版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年四川省仁壽縣二中、華興中學(xué)數(shù)學(xué)高一上期末統(tǒng)考試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.已知三條不重合的直線,,,兩個不重合的平面,,有下列四個命題:①若,,則;②若,,且,則;③若,,,,則;④若,,,,則.其中正確命題的個數(shù)為A. B.C. D.2.函數(shù)的圖象如圖所示,則函數(shù)的零點為()A. B.C. D.3.已知向量,,且,那么()A.2 B.-2C.6 D.-64.空間直角坐標(biāo)系中,點關(guān)于平面的對稱點為點,關(guān)于原點的對稱點為點,則間的距離為A. B.C. D.5.已知角的終邊經(jīng)過點,則的值為A. B.C. D.6.已知向量和的夾角為,且,則A. B.C. D.7.公元前6世紀(jì),古希臘的畢達(dá)哥拉斯學(xué)派通過研究正五邊形和正十邊形的作圖,發(fā)現(xiàn)了黃金分割值約為0.618,這一數(shù)值也可以表示為.若.則()A. B.C.2 D.8.若函數(shù)的圖像向左平移個單位得到的圖像,則A. B.C. D.9.函數(shù)的定義域為A B.C. D.10.下列說法不正確的是()A.方向相同大小相等的兩個向量相等B.單位向量模長為一個單位C.共線向量又叫平行向量D.若則ABCD四點共線11.函數(shù)y=|x2-1|與y=a的圖象有4個交點,則實數(shù)a的取值范圍是A.(0,) B.(-1,1)C.(0,1) D.(1,)12.若冪函數(shù)y=f(x)經(jīng)過點(3,),則此函數(shù)在定義域上是A.偶函數(shù) B.奇函數(shù)C.增函數(shù) D.減函數(shù)二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.已知在上是增函數(shù),則的取值范圍是___________.14.已知,若,使得,若的最大值為M,最小值為N,則___________.15.若,則的終邊所在的象限為______16.已知函數(shù),其所有的零點依次記為,則_________.三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.已知向量,,設(shè)函數(shù)Ⅰ求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;Ⅱ求函數(shù)在區(qū)間的最大值和最小值18.已知,(1)求,的值;(2)求的值19.如圖,是平面四邊形的對角線,,,且.現(xiàn)在沿所在的直線把折起來,使平面平面,如圖.(1)求證:平面;(2)求點到平面的距離.20.已知角終邊經(jīng)過點,求21.已知集合,或,.(1)求,;(2)求.22.已知函數(shù).(1)若函數(shù)在是增函數(shù),求的取值范圍;(2)若對于任意的,恒成立,求的取值范圍.
參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、B【解析】當(dāng)在平面內(nèi)時,,①錯誤;兩個平面的垂線平行,且兩個平面不重合,則兩個平面平行,②正確;③中,當(dāng)時,平面可能相交,③錯誤;④正確.故選B.考點:空間線面位置關(guān)系.2、B【解析】根據(jù)函數(shù)的圖象和零點的定義,即可得出答案.【詳解】解:根據(jù)函數(shù)的圖象,可知與軸的交點為,所以函數(shù)的零點為2.故選:B.3、B【解析】根據(jù)向量共線的坐標(biāo)表示,列出關(guān)于m的方程,解得答案.【詳解】由向量,,且,可得:,故選:B4、C【解析】分析:求出點關(guān)于平面的對稱點,關(guān)于原點的對稱點,直接利用空間中兩點間的距離公式,即可求解結(jié)果.詳解:在空間直角坐標(biāo)系中,點關(guān)于平面的對稱點,關(guān)于原點的對稱點,則間的距離為,故選C.點睛:本題主要考查了空間直角坐標(biāo)系中點的表示,以及空間中兩點間的距離的計算,著重考查了推理與計算能力,屬于基礎(chǔ)題.5、C【解析】因為點在單位圓上,又在角的終邊上,所以;則;故選C.6、D【解析】根據(jù)數(shù)量積的運算律直接展開,將向量的夾角與模代入數(shù)據(jù),得到結(jié)果【詳解】=8+3-18=8+3×2×3×-18=-1,故選D.