




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
第一章三角形的證明【單元分析】本章是八年級(jí)上冊第七章《平行線的證明》的繼續(xù),在“平等線的證明”一章中,我們給出了8條基本事實(shí),并從其中的幾條基本事實(shí)出發(fā)證明了有關(guān)平行線的一些結(jié)論。運(yùn)用這些基本事實(shí)和已經(jīng)學(xué)習(xí)過的定理,我們還可以證明有關(guān)三角形的一些結(jié)論。在這之前,學(xué)生已經(jīng)對圖形的性質(zhì)及其相互關(guān)系進(jìn)行了大量的探索,探索的同時(shí)也經(jīng)歷過一些簡單的推理過程,已經(jīng)具備了一定的推理能力,樹立了初步的推理意識(shí),從而為本章進(jìn)一步嚴(yán)格證明三角形有關(guān)定理打下了基礎(chǔ)?!締卧繕?biāo)】1.知識(shí)與技能
(1)等腰三角形的性質(zhì)和判定定理;
(2)直角三角形的性質(zhì)定理和判定定理;
2.過程與方法
(1)會(huì)運(yùn)用等腰三角形的性質(zhì)和判定定理解決相關(guān)問題;
(2)直角三角形的性質(zhì)定理和判定定理解決簡單的實(shí)際問題;
3.情感態(tài)度與價(jià)值觀
(1)經(jīng)歷由情景引出問題,探索掌握有關(guān)數(shù)學(xué)知識(shí),再運(yùn)用于實(shí)踐的過程,培養(yǎng)學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識(shí)與能力;
(2)感受數(shù)學(xué)文化的價(jià)值和中國傳統(tǒng)數(shù)學(xué)的成就,激發(fā)學(xué)生熱愛祖國與熱愛祖國悠久文化的思想感情?!締卧攸c(diǎn)】在證明過程中,進(jìn)一步感受證明過程,掌握推理證明的基本要求,明確條件和結(jié)論,能夠借助數(shù)學(xué)符號(hào)語言利用綜合法證明等腰三角形的性質(zhì)定理和判定定理。【單元難點(diǎn)】明確推理證明的基本要求如明確條件和結(jié)論,能否用數(shù)學(xué)語言正確表達(dá)等?!窘虒W(xué)思路】1.對于已有命題的證明,教學(xué)過程中要注意引導(dǎo)學(xué)生回憶過去的探索、說理過程,從中獲取嚴(yán)格證明的思路;對于新增命題,教學(xué)過程中要重視學(xué)生的探索、證明過程,關(guān)注該命題與其他已有命題之間的關(guān)系;對于整章的命題,注意關(guān)注將這些命題納入一個(gè)命題系統(tǒng),關(guān)注命題之間的關(guān)系,從而形成對相關(guān)圖形整體的認(rèn)識(shí)。2.對于證明的方法,除了注重啟發(fā)和回憶,還應(yīng)注意關(guān)注證明方法的多樣性,力圖通過學(xué)生的自主探索,獲得多樣的證明方法,并在比較中選擇適當(dāng)?shù)姆椒ā?.證明過程中注意揭示蘊(yùn)含其中的數(shù)學(xué)思想方法,如轉(zhuǎn)化、歸納、類比等。4.作為初中階段幾何證明的最后階段,教學(xué)中應(yīng)要求學(xué)生掌握綜合法和分析法證明命題的基本要求,掌握規(guī)范的證明表述過程,達(dá)成課程標(biāo)準(zhǔn)對證明表述的要求?!締卧n時(shí)安排】課題課時(shí)1.1等腰三角形4課時(shí)1.2直角三角形2課時(shí)1.3線段的垂直平分線2課時(shí)1.4角平分線2課時(shí)回顧與思考2課時(shí)1.1等腰三角形【教學(xué)目標(biāo)】
1.知識(shí)與技能
理解作為證明基礎(chǔ)的幾條公理的內(nèi)容,應(yīng)用這些公理證明等腰三角形的性質(zhì)定理。
2.過程與方法
經(jīng)歷“探索-發(fā)現(xiàn)-猜想-證明”的過程,讓學(xué)生進(jìn)一步體會(huì)證明是探索活動(dòng)的自然延續(xù)和必要發(fā)展,發(fā)展學(xué)生的初步的演繹邏輯推理的能力。
3.情感態(tài)度與價(jià)值觀
啟發(fā)引導(dǎo)學(xué)生體會(huì)探索結(jié)論和證明結(jié)論,及合情推理與演繹的相互依賴和相互補(bǔ)充的辯證關(guān)系?!窘虒W(xué)重點(diǎn)】經(jīng)歷“探索——發(fā)現(xiàn)一一猜想——證明”的過程?!窘虒W(xué)難點(diǎn)】用綜合法證明有關(guān)三角形和等腰三角形的一些結(jié)論?!窘虒W(xué)方法】講授法【課時(shí)安排】4課時(shí)第一課時(shí)【教學(xué)目標(biāo)】1.知識(shí)與技能
