版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆河南省洛陽市汝陽縣實驗初中中考數(shù)學押題卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在平行四邊形ABCD中,AC與BD相交于O,且AO=BD=4,AD=3,則△BOC的周長為()A.9 B.10 C.12 D.142.下列方程中是一元二次方程的是()A. B.C. D.3.如圖,在直角坐標系中,直線與坐標軸交于A、B兩點,與雙曲線()交于點C,過點C作CD⊥x軸,垂足為D,且OA=AD,則以下結論:①;②當0<x<3時,;③如圖,當x=3時,EF=;④當x>0時,隨x的增大而增大,隨x的增大而減小.其中正確結論的個數(shù)是()A.1 B.2 C.3 D.44.如圖,在以O為原點的直角坐標系中,矩形OABC的兩邊OC、OA分別在x軸、y軸的正半軸上,反比例函數(shù)(x>0)與AB相交于點D,與BC相交于點E,若BD=3AD,且△ODE的面積是9,則k的值是()A. B. C. D.125.現(xiàn)有兩根木棒,它們的長分別是20cm和30cm,若不改變木棒的長短,要釘成一個三角形木架,則應在下列四根木棒中選?。ǎ〢.10cm的木棒 B.40cm的木棒 C.50cm的木棒 D.60cm的木棒6.如圖,在五邊形ABCDE中,∠A+∠B+∠E=300°,DP,CP分別平分∠EDC、∠BCD,則∠P的度數(shù)是()A.60° B.65° C.55° D.50°7.如圖,兩張完全相同的正六邊形紙片邊長為重合在一起,下面一張保持不動,將上面一張紙片沿水平方向向左平移a個單位長度,則空白部分與陰影部分面積之比是A.5:2 B.3:2 C.3:1 D.2:18.如圖,是的直徑,弦,垂足為點,點是上的任意一點,延長交的延長線于點,連接.若,則等于()A. B. C. D.9.的算術平方根為()A. B. C. D.10.如圖,在中,,以邊的中點為圓心,作半圓與相切,點分別是邊和半圓上的動點,連接,則長的最大值與最小值的和是()A. B. C. D.11.估計﹣2的值應該在()A.﹣1﹣0之間 B.0﹣1之間 C.1﹣2之間 D.2﹣3之間12.九章算術是中國古代數(shù)學專著,九章算術方程篇中有這樣一道題:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,問幾何步及之?”這是一道行程問題,意思是說:走路快的人走100步的時候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追趕,問走路快的人要走多少步才能追上走路慢的人?如果走路慢的人先走100步,設走路快的人要走
x
步才能追上走路慢的人,那么,下面所列方程正確的是A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.分式與的最簡公分母是_____.14.計算=________.15.若反比例函數(shù)y=﹣的圖象經(jīng)過點A(m,3),則m的值是_____.16.因式分解:x2﹣3x+(x﹣3)=_____.17.函數(shù)的自變量的取值范圍是.18.一個不透明的袋子中裝有5個球,其中3個紅球、2個黑球,這些球除顏色外無其它差別,現(xiàn)從袋子中隨機摸出一個球,則它是黑球的概率是_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在自動向西的公路l上有一檢查站A,在觀測點B的南偏西53°方向,檢查站一工作人員家住在與觀測點B的距離為7km,位于點B南偏西76°方向的點C處,求工作人員家到檢查站的距離AC.(參考數(shù)據(jù):sin76°≈,cos76°≈,tan76°≈4,sin53°≈,tan53°≈)20.(6分)如圖,平面直角坐標系中,直線與x軸,y軸分別交于A,B兩點,與反比例函數(shù)的圖象交于點.求反比例函數(shù)的表達式;若點C在反比例函數(shù)的圖象上,點D在x軸上,當四邊形ABCD是平行四邊形時,求點D的坐標.21.(6分)已知:如圖,在正方形ABCD中,點E在邊CD上,AQ⊥BE于點Q,DP⊥AQ于點P.