【點睛】本題考查數(shù)量積的運算,屬于基礎(chǔ)題7、A【解析】由已知、同角三角函數(shù)關(guān)系、輔助角公式及誘導(dǎo)公式可得解.【詳解】由得,∴.故選:A.8、A【解析】函數(shù)的圖象向左平移個單位,得到的圖象對應(yīng)的函數(shù)為:本題選擇A選項.9、C【解析】要使得有意義,要滿足真數(shù)大于0,且分母不能為0,即可求出定義域.【詳解】要使得有意義,則要滿足,解得.答案為C.【點睛】常見的定義域求解要滿足:(1)分式:分母0;(2)偶次根式:被開方數(shù)0;(3)0次冪:底數(shù)0;(4)對數(shù)式:真數(shù),底數(shù)且;(5):;10、D【解析】利用平面向量相等概念判斷,利用共線向量和單位向量的定義判斷.【詳解】根據(jù)向量相等的概念判斷正確;根據(jù)單位向量的概念判斷正確;根據(jù)共線向量的概念判斷正確;平行四邊形中,因此四點不共線,故錯誤.故選:.【點睛】本題考查了命題真假性的判斷及平面向量的基礎(chǔ)知識,注意反例的積累,屬于基礎(chǔ)題.11、C【解析】作函數(shù)圖象,根據(jù)函數(shù)圖像確定實數(shù)a的取值范圍.【詳解】作函數(shù)圖象,根據(jù)函數(shù)圖像得實數(shù)a的取值范圍為(0,1),選C.【點睛】利用函數(shù)圖象可以解決很多與函數(shù)有關(guān)的問題,如利用函數(shù)的圖象解決函數(shù)性質(zhì)問題,函數(shù)的零點、方程根的問題,有關(guān)不等式的問題等.解決上述問題的關(guān)鍵是根據(jù)題意畫出相應(yīng)函數(shù)的圖象,利用數(shù)形結(jié)合的思想求解.12、D【解析】冪函數(shù)是經(jīng)過點,設(shè)冪函數(shù)為,將點代入得到此時函數(shù)定義域上是減函數(shù),故選D二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、【解析】將整理分段函數(shù)形式,由在上單調(diào)遞增,進而可得,即可求解【詳解】由題,,顯然,在時,單調(diào)遞增,因為在上單調(diào)遞增,所以,即,故答案為:【點睛】本題考查已知函數(shù)單調(diào)性求參數(shù),考查分段函數(shù),考查一次函數(shù)的單調(diào)性的應(yīng)用14、【解析】作出在上的圖象,為的圖象與直線y=m交點的橫坐標(biāo),利用數(shù)形結(jié)合思想即可求得M和N﹒【詳解】作出在上的圖象(如圖所示)因為,,所以當(dāng)?shù)膱D象與直線相交時,由函數(shù)圖象可得,設(shè)前三個交點橫坐標(biāo)依次為、、,此時和最小為N,由,得,則,,,;當(dāng)?shù)膱D象與直線相交時,設(shè)三個交點橫坐標(biāo)依次為、、,此時和最大為,由,得,則,,;所以.故答案為:.15、第一或第三象限【解析】將表達(dá)式化簡,,二者相等,只需滿足與同號即可,從而判斷角所在的象限.【詳解】由,,若,只需滿足,即與同號,因此的終邊在第一或第三象限.故答案為:第一或第三象限.16、16【解析】由零點定義,可得關(guān)于的方程.去絕對值分類討論化簡.將對數(shù)式化為指數(shù)式,再去絕對值可得四個方程.結(jié)合韋達(dá)定理,求得各自方程兩根的乘積,即可得所有根的積.【詳解】函數(shù)的零點即所以去絕對值可得或即或去絕對值可得或,或當(dāng),兩邊同時乘以,化簡可得,設(shè)方程的根為.由韋達(dá)定理可得當(dāng),兩邊同時乘以,化簡可得,設(shè)方程的根為.由韋達(dá)定理可得當(dāng),兩邊同時乘以,化簡可得,設(shè)方程的根為.由韋達(dá)定理可得當(dāng),兩邊同時乘以,化簡可得,設(shè)方程的根為.由韋達(dá)定理可得綜上可得所有零點的乘積為故答案為:【點睛】本題考查了函數(shù)零點定義,含絕對值方程的解法,分類討論思想的應(yīng)用,由韋達(dá)定理研究方程根的關(guān)系,屬于難題.