能夠借助數(shù)學(xué)符號(hào)語言利用綜合法證明等腰三角形的性質(zhì)定理和判定定理。2.過程與方法
經(jīng)歷“探索-發(fā)現(xiàn)-猜想-證明”的過程,讓學(xué)生進(jìn)一步體會(huì)證明是探索活動(dòng)的自然延續(xù)和必要發(fā)展,發(fā)展學(xué)生的初步的演繹邏輯推理的能力。3.情感態(tài)度與價(jià)值觀
啟發(fā)引導(dǎo)學(xué)生體會(huì)探索結(jié)論和證明結(jié)論,及合情推理與演繹的相互依賴和相互補(bǔ)充的辯證關(guān)系。【教學(xué)重點(diǎn)】探索證明等腰三角形性質(zhì)定理的思路與方法,掌握證明的基本要求和方法?!窘虒W(xué)難點(diǎn)】明確推理證明的基本要求如明確條件和結(jié)論,能否用數(shù)學(xué)語言正確表達(dá)等?!窘虒W(xué)過程】教學(xué)過程教學(xué)隨筆第一環(huán)節(jié):回顧舊知導(dǎo)出公理提請學(xué)生回憶并整理已經(jīng)學(xué)過的8條基本事實(shí)中的5條:1.兩直線被第三條直線所截,如果同位角相等,那么這兩條直線平行;2.兩條平行線被第三條直線所截,同位角相等;3.兩邊夾角對應(yīng)相等的兩個(gè)三角形全等(SAS);4.兩角及其夾邊對應(yīng)相等的兩個(gè)三角形全等(ASA);5.三邊對應(yīng)相等的兩個(gè)三角形全等(SSS);在此基礎(chǔ)上回憶全等三角形的另一判別條件:1.(推論)兩角及其中一角的對邊對應(yīng)相等的兩個(gè)三角形全等(AAS),并要求學(xué)生利用前面所提到的公理進(jìn)行證明;2.回憶全等三角形的性質(zhì)。已知:如圖,∠A=∠D,∠B=∠E,BC=EF.求證:△ABC≌△DEF.證明:∵∠A=∠D,∠B=∠E(已知),又∠A+∠B+∠C=180°,∠D+∠E+∠F=180°(三角形內(nèi)角和等于180°),∴∠C=180°-(∠A+∠B),∠F=180°-(∠D+∠E),∴∠C=∠F(等量代換)。又BC=EF(已知),∴△ABC≌△DEF(ASA)。第二環(huán)節(jié):折紙活動(dòng)探索新知在提問:“等腰三角形有哪些性質(zhì)?以前是如何探索這些性質(zhì)的,你能再次通過折紙活動(dòng)驗(yàn)證這些性質(zhì)嗎?并根據(jù)折紙過程,得到這些性質(zhì)的證明嗎?”的基礎(chǔ)上,讓學(xué)生經(jīng)歷這些定理的活動(dòng)驗(yàn)證和證明過程。具體操作中,可以讓學(xué)生先獨(dú)自折紙觀察、探索并寫出等腰三角形的性質(zhì),然后再以六人為小組進(jìn)行交流,互相彌補(bǔ)不足。→→→→第三環(huán)節(jié):明晰結(jié)論和證明過程在學(xué)生小組合作的基礎(chǔ)上,教師通過分析、提問,和學(xué)生一起完成以上兩個(gè)個(gè)性質(zhì)定理的證明,注意最好讓兩至三個(gè)學(xué)生板演證明,其余學(xué)生挑選其一證明.其后,教師通過課件匯總各小組的結(jié)果以及具體證明方法,給學(xué)生明晰證明過程。(1)等腰三角形的兩個(gè)底角相等;(2)等腰三角形頂角的平分線、底邊中線、底邊上高三條線重合第四環(huán)節(jié):隨堂練習(xí)鞏固新知學(xué)生自主完成P4第2題:如圖(圖略),在△ABD中,C是BD上的一點(diǎn),且AC⊥BD,AC=BC=CD,(1)求證:△ABD是等腰三角形;(2)求∠BAD的度數(shù)。第五環(huán)節(jié):課堂小結(jié)讓學(xué)生暢談收獲,包括具體結(jié)論以及其中的思想方法等。第六環(huán)節(jié):布置作業(yè)課本第4頁習(xí)題1.1第2、3題【板書設(shè)計(jì)】1.1等腰三角形(一)證明:∵∠A=∠D,∠B=∠E(已知),又∠A+∠B+∠C=180°,∠D+∠E+∠F=180°(三角形內(nèi)角和等于180°),∴∠C=180°-(∠A+∠B),∠F=180°-(∠D+∠E),∴∠C=∠F(等量代換)。又BC=EF(已知),∴△ABC≌△DEF(ASA)?!窘虒W(xué)反思】第二課時(shí)【教學(xué)目標(biāo)】1.知識(shí)與技能
進(jìn)一步熟悉證明的基本步驟和書寫格式,體會(huì)證明的必要性。2.過程與方法讓學(xué)生進(jìn)一步體會(huì)證明是探索活動(dòng)的自然延續(xù)和必要發(fā)展,發(fā)展學(xué)生的初步的演繹邏輯推理的能力。3.情感態(tài)度與價(jià)值觀
