2024屆廣東省汕尾市甲子鎮(zhèn)瀛江校中考數(shù)學(xué)模擬精編試卷含解析_第1頁
2024屆廣東省汕尾市甲子鎮(zhèn)瀛江校中考數(shù)學(xué)模擬精編試卷含解析_第2頁
2024屆廣東省汕尾市甲子鎮(zhèn)瀛江校中考數(shù)學(xué)模擬精編試卷含解析_第3頁
2024屆廣東省汕尾市甲子鎮(zhèn)瀛江校中考數(shù)學(xué)模擬精編試卷含解析_第4頁
2024屆廣東省汕尾市甲子鎮(zhèn)瀛江校中考數(shù)學(xué)模擬精編試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆廣東省汕尾市甲子鎮(zhèn)瀛江校中考數(shù)學(xué)模擬精編試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在矩形ABCD中,AB=2,BC=1.若點E是邊CD的中點,連接AE,過點B作BF⊥AE交AE于點F,則BF的長為()A. B. C. D.2.如圖是由5個大小相同的正方體搭成的幾何體,這個幾何體的俯視圖是()A. B. C. D.3.下列計算中正確的是()A.x2+x2=x4 B.x6÷x3=x2 C.(x3)2=x6 D.x-1=x4.要使式子有意義,x的取值范圍是()A.x≠1 B.x≠0 C.x>﹣1且≠0 D.x≥﹣1且x≠05.方程5x+2y=-9與下列方程構(gòu)成的方程組的解為的是()A.x+2y=1 B.3x+2y=-8C.5x+4y=-3 D.3x-4y=-86.在函數(shù)y=中,自變量x的取值范圍是()A.x≥1 B.x≤1且x≠0 C.x≥0且x≠1 D.x≠0且x≠17.實數(shù)﹣5.22的絕對值是()A.5.22 B.﹣5.22 C.±5.22 D.8.cos30°的相反數(shù)是()A. B. C. D.9.如圖,AB為⊙O直徑,已知為∠DCB=20°,則∠DBA為()A.50° B.20° C.60° D.70°10.用半徑為8的半圓圍成一個圓錐的側(cè)面,則圓錐的底面半徑等于()A.4 B.6 C.16π D.8二、填空題(共7小題,每小題3分,滿分21分)11.(11·湖州)如圖,已知A、B是反比例函數(shù)(k>0,x<0)圖象上的兩點,BC∥x軸,交y軸于點C.動點P從坐標(biāo)原點O出發(fā),沿O→A→B→C(圖中“→”所示路線)勻速運動,終點為C.過P作PM⊥x軸,PN⊥y軸,垂足分別為M、N.設(shè)四邊形OMPN的面積為S,P點運動時間為t,則S關(guān)于t的函數(shù)圖象大致為12.如圖,無人機在空中C處測得地面A、B兩點的俯角分別為60°、45°,如果無人機距地面高度CD為米,點A、D、B在同一水平直線上,則A、B兩點間的距離是_____米.(結(jié)果保留根號)13.如圖,△ABC三邊的中線AD,BE,CF的公共點G,若,則圖中陰影部分面積是.14.關(guān)于的分式方程的解為正數(shù),則的取值范圍是___________.15.如圖,將一幅三角板的直角頂點重合放置,其中∠A=30°,∠CDE=45°.若三角板ACB的位置保持不動,將三角板DCE繞其直角頂點C順時針旋轉(zhuǎn)一周.當(dāng)△DCE一邊與AB平行時,∠ECB的度數(shù)為_________________________.16.將數(shù)軸按如圖所示從某一點開始折出一個等邊三角形ABC,設(shè)點A表示的數(shù)為x﹣3,點B表示的數(shù)為2x+1,點C表示的數(shù)為﹣4,若將△ABC向右滾動,則x的值等于_____,數(shù)字2012對應(yīng)的點將與△ABC的頂點_____重合.17.如圖△ABC中,AB=AC=8,∠BAC=30°,現(xiàn)將△ABC繞點A逆時針旋轉(zhuǎn)30°得到△ACD,延長AD、BC交于點E,則DE的長是_____.三、解答題(共7小題,滿分69分)18.(10分)已知:如圖.D是的邊上一點,,交于點M,.(1)求證:;(2)若,試判斷四邊形的形狀,并說明理由.19.(5分)解不等式組,并把解集在數(shù)軸上表示出來.20.(8分)如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+bx+c(a≠0)與x軸交于A、B兩點,與y軸交于點C,點A的坐標(biāo)為(﹣1,0),拋物線的對稱軸直線x=交x軸于點D.(1)求拋物線的解析式;(2)點E是線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,交x軸于點G,當(dāng)點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標(biāo);(3)在(2)的條件下,將線段FG繞點G順時針旋轉(zhuǎn)一個角α(0°<α<90°),在旋轉(zhuǎn)過程中,設(shè)線段FG與拋物線交于點N,在線段GB上是否存在點P,使得以P、N、G為頂點的三角形與△ABC相似?如果存在,請直接寫出點P的坐標(biāo);如果不存在,請說明理由.21.(10分)如圖,在平行四邊形ABCD中,過點A作AE⊥DC,垂足為點E,連接BE,點F為BE上一點,連接AF,∠AFE=∠D.(1)求證:∠BAF=∠CBE;(2)若AD=5,AB=8,sinD=.求證:AF=BF.22.(10分)如圖所示,在平面直角坐標(biāo)系xOy中,正方形OABC的邊長為2cm,點A、C分別在y軸的負(fù)半軸和x軸的正半軸上,拋物線y=ax2+bx+c經(jīng)過點A、B和D(4,-2(1)求拋物線的表達(dá)式.(2)如果點P由點A出發(fā)沿AB邊以2cm/s的速度向點B運動,同時點Q由點B出發(fā),沿BC邊以1cm/s的速度向點C運動,當(dāng)其中一點到達(dá)終點時,另一點也隨之停止運動.設(shè)S=PQ2(cm2).①試求出S與運動時間t之間的函數(shù)關(guān)系式,并寫出t的取值范圍;②當(dāng)S取54(3)在拋物線的對稱軸上求點M,使得M到D、A的距離之差最大,求出點M的坐標(biāo).23.(12分)甲乙兩名同學(xué)做摸球游戲,他們把三個分別標(biāo)有1,2,3的大小和形狀完全相同的小球放在一個不透明的口袋中.求從袋中隨機摸出一球,標(biāo)號是1的概率;從袋中隨機摸出一球后放回,搖勻后再隨機摸出一球,若兩次摸出的球的標(biāo)號之和為偶數(shù)時,則甲勝;若兩次摸出的球的標(biāo)號之和為奇數(shù)時,則乙勝;試分析這個游戲是否公平?請說明理由.24.(14分)一艘貨輪往返于上下游兩個碼頭之間,逆流而上需要6小時,順流而下需要4小時,若船在靜水中的速度為20千米/時,則水流的速度是多少千米/時?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解題分析】