求證:AP=BQ;在不添加任何輔助線的情況下,請直接寫出圖中四對線段,使每對中較長線段與較短線段長度的差等于PQ的長.22.(8分)如圖,AB是⊙O的直徑,D、D為⊙O上兩點,CF⊥AB于點F,CE⊥AD交AD的延長線于點E,且CE=CF.(1)求證:CE是⊙O的切線;(2)連接CD、CB,若AD=CD=a,求四邊形ABCD面積.23.(8分)如圖,在平面直角坐標系中,一次函數(shù)的圖象與軸相交于點,與反比例函數(shù)的圖象相交于點,.(1)求一次函數(shù)和反比例函數(shù)的解析式;(2)根據(jù)圖象,直接寫出時,的取值范圍;(3)在軸上是否存在點,使為等腰三角形,如果存在,請求點的坐標,若不存在,請說明理由.24.(10分)如圖,在△ABC中,AB>AC,點D在邊AC上.(1)作∠ADE,使∠ADE=∠ACB,DE交AB于點E;(尺規(guī)作圖,保留作圖痕跡,不寫作法)(2)若BC=5,點D是AC的中點,求DE的長.25.(10分)當=,b=2時,求代數(shù)式的值.26.(12分)如圖,AB是⊙O的直徑,BE是弦,點D是弦BE上一點,連接OD并延長交⊙O于點C,連接BC,過點D作FD⊥OC交⊙O的切線EF于點F.(1)求證:∠CBE=∠F;(2)若⊙O的半徑是2,點D是OC中點,∠CBE=15°,求線段EF的長.27.(12分)如圖,以AD為直徑的⊙O交AB于C點,BD的延長線交⊙O于E點,連CE交AD于F點,若AC=BC.(1)求證:;(2)若,求tan∠CED的值.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解題分析】
利用平行四邊形的性質(zhì)即可解決問題.【題目詳解】∵四邊形ABCD是平行四邊形,∴AD=BC=3,OD=OB==2,OA=OC=4,∴△OBC的周長=3+2+4=9,故選:A.【題目點撥】題考查了平行四邊形的性質(zhì)和三角形周長的計算,平行四邊形的性質(zhì)有:平行四邊形對邊平行且相等;平行四邊形對角相等,鄰角互補;平行四邊形對角線互相平分.2、C【解題分析】
找到只含有一個未知數(shù),未知數(shù)的最高次數(shù)是2,二次項系數(shù)不為0的整式方程的選項即可.【題目詳解】解:A、當a=0時,不是一元二次方程,故本選項錯誤;B、是分式方程,故本選項錯誤;C、化簡得:是一元二次方程,故本選項正確;D、是二元二次方程,故本選項錯誤;故選:C.【題目點撥】本題主要考查一元二次方程,熟練掌握一元二次方程的定義是解題的關鍵.3、C【解題分析】試題分析:對于直線,令x=0,得到y(tǒng)=2;令y=0,得到x=1,∴A(1,0),B(0,﹣2),即OA=1,OB=2,在△OBA和△CDA中,∵∠AOB=∠ADC=90°,∠OAB=∠DAC,OA=AD,∴△OBA≌△CDA(AAS),∴CD=OB=2,OA=AD=1,∴(同底等高三角形面積相等),選項①正確;∴C(2,2),把C坐標代入反比例解析式得:k=4,即,由函數(shù)圖象得:當0<x<2時,,選項②錯誤;當x=3時,,,即EF==,選項③正確;當x>0時,隨x的增大而增大,隨x的增大而減小,選項④正確,故選C.考點:反比例函數(shù)與一次函數(shù)的交點問題.4、C【解題分析】
設B點的坐標為(a,b),由BD=3AD,得D(,b),根據(jù)反比例函數(shù)定義求出關鍵點坐標,根據(jù)S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE=9求出k.【題目詳解】∵四邊形OCBA是矩形,∴AB=OC,OA=BC,設B點的坐標為(a,b),∵BD=3AD,∴D(,b),∵點D,E在反比例函數(shù)的圖象上,∴=k,∴E(a,
),∵S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE=ab-?-?-??(b-)=9,∴k=,故選:C【題目點撥】考核知識點:反比例函數(shù)系數(shù)k的幾何意義.結合圖形,分析圖形面積關系是關鍵.5、B【解題分析】