體驗(yàn)數(shù)學(xué)活動(dòng)中的探索與創(chuàng)造,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性?!窘虒W(xué)重點(diǎn)】用面積法驗(yàn)證勾股定理?!窘虒W(xué)難點(diǎn)】用綜合法證明有關(guān)三角形和等腰三角形的一些結(jié)論?!窘虒W(xué)過程】教學(xué)過程教學(xué)隨筆第一環(huán)節(jié):提出問題,引入新課在回憶上節(jié)課等腰三角形性質(zhì)的基礎(chǔ)上,提出問題:在等腰三角形中作出一些線段(如角平分線、中線、高等),你能發(fā)現(xiàn)其中一第二環(huán)節(jié):自主探究在等腰三角形中自主作出一些線段(如角平分線、中線、高等),觀察其中有哪些相等的線段,并嘗試給出證明。你可能得到哪些相等的線段?你如何驗(yàn)證你的猜測?你能證明你的猜測嗎?試作圖,寫出已知、求證和證明過程;還可以有哪些證明方法?通過學(xué)生的自主探究和同伴的交流,學(xué)生一般都能在直觀猜測、測量驗(yàn)證的基礎(chǔ)上探究出:等腰三角形兩個(gè)底角的平分線相等;等腰三角形腰上的高相等;等腰三角形腰上的中線相等.并對這些命題給予多樣的證明。如對于“等腰三角形兩底角的平分線相等”,學(xué)生得到了下面的證明方法:已知:如圖,在△ABC中,AB=AC,BD、CE是△ABC的角平分線.求證:BD=CE.證法1:∵AB=AC,∴∠ABC=∠ACB(等邊對等角).∵∠1=EQ\F(1,2)∠ABC,∠2=EQ\F(1,2)∠ABC,∴∠1=∠2.在△BDC和△CEB中,∠ACB=∠ABC,BC=CB,∠1=∠2.∴△BDC≌△CEB(ASA).∴BD=CE(全等三角形的對應(yīng)邊相等)證法2:證明:∵AB=AC,∴∠ABC=∠ACB.又∵∠3=∠4.在△ABC和△ACE中,∠3=∠4,AB=AC,∠A=∠A.∴△ABD≌△ACE(ASA).∴BD=CE(全等三角形的對應(yīng)邊相等).第三環(huán)節(jié):經(jīng)典例題變式練習(xí)提請學(xué)生思考,除了角平分線、中線、高等特殊的線段外,還可以有哪些線段相等?并在學(xué)生思考的基礎(chǔ)上,研究課本“議一議”:在課本圖1—4的等腰三角形ABC中,(1)如果∠ABD=EQEQ\F(1,3)∠ABC,∠ACE=EQ\F(1,4)∠ACB呢?由此,你能得到一個(gè)什么結(jié)論?(2)如果AD=EQ\F(1,2)AC,AE=EQ\F(1,2)AB,那么BD=CE嗎?如果AD=EQEQ\F(1,3)AC,AE=EQEQ\F(1,3)AB呢?由此你得到什么結(jié)論?第四環(huán)節(jié):拓展延伸,探索等邊三角形性質(zhì)提請學(xué)生在上面等要三角形性質(zhì)定理的基礎(chǔ)上,思考等邊三角形的特殊性質(zhì):等邊三角形三個(gè)內(nèi)角都相等并且每個(gè)內(nèi)角都等于60°.已知:在ΔABC中,AB=BC=AC.求證:∠A=∠B=∠C=60°.證明:在ΔABC中,∵AB=AC,∴∠B=∠C(等邊對等角).同理:∠C=∠A,∴∠A=∠B=∠C(等量代換).又∵∠A+∠B+∠C=180°(三角形內(nèi)角和定理),∴∠A=∠B=∠C=60°.學(xué)生一般都能得到這些定理的證明,能規(guī)范地寫出對于“等邊三角形三個(gè)內(nèi)角都相等并且每個(gè)內(nèi)角都等于60°”的證明過程:第五環(huán)節(jié):隨堂練習(xí)及時(shí)鞏固在探索得到了等邊三角形的性質(zhì)的基礎(chǔ)上,讓學(xué)生獨(dú)立完成以下練習(xí)。如圖,已知△ABC和△BDE都是等邊三角形.求證:AE=CD活動(dòng)意圖:在鞏固等邊三角形的性質(zhì)的同時(shí),進(jìn)一步掌握綜合證明法的基本要求和步驟,規(guī)范證明的書寫格式。第六環(huán)節(jié):探討收獲課時(shí)小結(jié)本節(jié)課我們通過觀察探索、發(fā)現(xiàn)并證明了等腰三角形中相等的線段,并由特殊結(jié)論歸納出一般結(jié)論,第七環(huán)節(jié):布置作業(yè)課本第7頁習(xí)題1.2第2、3題【板書設(shè)計(jì)】1.2等腰三角形(二)已知:在ΔABC中,AB=BC=AC.求證:∠A=∠B=∠C=60°.證明:在ΔABC中,∵AB=AC,∴∠B=∠C(等邊對等角).同理:∠C=∠A,∴∠A=∠B=∠C(等量代換).又∵∠A+∠B+∠C=180°(三角形內(nèi)角和定理),∴∠A=∠B=∠C=60°.【教學(xué)反思】第三課時(shí)【教學(xué)目標(biāo)】1.知識(shí)與技能