根據(jù)S△ABE=S矩形ABCD=1=?AE?BF,先求出AE,再求出BF即可.【題目詳解】如圖,連接BE.∵四邊形ABCD是矩形,∴AB=CD=2,BC=AD=1,∠D=90°,在Rt△ADE中,AE===,∵S△ABE=S矩形ABCD=1=?AE?BF,∴BF=.故選:B.【題目點撥】本題考查矩形的性質(zhì)、勾股定理、三角形的面積公式等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,學(xué)會用面積法解決有關(guān)線段問題,屬于中考??碱}型.2、A【解題分析】分析:根據(jù)從上面看得到的圖形是俯視圖,可得答案.詳解:從上面看第一列是兩個小正方形,第二列是一個小正方形,第三列是一個小正方形,故選:A.點睛:本題考查了簡單組合體的三視圖,從上面看得到的圖形是俯視圖.3、C【解題分析】

根據(jù)合并同類項的方法、同底數(shù)冪的除法法則、冪的乘方、負(fù)整數(shù)指數(shù)冪的意義逐項求解,利用排除法即可得到答案.【題目詳解】A.x2+x2=2x2,故不正確;B.x6÷x3=x3,故不正確;C.(x3)2=x6,故正確;D.x﹣1=,故不正確;故選C.【題目點撥】本題考查了合并同類項的方法、同底數(shù)冪的除法法則、冪的乘方、負(fù)整數(shù)指數(shù)冪的意義,解答本題的關(guān)鍵是熟練掌握各知識點.4、D【解題分析】