設應選取的木棒長為x,再根據(jù)三角形的三邊關系求出x的取值范圍.進而可得出結論.【題目詳解】設應選取的木棒長為x,則30cm-20cm<x<30cm+20cm,即10cm<x<50cm.故選B.【題目點撥】本題考查的是三角形的三邊關系,熟知三角形任意兩邊之和大于第三邊,任意兩邊差小于第三邊是解答此題的關鍵.6、A【解題分析】試題分析:根據(jù)五邊形的內(nèi)角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度數(shù),再根據(jù)角平分線的定義可得∠PDC與∠PCD的角度和,進一步求得∠P的度數(shù).解:∵五邊形的內(nèi)角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD、∠CDE的平分線在五邊形內(nèi)相交于點O,∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,∴∠P=180°﹣120°=60°.故選A.考點:多邊形內(nèi)角與外角;三角形內(nèi)角和定理.7、C【解題分析】
求出正六邊形和陰影部分的面積即可解決問題;【題目詳解】解:正六邊形的面積,
陰影部分的面積,
空白部分與陰影部分面積之比是::1,
故選C.【題目點撥】本題考查正多邊形的性質(zhì)、平移變換等知識,解題的關鍵是理解題意,靈活運用所學知識解決問題,屬于中考??碱}型.8、B【解題分析】
連接BD,利用直徑得出∠ABD=65°,進而利用圓周角定理解答即可.【題目詳解】連接BD,∵AB是直徑,∠BAD=25°,∴∠ABD=90°-25°=65°,∴∠AGD=∠ABD=65°,故選B.【題目點撥】此題考查圓周角定理,關鍵是利用直徑得出∠ABD=65°.9、B【解題分析】分析:先求得的值,再繼續(xù)求所求數(shù)的算術平方根即可.詳解:∵=2,而2的算術平方根是,∴的算術平方根是,故選B.點睛:此題主要考查了算術平方根的定義,解題時應先明確是求哪個數(shù)的算術平方根,否則容易出現(xiàn)選A的錯誤.10、C【解題分析】
如圖,設⊙O與AC相切于點E,連接OE,作OP1⊥BC垂足為P1交⊙O于Q1,此時垂線段OP1最短,P1Q1最小值為OP1-OQ1,求出OP1,如圖當Q2在AB邊上時,P2與B重合時,P2Q2最大值=5+3=8,由此不難解決問題.【題目詳解】解:如圖,設⊙O與AC相切于點E,連接OE,作OP1⊥BC垂足為P1交⊙O于Q1,此時垂線段OP1最短,P1Q1最小值為OP1-OQ1,∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=10°,∵∠OP1B=10°,∴OP1∥AC∵AO=OB,\∴P1C=P1B,∴OP1=AC=4,∴P1Q1最小值為OP1-OQ1=1,如圖,當Q2在AB邊上時,P2與B重合時,P2Q2經(jīng)過圓心,經(jīng)過圓心的弦最長,P2Q2最大值=5+3=8,∴PQ長的最大值與最小值的和是1.故選:C.【題目點撥】本題考查切線的性質(zhì)、三角形中位線定理等知識,解題的關鍵是正確找到點PQ取得最大值、最小值時的位置,屬于中考??碱}型.11、A【解題分析】
直接利用已知無理數(shù)得出的取值范圍,進而得出答案.【題目詳解】解:∵1<<2,∴1-2<﹣2<2-2,∴-1<﹣2<0即-2在-1和0之間.故選A.【題目點撥】此題主要考查了估算無理數(shù)大小,正確得出的取值范圍是解題關鍵.12、B【解題分析】解:設走路快的人要走x步才能追上走路慢的人,根據(jù)題意得:.故選B.點睛:本題考查了一元一次方程的應用.找準等量關系,列方程是關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、3a2b【解題分析】