探索等腰三角形判定定理。2.過程與方法理解等腰三角形的判定定理,并會(huì)運(yùn)用其進(jìn)行簡單的證明。3.情感態(tài)度與價(jià)值觀
培養(yǎng)學(xué)生的逆向思維能力?!窘虒W(xué)重點(diǎn)】理解等腰三角形的判定定理?!窘虒W(xué)難點(diǎn)】了解反證法的基本證明思路,并能簡單應(yīng)用?!窘虒W(xué)過程】教學(xué)過程教學(xué)隨筆第一環(huán)節(jié):復(fù)習(xí)引入通過問題串回顧等腰三角形的性質(zhì)定理以及證明的思路,要求學(xué)生獨(dú)立思考后再進(jìn)交流。問題1.等腰三角形性質(zhì)定理的內(nèi)容是什么?這個(gè)命題的題設(shè)和結(jié)論分別是什么?問題2.我們是如何證明上述定理的?問題3.我們把性質(zhì)定理的條件和結(jié)論反過來還成立么?如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等?第二環(huán)節(jié):逆向思考,定理證明教師:上面,我們改變問題條件,得出了很多類似的結(jié)論,這是研究問題的一種常用方法,除此之外,我們還可以“反過來”思考問題,這也是獲得數(shù)學(xué)結(jié)論的一條途徑.例如“等邊對等角”,反過來成立嗎?也就是:有兩個(gè)角相等的三角形是等腰三角形嗎?[生]如圖,在△ABC中,∠B=∠C,要想證明AB=AC,只要構(gòu)造兩個(gè)全等的三角形,使AB與AC成為對應(yīng)邊就可以了.[師]你是如何想到的?[生]由前面定理的證明獲得啟發(fā),比如作BC的中線,或作A的平分線,或作BC上的高,都可以把△ABC分成兩個(gè)全等的三角形.[師]很好.同學(xué)們可在練習(xí)本上嘗試一下是否如此,然后分組討論.[生]我們組發(fā)現(xiàn),如果作BC的中線,雖然把△ABC分成了兩個(gè)三角形,但無法用公理和已證明的定理證明它們?nèi)龋驗(yàn)槲覀兊玫降臈l件是兩個(gè)三角形對應(yīng)兩邊及其一邊的對角分別相等,是不能夠判斷兩個(gè)三角形全等的.后兩種方法是可行的.[師]那么就請同學(xué)們?nèi)芜x一種方法按要求將推理證明過程書寫出來.(教師可讓兩個(gè)同學(xué)在黑板上演示,并對推理證明過程講評)(證明略)[師]我們用“反過來”思考問題,獲得并證明了一個(gè)非常重要的定理——等腰三角形的判定定理:有兩個(gè)角相等的三角形是等腰三角形.這一定理可以簡單敘述為:等角對等邊.我們不僅發(fā)現(xiàn)了幾何圖形的對稱美,也發(fā)現(xiàn)了數(shù)學(xué)語言的對稱美.第三環(huán)節(jié):鞏固練習(xí)將書中的隨堂練習(xí)提前到此,是為了及時(shí)鞏固判定定理。引導(dǎo)學(xué)生進(jìn)行分析。已知:如圖,∠CAE是△ABC的外角,AD∥BC且∠1=∠2.求證:AB=AC.證明:∵AD∥BC,∴∠1=∠B(兩直線平行,同位角相等),∠2=∠C(兩直線平行,內(nèi)錯(cuò)角相等).又∵∠1=∠2,∴∠B=∠C.∴AB=AC(等角對等邊).第四環(huán)節(jié):適時(shí)提問導(dǎo)出反證法我們類比歸納獲得一個(gè)數(shù)學(xué)結(jié)論,“反過來”思考問題也獲得了一個(gè)數(shù)學(xué)結(jié)論.如果否定命題的條件,是否也可獲得一個(gè)數(shù)學(xué)結(jié)論嗎?我們一起來“想一想”:小明說,在一個(gè)三角形中,如果兩個(gè)角不相等,那么這兩個(gè)角所對的邊也不相等.你認(rèn)為這個(gè)結(jié)論成立嗎?如果成立,你能證明它嗎?有學(xué)生提出:“我認(rèn)為這個(gè)結(jié)論是成立的.因?yàn)槲耶嬃藥讉€(gè)三角形,觀察并測量發(fā)現(xiàn),如果兩個(gè)角不相等,它們所對的邊也不相等.但要像證明“等角對等邊”那樣卻很難證明,因?yàn)樗臈l件和結(jié)論都是否定的.”的確如此.像這種從正面人手很難證明的結(jié)論,我們有沒有別的證明思路和方法呢?我們來看一位同學(xué)的想法:如圖,在△ABC中,已知∠B≠∠C,此時(shí)AB與Ac要么相等,要么不相等.假設(shè)AB=AC,那么根據(jù)“等邊對等角”定理可得∠C=∠B,但已知條件是∠B≠∠C.“∠C=∠B”與已知條件“∠B≠∠C”相矛盾,因此AB≠AC你能理解他的推理過程嗎?