根據(jù)二次根式由意義的條件是:被開方數(shù)大于或等于1,和分母不等于1,即可求解.【題目詳解】根據(jù)題意得:,解得:x≥-1且x≠1.故選:D.【題目點撥】本題考查的知識點為:分式有意義,分母不為1;二次根式的被開方數(shù)是非負(fù)數(shù).5、D【解題分析】試題分析:將x與y的值代入各項檢驗即可得到結(jié)果.解:方程5x+2y=﹣9與下列方程構(gòu)成的方程組的解為的是3x﹣4y=﹣1.故選D.點評:此題考查了二元一次方程組的解,方程組的解即為能使方程組中兩方程成立的未知數(shù)的值.6、C【解題分析】

根據(jù)分式和二次根式有意義的條件進(jìn)行計算即可.【題目詳解】由題意得:x≥2且x﹣2≠2.解得:x≥2且x≠2.故x的取值范圍是x≥2且x≠2.故選C.【題目點撥】本題考查了函數(shù)自變量的取值范圍問題,掌握分式和二次根式有意義的條件是解題的關(guān)鍵.7、A【解題分析】

根據(jù)絕對值的性質(zhì)進(jìn)行解答即可.【題目詳解】實數(shù)﹣5.1的絕對值是5.1.故選A.【題目點撥】本題考查的是實數(shù)的性質(zhì),熟知絕對值的性質(zhì)是解答此題的關(guān)鍵.8、C【解題分析】

先將特殊角的三角函數(shù)值代入求解,再求出其相反數(shù).【題目詳解】∵cos30°=,∴cos30°的相反數(shù)是,故選C.【題目點撥】本題考查了特殊角的三角函數(shù)值,解答本題的關(guān)鍵是掌握幾個特殊角的三角函數(shù)值以及相反數(shù)的概念.9、D【解題分析】題解析:∵AB為⊙O直徑,∴∠ACB=90°,∴∠ACD=90°-∠DCB=90°-20°=70°,∴∠DBA=∠ACD=70°.故選D.【題目點撥】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.10、A【解題分析】

由于半圓的弧長=圓錐的底面周長,那么圓錐的底面周長為8π,底面半徑=8π÷2π.【題目詳解】解:由題意知:底面周長=8π,∴底面半徑=8π÷2π=1.故選A.【題目點撥】此題主要考查了圓錐側(cè)面展開扇形與底面圓之間的關(guān)系,圓錐的側(cè)面展開圖是一個扇形,此扇形的弧長等于圓錐底面周長,扇形的半徑等于圓錐的母線長,解決本題的關(guān)鍵是應(yīng)用半圓的弧長=圓錐的底面周長.二、填空題(共7小題,每小題3分,滿分21分)11、A【解題分析】試題分析:①當(dāng)點P在OA上運動時,OP=t,S=OM?PM=tcosα?tsinα,α角度固定,因此S是以y軸為對稱軸的二次函數(shù),開口向上;②當(dāng)點P在AB上運動時,設(shè)P點坐標(biāo)為(x,y),則S=xy=k,為定值,故B、D選項錯誤;③當(dāng)點P在BC上運動時,S隨t的增大而逐漸減小,故C選項錯誤.故選A.考點:1.反比例函數(shù)綜合題;2.動點問題的函數(shù)圖象.12、100(1+)【解題分析】分析:如圖,利用平行線的性質(zhì)得∠A=60°,∠B=45°,在Rt△ACD中利用正切定義可計算出AD=100,在Rt△BCD中利用等腰直角三角形的性質(zhì)得BD=CD=100,然后計算AD+BD即可.詳解:如圖,∵無人機在空中C處測得地面A、B兩點的俯角分別為60°、45°,∴∠A=60°,∠B=45°,在Rt△ACD中,∵tanA=,∴AD==100,在Rt△BCD中,BD=CD=100,∴AB=AD+BD=100+100=100(1+).答:A、B兩點間的距離為100(1+)米.故答案為100(1+).點睛:本題考查了解直角三角形的應(yīng)用﹣仰角俯角問題:解決此類問題要了解角之間的關(guān)系,找到與已知和未知相關(guān)聯(lián)的直角三角形,當(dāng)圖形中沒有直角三角形時,要通過作高或垂線構(gòu)造直角三角形.13、4【解題分析】試題分析:由中線性質(zhì),可得AG=2GD,則,∴陰影部分的面積為4;其實圖中各個單獨小三角形面積都相等本題雖然超綱,但學(xué)生容易蒙對的.考點:中線的性質(zhì).14、且.【解題分析】