利用取各分母系數(shù)的最小公倍數(shù)與字母因式的最高次冪的積作公分母求解即可.【題目詳解】分式與的最簡公分母是3a2b.故答案為3a2b.【題目點撥】本題考查最簡公分母,解題的關鍵是掌握求最簡公分母的方法.14、1【解題分析】試題解析:3-2=1.15、﹣2【解題分析】∵反比例函數(shù)的圖象過點A(m,3),∴,解得.16、(x-3)(x+1);【解題分析】根據(jù)因式分解的概念和步驟,可先把原式化簡,然后用十字相乘分解,即原式=x2﹣3x+x﹣3=x2﹣2x﹣3=(x﹣3)(x+1);或先把前兩項提公因式,然后再把x-3看做整體提公因式:原式=x(x﹣3)+(x﹣3)=(x﹣3)(x+1).故答案為(x﹣3)(x+1).點睛:此題主要考查了因式分解,關鍵是明確因式分解是把一個多項式化為幾個因式積的形式.再利用因式分解的一般步驟:一提(公因式)、二套(平方差公式,完全平方公式)、三檢查(徹底分解),進行分解因式即可.17、x≠1【解題分析】該題考查分式方程的有關概念根據(jù)分式的分母不為0可得X-1≠0,即x≠1那么函數(shù)y=的自變量的取值范圍是x≠118、【解題分析】
用黑球的個數(shù)除以總球的個數(shù)即可得出黑球的概率.【題目詳解】解:∵袋子中共有5個球,有2個黑球,∴從袋子中隨機摸出一個球,它是黑球的概率為;故答案為.【題目點撥】本題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)=.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、工作人員家到檢查站的距離AC的長約為km.【解題分析】分析:過點B作BH⊥l交l于點H,解Rt△BCH,得出CH=BC?sin∠CBH=,BH=BC?cos∠CBH=.再解Rt△BAH中,求出AH=BH?tan∠ABH=,那么根據(jù)AC=CH-AH計算即可.詳解:如圖,過點B作BH⊥l交l于點H,∵在Rt△BCH中,∠BHC=90°,∠CBH=76°,BC=7km,∴CH=BC?sin∠CBH≈,BH=BC?cos∠CBH≈.∵在Rt△BAH中,∠BHA=90°,∠ABH=53°,BH=,∴AH=BH?tan∠ABH≈,∴AC=CH﹣AH=(km).答:工作人員家到檢查站的距離AC的長約為km.點睛:本題考查的是解直角三角形的應用-方向角問題,根據(jù)題意作出輔助線,構造出直角三角形是解答此題的關鍵.20、(1)y=(1)(1,0)【解題分析】
(1)將點M的坐標代入一次函數(shù)解析式求得a的值;然后將點M的坐標代入反比例函數(shù)解析式,求得k的值即可;(1)根據(jù)平行四邊形的性質(zhì)得到BC∥AD且BD=AD,結合圖形與坐標的性質(zhì)求得點D的坐標.【題目詳解】解:(1)∵點M(a,4)在直線y=1x+1上,∴4=1a+1,解得a=1,∴M(1,4),將其代入y=得到:k=xy=1×4=4,∴反比例函數(shù)y=(x>0)的表達式為y=;(1)∵平面直角坐標系中,直線y=1x+1與x軸,y軸分別交于A,B兩點,∴當x=0時,y=1.當y=0時,x=﹣1,∴B(0,1),A(﹣1,0).∵BC∥AD,∴點C的縱坐標也等于1,且點C在反比例函數(shù)圖象上,將y=1代入y=,得1=,解得x=1,∴C(1,1).∵四邊形ABCD是平行四邊形,∴BC∥AD且BD=AD,由B(0,1),C(1,1)兩點的坐標知,BC∥AD.又BC=1,∴AD=1,∵A(﹣1,0),點D在點A的右側,∴點D的坐標是(1,0).【題目點撥】考查了反比例函數(shù)與一次函數(shù)交點問題.熟練掌握平行四邊形的性質(zhì)和函數(shù)圖象上點的坐標特征是解決問題的關鍵,難度適中.21、(1)證明見解析;(2)①AQ﹣AP=PQ,②AQ﹣BQ=PQ,③DP﹣AP=PQ,④DP﹣BQ=PQ.【解題分析】試題分析:(1)利用AAS證明△AQB≌△DPA,可得AP=BQ;(2)根據(jù)AQ﹣AP=PQ和全等三角形的對應邊相等可寫出4對線段.試題解析:(1)在正方形中ABCD中,AD=BA,∠BAD=90°,∴∠BAQ+∠DAP=90°,∵DP⊥AQ,∴∠ADP+∠DAP=90°,∴∠BAQ=∠ADP,∵AQ⊥BE于點Q,DP⊥AQ于點P,∴∠AQB=∠DPA=90°,∴△AQB≌△DPA(AAS),∴AP=BQ.(2)①AQ﹣AP=PQ,②AQ﹣BQ=PQ,③DP﹣AP=PQ,④DP﹣BQ=PQ.考點:(1)正方形;(2)全等三角形的判定與性質(zhì).22、(1)證明見解析;(2)3【解題分析】