再例如,我們要證明△ABC中不可能有兩個(gè)直角,也可以采用這位同學(xué)的證法,假設(shè)有兩個(gè)角是直角,不妨設(shè)∠A=90°,∠B=90°,可得∠A+∠B=180°,但△AB∠A+∠B+∠C=180°,“∠A+∠B=180°”與“∠A+∠B+∠C=180°”相矛盾,因此△ABC中不可能有兩個(gè)直角.引導(dǎo)學(xué)生思考:上一道面的證法有什么共同的特點(diǎn)呢?引出反證法。都是先假設(shè)命題的結(jié)論不成立,然后由此推導(dǎo)出了與已知或公理或已證明過的定理相矛盾,從而證明命題的結(jié)論一定成立.這也是證明命題的一種方法,我們把它叫做反證法.接著用“反過來”思考問題的方法獲得并證明了等腰三角形的判定定理“等角對等邊”,最后結(jié)合實(shí)例了解了反證法的含義.第五環(huán)節(jié):拓展延伸活動(dòng)過程與效果:在一節(jié)課結(jié)束之際,為培養(yǎng)學(xué)生思維的綜合性、靈活性特安排了2個(gè)練習(xí)。一個(gè)是通過平行線、角平分線判定三角形的形狀,再通過線段的轉(zhuǎn)換求圖形的周長。另一個(gè)是一個(gè)開放性的問題,考察學(xué)生多角度多維度思考問題的能力。學(xué)生在獨(dú)立思考的基礎(chǔ)上再小組交流。NMCBAD1.如圖,BD平分∠CBA,CD平分∠NMCBAD2.現(xiàn)有等腰三角形紙片,如果能從一個(gè)角的頂點(diǎn)出發(fā),將原紙片一次剪開成兩塊等腰三角形紙片,問此時(shí)的等腰三角形的頂角的度數(shù)?第六環(huán)節(jié):課堂小結(jié)(1)本節(jié)課學(xué)習(xí)了哪些內(nèi)容?(2)等腰三角形的判定方法有哪幾種?(3)結(jié)合本節(jié)課的學(xué)習(xí),談?wù)劦妊切涡再|(zhì)和判定的區(qū)別和聯(lián)系.(4)舉例談?wù)動(dòng)梅醋C法說理的基本思路第七環(huán)節(jié):布置作業(yè)【板書設(shè)計(jì)】1.1等腰三角形(三)已知:如圖,∠CAE是△ABC的外角,AD∥BC且∠1=∠2.求證:AB=AC.證明:∵AD∥BC,∴∠1=∠B(兩直線平行,同位角相等),∠2=∠C(兩直線平行,內(nèi)錯(cuò)角相等).又∵∠1=∠2,∴∠B=∠C.∴AB=AC(等角對等邊).【教學(xué)反思】第四課時(shí)【教學(xué)目標(biāo)】1.知識(shí)與技能理解等邊三角形的判別條件及其證明,理解含有30o角的直角三角形性質(zhì)及其證明,并能利用這兩個(gè)定理解決一些簡單的問題。2.過程與方法經(jīng)歷運(yùn)用幾何符號(hào)和圖形描述命題的條件和結(jié)論的過程,建立初步的符號(hào)感,發(fā)展抽象思維。3.情感態(tài)度與價(jià)值觀
在數(shù)學(xué)活動(dòng)中獲得成功的體驗(yàn),鍛煉克服困難的意志,建立自信心?!窘虒W(xué)重點(diǎn)】等邊三角形判定定理的發(fā)現(xiàn)與證明?!窘虒W(xué)難點(diǎn)】了解反證法的基本證明思路,并能簡單應(yīng)用。【教學(xué)過程】教學(xué)過程教學(xué)隨筆第一環(huán)節(jié):提問問題,引入新課教師回顧前面等腰三角形的性質(zhì)和判定定理的基礎(chǔ)上,直接提出問題:等邊三角形作為一種特殊的等腰三角形,具有哪些性質(zhì)呢?又如何判別一個(gè)三角形是等腰三角形呢?從而引入新課。開門見山,引入新課,同時(shí)回顧,也為后續(xù)探索提供了鋪墊。(教師應(yīng)給學(xué)生自主探索、思考的時(shí)間)第二環(huán)節(jié):自主探索學(xué)生自主探究等腰三角形成為等邊三角形的條件,并交流匯報(bào)各自的結(jié)論,教師適時(shí)要求學(xué)生給出相對規(guī)范的證明,概括出等邊三角形的判別條件,并引導(dǎo)學(xué)生總結(jié)出下表:性質(zhì)判定的條件等腰三角形(含等邊三角形)等邊對等角等角對等邊“三線合一”即等腰三角形頂角平分線,底邊上的中線、高互相重合有一角是60°等邊三角形三個(gè)角都相等,且每個(gè)角都是60°三個(gè)角都相等的三角形是等邊三角形經(jīng)歷定理的探究過程,即明確有關(guān)定理,同時(shí)提高學(xué)生的自主探究能力。第三環(huán)節(jié):實(shí)際操作提出問題活動(dòng)內(nèi)容:教師直接提出問題:我們還學(xué)習(xí)過直角三角形,今天我們研究一個(gè)特殊的直角三角形:含30°角的直角三角形。拿出三角板,做一做:用含30°角的兩個(gè)三角尺,你能拼成一個(gè)怎樣的三角形?能拼出一個(gè)等邊三角形嗎?