方程兩邊同乘以x-1,化為整數(shù)方程,求得x,再列不等式得出m的取值范圍.【題目詳解】方程兩邊同乘以x-1,得,m-1=x-1,解得x=m-2,∵分式方程的解為正數(shù),∴x=m-2>0且x-1≠0,即m-2>0且m-2-1≠0,∴m>2且m≠1,故答案為m>2且m≠1.15、15°、30°、60°、120°、150°、165°【解題分析】分析:根據(jù)CD∥AB,CE∥AB和DE∥AB三種情況分別畫出圖形,然后根據(jù)每種情況分別進(jìn)行計算得出答案,每種情況都會出現(xiàn)銳角和鈍角兩種情況.詳解:①、∵CD∥AB,∴∠ACD=∠A=30°,∵∠ACD+∠ACE=∠DCE=90°,∠ECB+∠ACE=∠ACB=90°,∴∠ECB=∠ACD=30°;CD∥AB時,∠BCD=∠B=60°,∠ECB=∠BCD+∠EDC=60°+90°=150°②如圖1,CE∥AB,∠ACE=∠A=30°,∠ECB=∠ACB+∠ACE=90°+30°=120°;CE∥AB時,∠ECB=∠B=60°.③如圖2,DE∥AB時,延長CD交AB于F,則∠BFC=∠D=45°,在△BCF中,∠BCF=180°-∠B-∠BFC,=180°-60°-45°=75°,∴ECB=∠BCF+∠ECF=75°+90°=165°或∠ECB=90°-75°=15°.點睛:本題主要考查的是平行線的性質(zhì)與判定,屬于中等難度的題型.解決這個問題的關(guān)鍵就是根據(jù)題意得出圖形,然后分兩種情況得出角的度數(shù).16、﹣1C.【解題分析】∵將數(shù)軸按如圖所示從某一點開始折出一個等邊三角形ABC,設(shè)點A表示的數(shù)為x﹣1,點B表示的數(shù)為2x+1,點C表示的數(shù)為﹣4,∴﹣4﹣(2x+1)=2x+1﹣(x﹣1);∴﹣1x=9,x=﹣1.故A表示的數(shù)為:x﹣1=﹣1﹣1=﹣6,點B表示的數(shù)為:2x+1=2×(﹣1)+1=﹣5,即等邊三角形ABC邊長為1,數(shù)字2012對應(yīng)的點與﹣4的距離為:2012+4=2016,∵2016÷1=672,C從出發(fā)到2012點滾動672周,∴數(shù)字2012對應(yīng)的點將與△ABC的頂點C重合.故答案為﹣1,C.點睛:此題主要考查了等邊三角形的性質(zhì),實數(shù)與數(shù)軸,一元一次方程等知識,本題將數(shù)與式的考查有機地融入“圖形與幾何”中,滲透“數(shù)形結(jié)合思想”、“方程思想”等,也是一道較優(yōu)秀的操作活動型問題.17、【解題分析】

過點作于,根據(jù)三角形的性質(zhì)及三角形內(nèi)角和定理可計算再由旋轉(zhuǎn)可得,,根據(jù)三角形外角和性質(zhì)計算,根據(jù)含角的直角三角形的三邊關(guān)系得和的長度,進(jìn)而得到的長度,然后利用得到與的長度,于是可得.【題目詳解】如圖,過點作于,∵,∴.∵將繞點逆時針旋轉(zhuǎn),使點落在點處,此時點落在點處,∴∵∴在中,∵∴∴,在中,∵,∴,∴.故答案為.【題目點撥】本題考查三角形性質(zhì)的綜合應(yīng)用,要熟練掌握等腰三角形的性質(zhì),含角的直角三角形的三邊關(guān)系,旋轉(zhuǎn)圖形的性質(zhì).三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2)四邊形ADCN是矩形,理由見解析.【解題分析】