三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、(Ⅰ)最小正周期是,增區(qū)間為,;(Ⅱ)最大值為5,最小值為4【解析】Ⅰ根據(jù)向量數(shù)量積,利用二倍角的正弦公式、二倍角的余弦公式以及兩角和與差的正弦公式將函數(shù)化為,利用正弦函數(shù)的周期公式可得函數(shù)的周期,利用正弦函數(shù)的單調(diào)性解不等式,可得到函數(shù)的遞增區(qū)間;Ⅱ根據(jù)的范圍得的范圍,結(jié)合正弦函數(shù)的單調(diào)性可得的最大最小值【詳解】Ⅰ,,,,由,得,所以的增區(qū)間為,;Ⅱ,,可得,的最大值為5,最小值為4【點睛】以三角形和平面向量為載體,三角恒等變換為手段,三角函數(shù)的圖象與性質(zhì)為工具,對三角函數(shù)及解三角形進行考查是近幾年高考考查的一類熱點問題,一般難度不大,但綜合性較強.解答這類問題,兩角和與差的正余弦公式、誘導(dǎo)公式以及二倍角公式,一定要熟練掌握并靈活應(yīng)用,特別是二倍角公式的各種變化形式要熟記于心.18、(1),(2)【解析】(1)首先利用誘導(dǎo)公式得到,再根據(jù)同角三角函數(shù)的基本關(guān)系計算可得;(2)利用誘導(dǎo)公式化簡,再將弦化切,最后代入求值即可;【小問1詳解】解:因為,,所以,又解得或,因為,所以【小問2詳解】解:19、(1)見解析;(2).【解析】(1)由平面平面,平面平面,且平面,且,根據(jù)線面垂直的判定定理可得平面;(2)取的中點,連.由,可得,又平面,所以,又,所以平面,因此就是點到平面的距離,在中,,,所以.試題解析:(1)證明:因為平面平面平面平面,平面,且,所以平面(2)取的中點,連.因為,所以,又平面,所以,又,所以平面,所以就是點到平面的距離,在中,,,所以.所以是點到平面的距離是.【方法點晴】本題主要考查、線面垂直的判定定理及面面垂直的性質(zhì)定理,屬于中檔題.解答空間幾何體中垂直關(guān)系時,一般要根據(jù)已知條件把空間中的線線、線面、面面之間垂直關(guān)系進行轉(zhuǎn)化,轉(zhuǎn)化時要正確運用有關(guān)的定理,找出足夠的條件進行推理;證明直線和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推論;(3)利用面面平行的性質(zhì);(4)利用面面垂直的性質(zhì),當(dāng)兩個平面垂直時,在一個平面內(nèi)垂直于交線的直線垂直于另一個平面.20、7【解析】要求值的三角函數(shù)式可化簡為,再利用任意角三角函數(shù)的定義求出,代入即得所求【詳解】因為角終邊經(jīng)過點,則又21、(1)或,(2)【解析】(1)根據(jù)并集和交集定義即可求出;(2)根據(jù)補集交集定義可求.【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 法律法規(guī)經(jīng)濟與施工-二級注冊建筑師《法律、法規(guī)、經(jīng)濟與施工》押題密卷3
- 長春版語文三年級上冊教案
- 老年人用藥提醒助手
- 海洋生物醫(yī)藥產(chǎn)業(yè)布局
- 2024屆遼寧省本溪某中學(xué)高考化學(xué)押題試卷含解析
- 2024高中物理第三章傳感器章末質(zhì)量評估含解析粵教版選修3-2
- 2024高中語文第5單元莊子蚜第2課鵬之徙于南冥訓(xùn)練含解析新人教版選修先秦諸子蚜
- 2024高中語文第五課言之有“理”第3節(jié)有話“好好說”-修改蹭訓(xùn)練含解析新人教版選修語言文字應(yīng)用
- 2024高中語文綜合閱讀訓(xùn)練2含解析新人教版選修先秦諸子蚜
- 2024高考化學(xué)一輪復(fù)習(xí)第9章化學(xué)實驗基礎(chǔ)第29講化學(xué)實驗基礎(chǔ)知識和技能精練含解析
- 廣東深圳市龍崗區(qū)城市建設(shè)投資集團有限公司招聘筆試題庫2024
- 2024版青島市勞動合同
- 中小學(xué)十五五發(fā)展規(guī)劃(2025-2030)
- Unit 7 同步練習(xí)人教版2024七年級英語上冊
- 電廠員工三級安全培訓(xùn)(完美版)課件
- 2024年中考復(fù)習(xí)-數(shù)學(xué)(廣州專用)(解析版)
- 第三十六屆全國電力行業(yè)風(fēng)力發(fā)電運行檢修職業(yè)技能競賽基礎(chǔ)理論題庫附有答案
- 2024年紀(jì)檢監(jiān)察綜合業(yè)務(wù)知識題庫含答案(研優(yōu)卷)
- 科室醫(yī)療質(zhì)量與安全管理小組工作制度
- 中華民族共同體概論課件第五講大一統(tǒng)與中華民族共同體初步形成(秦漢時期)
- 初二生地會考試卷及答案-文檔
評論
0/150
提交評論