在你所拼得的等邊三角形中,有哪些線段存在相等關(guān)系,有哪些線段存在倍數(shù)關(guān)系,你能得到什么結(jié)論?說說你的理由.讓學(xué)生經(jīng)歷拼擺三角尺的活動(dòng),發(fā)現(xiàn)結(jié)論:在直角三角形中,如果一個(gè)銳角等于30°,那么它所對的直角邊等于斜邊的一半.定理:在直角三角形中,如果一個(gè)銳角等于30°,那么它所對的直角邊等于斜邊的一半.已知:如圖,在Rt△ABC中,∠C=90°,∠BAC=30°.求證:BC=EQ\F(1,2)AB.分析:從三角尺的拼擺過程中得到啟發(fā),延長BC至D,使CD=BC,連接AD.證明:在△ABC中,∠ACB=90°,∠BAC=30°∠B=60°.延長BC至D,使CD=BC,連接AD(如圖所示).∵∠ACB=90°∴∠ACB=90°∵AC=AC,∴△ABC≌△ADC(SAS).∴AB=AD(全等三角形的對應(yīng)邊相等).∴△ABD是等邊三角形(有一個(gè)角是60°的等腰三角形是等邊三角形).∴BC=EQ\F(1,2)BD=EQ\F(1,2)AB.第四環(huán)節(jié):變式訓(xùn)練鞏固新知直接提請學(xué)生思考剛才命題的逆命題:在直角三角形中,如果一條直角邊等于斜邊的一半,那么這條直角邊所對的銳角等于30°嗎?如果是,請你證明它.在師生分析的基礎(chǔ)上,給出證明:已知:如圖,在Rt△ABC中,∠C=90°,BC=EQ\F(1,2)AB.求證:∠BAC=30°證明:延長BC至D,使CD=BC,連接AD.∵∠ACB=90°,∴∠ACD=90°.又∵AC=AC.∴△ACB≌△ACD(SAS).∴AB=AD.∵CD=BC,∴BC=EQ\F(1,2)BD.又∵BC=EQ\F(1,2)AB,∴AB=BD.∴AB=AD=BD,即△ABD是等邊三角形.∴∠B=60°.在Rt△ABC中,∠BAC=30°.呈現(xiàn)例題,在師生分析的基礎(chǔ)上,運(yùn)用所學(xué)的新定理解答例題。等腰三角形的底角為15°,腰長為2a,求腰上的高CD的長.分析:觀察圖形可以發(fā)現(xiàn)在Rt△ADC中,AC=2a而∠DAC是△ABC的一個(gè)外角,而∠DAC=×15°=30°,根據(jù)在直角三角形中,30°角所對的直角邊是斜邊的一半,可求出CD.解:∵∠ABC=∠ACB=15°∴∠DAC=∠ABC+∠ACB=15°+15°=30°∴CD=EQ\F(1,2)AC=EQ\F(1,2)×2a=a(在直角三角形中,如果一個(gè)銳角等于30°,那么它所對的直角邊等于斜邊的一半).第五環(huán)節(jié):暢談收獲課時(shí)小結(jié)讓學(xué)生對課堂學(xué)習(xí)進(jìn)行小結(jié),注意總結(jié)具體的知識(shí)、結(jié)論,以及解決問題的方法和蘊(yùn)含其中的思想,如分類討論思想、逆向思維等。第六環(huán)節(jié):布置作業(yè)【板書設(shè)計(jì)】1.1等腰三角形(四)已知:如圖,在Rt△ABC中,∠C=90°,BC=EQ\F(1,2)AB.求證:∠BAC=30°證明:延長BC至D,使CD=BC,連接AD.∵∠ACB=90°,∴∠ACD=90°.又∵AC=AC.∴△ACB≌△ACD(SAS).∴AB=AD.∵CD=BC,∴BC=EQ\F(1,2)BD.又∵BC=EQ\F(1,2)AB,∴AB=BD.∴AB=AD=BD,即△ABD是等邊三角形.∴∠B=60°.在Rt△ABC中,∠BAC=30°.【教學(xué)反思】1.2直角三角形【教學(xué)目標(biāo)】
1.知識(shí)與技能
(1)掌握直角三角形的性質(zhì)定理(勾股定理)及判定定理的證明方法,并能應(yīng)用定理解決與直角三角形有關(guān)的問題。(2)結(jié)合具體例子了解逆命題的概念,會(huì)識(shí)別兩個(gè)互逆命題,知道原命題成立,其逆命題不一定成立。
2.過程與方法
(1)進(jìn)一步經(jīng)歷用幾何符號(hào)和圖形描述命題的條件和結(jié)論的過程,建立初步的符號(hào)感,發(fā)展抽象思維.(2)進(jìn)一步掌握推理證明的方法,發(fā)展演繹推理的能力。
3.情感態(tài)度與價(jià)值觀
體驗(yàn)生活中的數(shù)學(xué)的應(yīng)用價(jià)值,感受數(shù)學(xué)與人類生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的興趣?!窘虒W(xué)重點(diǎn)】掌握直角三角形的性質(zhì)定理(勾股定理)及判定定理的證明方法。【教學(xué)難點(diǎn)】應(yīng)用定理解決與直角三角形有關(guān)的問題?!窘虒W(xué)方法】講授法【課時(shí)安排】2課時(shí)第一課時(shí)【教學(xué)目標(biāo)】1.知識(shí)與技能掌握直角三角形的性質(zhì)定理(勾股定理)及判定定理的證明方法。2.過程與方法進(jìn)一步經(jīng)歷用幾何符號(hào)和圖形描述命題的條件和結(jié)論的過程,建立初步的符號(hào)感,發(fā)展抽象思維。3.情感態(tài)度與價(jià)值觀