(1)根據(jù)平行得出∠DAM=∠NCM,根據(jù)ASA推出△AMD≌△CMN,得出AD=CN,推出四邊形ADCN是平行四邊形即可;(2)根據(jù)∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC求出∠MCD=∠MDC,推出MD=MC,求出MD=MN=MA=MC,推出AC=DN,根據(jù)矩形的判定得出即可.【題目詳解】證明:(1)∵CN∥AB,∴∠DAM=∠NCM,∵在△AMD和△CMN中,∠DAM=∠NCMMA=MC∠DMA=∠NMC,∴△AMD≌△CMN(ASA),∴AD=CN,又∵AD∥CN,∴四邊形ADCN是平行四邊形,∴CD=AN;(2)解:四邊形ADCN是矩形,理由如下:∵∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC,∴∠MCD=∠MDC,∴MD=MC,由(1)知四邊形ADCN是平行四邊形,∴MD=MN=MA=MC,∴AC=DN,∴四邊形ADCN是矩形.【題目點撥】本題考查了全等三角形的性質(zhì)和判定,平行四邊形的判定和性質(zhì),矩形的判定的應(yīng)用,能綜合運用性質(zhì)進(jìn)行推理是解此題的關(guān)鍵,綜合性比較強,難度適中.19、不等式組的解集為,在數(shù)軸上表示見解析.【解題分析】

先求出不等式組中每一個不等式的解集,再求出它們的公共部分,然后把不等式的解集表示在數(shù)軸上即可.【題目詳解】由2(x+2)≤3x+3,可得:x≥1,由,可得:x<3,則不等式組的解為:1≤x<3,不等式組的解集在數(shù)軸上表示如圖所示:【題目點撥】本題考查了一元一次不等式組,把每個不等式的解集在數(shù)軸上表示出來(>,≥向右畫;<,≤向左畫),數(shù)軸上的點把數(shù)軸分成若干段,如果數(shù)軸的某一段上面表示解集的線的條數(shù)與不等式的個數(shù)一樣,那么這段就是不等式組的解集.有幾個就要幾個.在表示解集時“≥”,“≤”要用實心圓點表示;“<”,“>”要用空心圓點表示.20、(1);(1),E(1,1);(3)存在,P點坐標(biāo)可以為(1+,5)或(3,5).【解題分析】

(1)設(shè)B(x1,5),由已知條件得,進(jìn)而得到B(2,5).又由對稱軸求得b.最終得到拋物線解析式.(1)先求出直線BC的解析式,再設(shè)E(m,=﹣m+1.),F(xiàn)(m,﹣m1+m+1.)求得FE的值,得到S△CBF﹣m1+2m.又由S四邊形CDBF=S△CBF+S△CDB,得S四邊形CDBF最大值,最終得到E點坐標(biāo).(3)設(shè)N點為(n,﹣n1+n+1),1<n<2.過N作NO⊥x軸于點P,得PG=n﹣1.又由直角三角形的判定,得△ABC為直角三角形,由△ABC∽△GNP,得n=1+或n=1﹣(舍去),求得P點坐標(biāo).又由△ABC∽△GNP,且時,得n=3或n=﹣2(舍去).求得P點坐標(biāo).【題目詳解】解:(1)設(shè)B(x1,5).由A(﹣1,5),對稱軸直線x=.∴解得,x1=2.∴B(2,5).又∵∴b=.∴拋物線解析式為y=,(1)如圖1,∵B(2,5),C(5,1).∴直線BC的解析式為y=﹣x+1.由E在直線BC上,則設(shè)E(m,=﹣m+1.),F(xiàn)(m,﹣m1+m+1.)∴FE=﹣m1+m+1﹣(﹣n+1)=﹣m1+1m.由S△CBF=EF?OB,∴S△CBF=(﹣m1+1m)×2=﹣m1+2m.又∵S△CDB=BD?OC=×(2﹣)×1=∴S四邊形CDBF=S△CBF+S△CDB═﹣m1+2m+.化為頂點式得,S四邊形CDBF=﹣(m﹣1)1+.當(dāng)m=1時,S四邊形CDBF最大,為.此時,E點坐標(biāo)為(1,1).(3)存在.如圖1,由線段FG繞點G順時針旋轉(zhuǎn)一個角α(5°<α<95°),設(shè)N(n,﹣n1+n+1),1<n<2.過N作NO⊥x軸于點P(n,5).∴NP=﹣n1+n+1,PG=n﹣1.又∵在Rt△AOC中,AC1=OA1+OC1=1+2=5,在Rt△BOC中,BC1=OB1+OC1=16+2=15.AB1=51=15.∴AC1+BC1=AB1.∴△ABC為直角三角形.當(dāng)△ABC∽△GNP,且時,即,整理得,n1﹣1n﹣6=5.解得,n=1+或n=1﹣(舍去).此時P點坐標(biāo)為(1+,5).當(dāng)△ABC∽△GNP,且時,即,整理得,n1+n﹣11=5.解得,n=3或n=﹣2(舍去).此時P點坐標(biāo)為(3,5).綜上所述,滿足題意的P點坐標(biāo)可以為,(1+,5),(3,5).【題目點撥】本題考查求拋物線,三角形的性質(zhì)和面積的求法,直角三角形的判定,以及三角形相似的性質(zhì),屬于較難題.21、(1)見解析;(2)2.【解題分析】