(1)連接OC,AC,可先證明AC平分∠BAE,結合圓的性質(zhì)可證明OC∥AE,可得∠OCB=90°,可證得結論;(2)可先證得四邊形AOCD為平行四邊形,再證明△OCB為等邊三角形,可求得CF、AB,利用梯形的面積公式可求得答案.【題目詳解】(1)證明:連接OC,AC.∵CF⊥AB,CE⊥AD,且CE=CF.∴∠CAE=∠CAB.∵OC=OA,∴∠CAB=∠OCA.∴∠CAE=∠OCA.∴OC∥AE.∴∠OCE+∠AEC=180°,∵∠AEC=90°,∴∠OCE=90°即OC⊥CE,∵OC是⊙O的半徑,點C為半徑外端,∴CE是⊙O的切線.(2)解:∵AD=CD,∴∠DAC=∠DCA=∠CAB,∴DC∥AB,∵∠CAE=∠OCA,∴OC∥AD,∴四邊形AOCD是平行四邊形,∴OC=AD=a,AB=2a,∵∠CAE=∠CAB,∴CD=CB=a,∴CB=OC=OB,∴△OCB是等邊三角形,在Rt△CFB中,CF=CB∴S四邊形ABCD=12(DC+AB)?CF=【題目點撥】本題主要考查切線的判定,掌握切線的兩種判定方法是解題的關鍵,即有切點時連接圓心和切點,然后證明垂直,沒有切點時,過圓心作垂直,證明圓心到直線的距離等于半徑.23、(1);;(2)或;(3)存在,或或或.【解題分析】
(1)利用待定系數(shù)法求出反比例函數(shù)解析式,進而求出點C坐標,最后用再用待定系數(shù)法求出一次函數(shù)解析式;
(2)利用圖象直接得出結論;
(3)分、、三種情況討論,即可得出結論.【題目詳解】(1)一次函數(shù)與反比例函數(shù),相交于點,,∴把代入得:,∴,∴反比例函數(shù)解析式為,把代入得:,∴,∴點C的坐標為,把,代入得:,解得:,∴一次函數(shù)解析式為;(2)根據(jù)函數(shù)圖像可知:當或時,一次函數(shù)的圖象在反比例函數(shù)圖象的上方,∴當或時,;(3)存在或或或時,為等腰三角形,理由如下:過作軸,交軸于,∵直線與軸交于點,∴令得,,∴點A的坐標為,∵點B的坐標為,∴點D的坐標為,∴,①當時,則,,∴點P的坐標為:、;②當時,是等腰三角形,,平分,,∵點D的坐標為,∴點P的坐標為,即;③當時,如圖:設,則,在中,,,,由勾股定理得:,,解得:,,∴點P的坐標為,即,綜上所述,當或或或時,為等腰三角形.【題目點撥】本題是反比例函數(shù)綜合題,主要考查了待定系數(shù)法,利用圖象確定函數(shù)值滿足條件的自變量的范圍,等腰三角形的性質(zhì),勾股定理,解(1)的關鍵是待定系數(shù)法的應用,解(2)的關鍵是利用函數(shù)圖象確定x的范圍,解(3)的關鍵是分類討論.24、(1)作圖見解析;(2)【解題分析】
(1)根據(jù)作一個角等于已知角的步驟解答即可;(2)由作法可得DE∥BC,又因為D是AC的中點,可證DE為△ABC的中位線,從而運用三角形中位線的性質(zhì)求解.【題目詳解】解:(1)如圖,∠ADE為所作;(2)∵∠ADE=∠ACB,∴DE∥BC,∵點D是AC的中點,∴DE為△ABC的中位線,∴DE=BC=.25、,6﹣3.【解題分析】原式==,當a=,b=2時,原式.2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工作獲獎感言(21篇)
- 幸福的演講稿(15篇)
- 悲傷逆流成河觀后感7篇
- 建筑工程實習報告(15篇)
- 智研咨詢發(fā)布:2024年中國園林古建筑行業(yè)市場發(fā)展環(huán)境及前景研究報告
- 現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)園功能建設方案
- 應急預案中的食品與藥品安全管理
- 金融信托行業(yè)顧問工作總結
- 2025版西瓜新品種研發(fā)與應用推廣合同3篇
- 二零二五年度鋼構建筑保溫分包施工協(xié)議2篇
- 月球基地建設與運行管理模式
- 高等數(shù)學(第二版)
- 長期處方管理規(guī)范
- 四合一體系基礎知識培訓課件
- ICD-9-CM-3手術與操作國家臨床版亞目表
- 小學語文教師基本功大賽試卷及答案
- 汽車電氣設備檢測與維修中職全套教學課件
- 《鐵路超限超重貨物運輸規(guī)則》(2016)260
- API682機械密封沖洗方案(中文)課件
- DB35T 1345-2013蘭壽系列金魚養(yǎng)殖技術規(guī)范
- 工行網(wǎng)銀代發(fā)工資操作流程
評論
0/150
提交評論