在數(shù)學(xué)活動(dòng)中獲得成功的體驗(yàn),鍛煉克服困難的意志,建立自信心?!窘虒W(xué)重點(diǎn)】掌握直角三角形的性質(zhì)定理(勾股定理)及判定定理的證明方法。【教學(xué)難點(diǎn)】結(jié)合具體例子了解逆命題的概念,會(huì)識(shí)別兩個(gè)互逆命題,知道原命題成立,其逆命題不一定成立?!窘虒W(xué)過程】教學(xué)過程教學(xué)隨筆第一環(huán)節(jié):創(chuàng)設(shè)情境,引入新課通過問題1,讓學(xué)生在解決問題的同時(shí),回顧直角三角形的一般性質(zhì)。[問題1]一個(gè)直角三角形房梁如圖所示,其中BC⊥AC,∠BAC=30°,AB=10cm,CB1⊥AB,B1C⊥AC1,垂足分別是B1、C1,那么BC的長是多少?B1C1呢?解:在Rt△ABC中,∠CAB=30°,AB=10cm,∴BC=EQ\F(1,2)AB=EQ\F(1,2)×10=5cm.∵CB1⊥AB,∴∠B+∠BCB1=90°又∵∠A+∠B=90°∴∠BCB1=∠A=30°在Rt△ACB1中,BB1=EQ\F(1,2)BC=EQ\F(1,2)×5=EQ\F(5,2)cm=2.5cm.∴AB1=AB=BB1=10—2.5=7.5(cm).∴在Rt△C1AB1中,∠A=30°∴B1C1=EQ\F(1,2)AB1=EQ\F(1,2)×7.5=3.75(cm).解決這個(gè)問題,主要利用了上節(jié)課已經(jīng)證明的“30°角的直角三角形的性質(zhì)”.由此提問:“一般的直角三角形具有什么樣的性質(zhì)呢?”從而引入勾股定理及其證明。教材中曾利用數(shù)方格和割補(bǔ)圖形的方法得到了勾股定理.如果利用公理及由其推導(dǎo)出的定理,能夠證明勾股定理嗎?請同學(xué)們打開課本P18,閱讀“讀一讀”,了解一下利用教科書給出的公理和推導(dǎo)出的定理,證明勾股定理的方法.第二環(huán)節(jié):講述新課閱讀完畢后,針對“讀一讀”中使用的兩種證明方法,著重討論第一種,第二種方法請有興趣的同學(xué)課后閱讀.(1).勾股定理及其逆定理的證明.已知:如圖,在△ABC中,∠C=90°,BC=a,AC=b,AB=c.求證:a2+b2=c2.證明:延長CB至D,使BD=b,作∠EBD=∠A,并取BE=c,連接ED、AE(如圖),則△ABC≌△BED.∴∠BDE=90°,ED=a(全等三角形的對應(yīng)角相等,對應(yīng)邊相等).∴四邊形ACDE是直角梯形.∴S梯形ACDE=EQ\F(1,2)(a+b)(a+b)=EQ\F(1,2)(a+b)2.∴∠ABE=180°-(∠ABC+∠EBD)=180°-90°=90°,AB=BE.∴S△ABE=EQ\F(1,2)c2∵S梯形ACDE=S△ABE+S△ABC+S△BED,∴EQ\F(1,2)(a+b)2=EQ\F(1,2)c2+EQ\F(1,2)ab+EQ\F(1,2)ab,即EQ\F(1,2)a2+ab+EQ\F(1,2)b2=EQ\F(1,2)c2+ab,∴a2+b2=c2教師用多媒體顯示勾股定理內(nèi)容,用課件演示勾股定理的條件和結(jié)論,并強(qiáng)調(diào).具體如下:勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方.反過來,如果在一個(gè)三角形中,當(dāng)兩邊的平方和等于第三邊的平方時(shí),我們曾用度量的方法得出“這個(gè)三角形是直角三角形”的結(jié)論.你能證明此結(jié)論嗎?師生共同來完成.已知:如圖:在△ABC中,AB2+AC2=BC2求證:△ABC是直角三角形.分析:要從邊的關(guān)系,推出∠A=90°是不容易的,如果能借助于△ABC與一個(gè)直角三角形全等,而得到∠A與對應(yīng)角(構(gòu)造的三角形的直角)相等,可證.證明:作Rt△A′B′C′,使∠A′=90°,A′B′=AB,A′C′、AC(如圖),則A′B′2+A′C′2.(勾股定理).∵AB2+AC2=BC2,A′B′=AB,A′C′∴BC2=B′C′2∴BC=B′C′∴△ABC≌△A′B′C′(SSS)∴∠A=∠A′=90°(全等三角形的對應(yīng)角相等).因此,△ABC是直角三角形.總結(jié)得勾股逆定理:如果三角形兩邊的平方和等于第三邊的平方,那么這個(gè)三角形是直角三角形.