(1)根據(jù)相似三角形的判定,易證△ABF∽△BEC,從而可以證明∠BAF=∠CBE成立;(2)根據(jù)銳角三角函數(shù)和三角形的相似可以求得AF的長【題目詳解】(1)證明:∵四邊形ABCD是平行四邊形,∴AB∥CD,AD∥BC,AD=BC,∴∠D+∠C=180°,∠ABF=∠BEC,∵∠AFB+∠AFE=180°,∠AFE=∠D,∴∠C=∠AFB,∴△ABF∽△BEC,∴∠BAF=∠CBE;(2)∵AE⊥DC,AD=5,AB=8,sin∠D=,∴AE=4,DE=3∴EC=5∵AE⊥DC,AB∥DC,∴∠AED=∠BAE=90°,在Rt△ABE中,根據(jù)勾股定理得:BE=∵BC=AD=5,由(1)得:△ABF∽△BEC,∴==即==解得:AF=BF=2【題目點撥】本題考查相似三角形的判定與性質(zhì)、平行四邊形的性質(zhì)、解直角三角形,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答22、(1)拋物線的解析式為:y=1(2)①S與運動時間t之間的函數(shù)關(guān)系式是S=5t2﹣8t+4,t的取值范圍是0≤t≤1;②存在.R點的坐標(biāo)是(3,﹣32(3)M的坐標(biāo)為(1,﹣83【解題分析】試題分析:(1)設(shè)拋物線的解析式是y=ax2+bx+c,求出A、B、D的坐標(biāo)代入即可;(2)①由勾股定理即可求出;②假設(shè)存在點R,可構(gòu)成以P、B、R、Q為頂點的平行四邊形,求出P、Q的坐標(biāo),再分為兩種種情況:A、B、C即可根據(jù)平行四邊形的性質(zhì)求出R的坐標(biāo);(3)A關(guān)于拋物線的對稱軸的對稱點為B,過B、D的直線與拋物線的對稱軸的交點為所求M,求出直線BD的解析式,把拋物線的對稱軸x=1代入即可求出M的坐標(biāo).試題解析:(1)設(shè)拋物線的解析式是y=ax2+bx+c,∵正方形的邊長2,∴B的坐標(biāo)(2,﹣2)A點的坐標(biāo)是(0,﹣2),把A(0,﹣2),B(2,﹣2),D(4,﹣23)代入得:c=-2解得a=16,b=﹣1∴拋物線的解析式為:y=1答:拋物線的解析式為:y=1(2)①由圖象知:PB=2﹣2t,BQ=t,∴S=PQ2=PB2+BQ2,=(2﹣2t)2+t2,即S=5t2﹣8t+4(0≤t≤1).答:S與運動時間t之間的函數(shù)關(guān)系式是S=5t2﹣8t+4,t的取值范圍是0≤t≤1;②假設(shè)存在點R,可構(gòu)成以P、B、R、Q為頂點的平行四邊形.∵S=5t2﹣8t+4(0≤t≤1),∴當(dāng)S=54時,5t2﹣8t+4=54,得20t解得t=12,t=11此時點P的坐標(biāo)為(1,﹣2),Q點的坐標(biāo)為(2,﹣32若R點存在,分情況討論:(i)假設(shè)R在BQ的右邊,如圖所示,這時QR=PB,RQ∥PB,則R的橫坐標(biāo)為3,R的縱坐標(biāo)為﹣32即R(3,﹣32代入y=1∴這時存在R

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論