答案.【題目詳解】解:(1)這次知識競賽共有學(xué)生=200(名);(2)二等獎的人數(shù)是:200×(1﹣10%﹣24%﹣46%)=40(人),補圖如下:“二等獎”對應(yīng)的扇形圓心角度數(shù)是:360°×=72°;(3)小華獲得“一等獎或二等獎”的概率是:=.【題目點撥】本題主要考查了條形統(tǒng)計圖以及扇形統(tǒng)計圖,利用統(tǒng)計圖獲取信息是解本題的關(guān)鍵.20、這項工程的規(guī)定時間是83天【解題分析】
依據(jù)題意列分式方程即可.【題目詳解】設(shè)這項工程的規(guī)定時間為x天,根據(jù)題意得451解得x=83.檢驗:當(dāng)x=83時,3x≠0.所以x=83是原分式方程的解.答:這項工程的規(guī)定時間是83天.【題目點撥】正確理解題意是解題的關(guān)鍵,注意檢驗.21、(1)當(dāng)0≤x≤8時,y=10x+20;當(dāng)8<x≤a時,y=;(2)40;(3)要在7:50~8:10時間段內(nèi)接水.【解題分析】
(1)當(dāng)0≤x≤8時,設(shè)y=k1x+b,將(0,20),(8,100)的坐標(biāo)分別代入y=k1x+b,即可求得k1、b的值,從而得一次函數(shù)的解析式;當(dāng)8<x≤a時,設(shè)y=,將(8,100)的坐標(biāo)代入y=,求得k2的值,即可得反比例函數(shù)的解析式;(2)把y=20代入反比例函數(shù)的解析式,即可求得a值;(3)把y=40代入反比例函數(shù)的解析式,求得對應(yīng)x的值,根據(jù)想喝到不低于40℃的開水,結(jié)合函數(shù)圖象求得x的取值范圍,從而求得李老師接水的時間范圍.【題目詳解】解:(1)當(dāng)0≤x≤8時,設(shè)y=k1x+b,將(0,20),(8,100)的坐標(biāo)分別代入y=k1x+b,可求得k1=10,b=20∴當(dāng)0≤x≤8時,y=10x+20.當(dāng)8<x≤a時,設(shè)y=,將(8,100)的坐標(biāo)代入y=,得k2=800∴當(dāng)8<x≤a時,y=.綜上,當(dāng)0≤x≤8時,y=10x+20;當(dāng)8<x≤a時,y=(2)將y=20代入y=,解得x=40,即a=40.(3)當(dāng)y=40時,x==20∴要想喝到不低于40℃的開水,x需滿足8≤x≤20,即李老師要在7:38到7:50之間接水.【題目點撥】本題主要考查了一次函數(shù)及反比例函數(shù)的應(yīng)用題,是一個分段函數(shù)問題,分段函數(shù)是在不同區(qū)間有不同對應(yīng)方式的函數(shù),要特別注意自變量取值范圍的劃分,既要科學(xué)合理,又要符合實際.22、(1)詳見解析;(2);【解題分析】
(1)連接OC,根據(jù)垂直的定義得到∠AOF=90°,根據(jù)三角形的內(nèi)角和得到∠ACE=90°+∠A,根據(jù)等腰三角形的性質(zhì)得到∠OCE=90°,得到OC⊥CE,于是得到結(jié)論;
(2)根據(jù)圓周角定理得到∠ACB=90°,推出∠ACO=∠BCE,得到△BOC是等邊三角形,根據(jù)扇形和三角形的面積公式即可得到結(jié)論.【題目詳解】:(1)連接OC,
∵OF⊥AB,
∴∠AOF=90°,
∴∠A+∠AFO+90°=180°,
∵∠ACE+∠AFO=18
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版購銷簡單的合同范本
- 2025年度建筑照明材料采購合同范本3篇
- 杭州公司合作合同范本
- 2024酒店勞動合同模板
- 2025年度GRC構(gòu)件生產(chǎn)與裝配安全責(zé)任合同3篇
- 影視作品海外發(fā)行與推廣2025年度合同2篇
- 二零二五年度跨區(qū)域LNG管道運輸及倉儲服務(wù)合同3篇
- 2025年度電機(jī)維修智能化改造升級合同3篇
- 2025年度電子元器件專用紙箱采購與倉儲管理合同3篇
- 2024珠寶首飾租賃與購買合同
- TD/T 1060-2021 自然資源分等定級通則(正式版)
- 人教版二年級下冊口算題大全1000道可打印帶答案
- 《創(chuàng)傷失血性休克中國急診專家共識(2023)》解讀
- 倉庫智能化建設(shè)方案
- 海外市場開拓計劃
- 2024年度國家社會科學(xué)基金項目課題指南
- 供應(yīng)鏈組織架構(gòu)與職能設(shè)置
- 幼兒數(shù)學(xué)益智圖形連線題100題(含完整答案)
- 2024年九省聯(lián)考新高考 數(shù)學(xué)試卷(含答案解析)
- 紅色歷史研學(xué)旅行課程設(shè)計
- 如何避免護(hù)理患者投訴
評論
0/150
提交評論