(2).互逆命題和互逆定理.觀察上面兩個(gè)命題,它們的條件和結(jié)論之間有怎樣的關(guān)系?在前面的學(xué)習(xí)中還有類似的命題嗎?通過觀察,學(xué)生會(huì)發(fā)現(xiàn):上面兩個(gè)定理的條件和結(jié)論互換了位置,即勾股定理的條件是第二個(gè)定理的結(jié)論,結(jié)論是第二個(gè)定理的條件.這樣的情況,在前面也曾遇到過.例如“兩直線平行,內(nèi)錯(cuò)角相等”,交換條件和結(jié)論,就得到“內(nèi)錯(cuò)角相等,兩直線平行”.又如“在直角三角形中,如果一個(gè)銳角等于30°,那么它所對的直角邊就等于斜邊的一半”.交換此定理的條件和結(jié)論就可得“在直角三角形中,如果一條直角邊等于斜邊的一半,那么這條直角邊所對的銳角等于30°”。第三環(huán)節(jié):議一議觀察下面三組命題:學(xué)生以分組討論形式進(jìn)行,最后在教師的引導(dǎo)下得出命題與逆命題的區(qū)別與聯(lián)系。讓學(xué)生暢所欲言,體會(huì)逆命題與命題之間的區(qū)別與聯(lián)系,要能夠清晰地分別出一個(gè)命題的題設(shè)和結(jié)論,能夠?qū)⒁粋€(gè)命題寫出“如果……;那么……”的形式,以及能夠?qū)懗鲆粋€(gè)命題的逆命題。活動(dòng)中,教師應(yīng)注意給予適度的引導(dǎo),學(xué)生若出現(xiàn)語言上不嚴(yán)謹(jǐn)時(shí),要先讓這個(gè)疑問交給學(xué)生來剖析,然后再總結(jié)?;顒?dòng)時(shí)可以先讓學(xué)生觀察下面三組命題:如果兩個(gè)角是對頂角,那么它們相等.如果兩個(gè)角相等,那么它們是對頂角.如果小明患了肺炎,那么他一定發(fā)燒.如果小明發(fā)燒,那么他一定患了肺炎.三角形中相等的邊所對的角相等.三角形中相等的角所對的邊相等.上面每組中兩個(gè)命題的條件和結(jié)論也有類似的關(guān)系嗎?與同伴交流.不難發(fā)現(xiàn),每組第二個(gè)命題的條件是第一個(gè)命題的結(jié)論,第二個(gè)命題的結(jié)論是第一個(gè)命題的條件.在兩個(gè)命題中,如果一個(gè)命題條件和結(jié)論分別是另一個(gè)命題的結(jié)論和條件,那么這兩個(gè)命題稱為互逆命題,其中一個(gè)命題稱為另一個(gè)命題的逆命題,相對于逆命題來說,另一個(gè)就為原命題.再來看“議一議”中的三組命題,它們就稱為互逆命題,如果稱每組的第一個(gè)命題為原命題,另一個(gè)則為逆命題.請同學(xué)們判斷每組原命題的真假.逆命題呢?在第一組中,原命題是真命題,而逆命題是假命題.在第二組中,原命題是真命題,而逆命題是假命題.在第三組中,原命題和逆命題都是真命題.由此我們可以發(fā)現(xiàn):原命題是真命題,而逆命題不一定是真命題.第四環(huán)節(jié):想一想要寫出原命題的逆命題,需先弄清楚原命題的條件和結(jié)論,然后把結(jié)論變換成條件,條件變換成結(jié)論,就得到了逆命題.請學(xué)生寫出命題“如果兩個(gè)有理數(shù)相等,那么它們的平方相等”的逆命題嗎?它們都是真命題嗎?從而引導(dǎo)學(xué)生思考:原命題是真命題嗎?逆命題一定是真命題嗎?并通過具體的實(shí)例說明。如果有些命題,原命題是真命題,逆命題也是真命題,那么我們稱它們?yōu)榛ツ娑ɡ?其中逆命題成為原命題(即原定理)的逆定理.能舉例說出我們已學(xué)過的互逆定理?如我們剛證過的勾股定理及其逆定理,“兩直線平行,內(nèi)錯(cuò)角相等”與“內(nèi)錯(cuò)角相等,兩直線平行”.“全等三角形對應(yīng)邊相等”和“三邊對應(yīng)相等的三角形全等”、“等邊對等角”和“等角對等邊”等.第五環(huán)節(jié):隨堂練習(xí)說出下列命題的逆命題,并判斷每對命題的真假;(1)四邊形是多邊形;(2)兩直線平行,內(nèi)旁內(nèi)角互補(bǔ);(3)如果ab=0,那么a=0,b=0[分析]互逆命題和互逆定理的概念,學(xué)生接受起來應(yīng)不會(huì)有什么困難,尤其是對以“如果……那么……”形式給出的命題,寫出其逆命題較為容易,但對于那些不是以這種形式給出的命題,敘述其逆命題有一定困難.可先分析命題的條件和結(jié)論,然后寫出逆命題.解:(1)多邊形是四邊形.原命題是真命題,而逆命題是假命題.(2)同旁內(nèi)角互補(bǔ),兩直線平行.原命題與逆命題同為正.(3)如果a=0,6=0,那么ab=0.原命題是假命題,而逆命題是真命題.第六環(huán)節(jié):課時(shí)小結(jié)這節(jié)課我們了解了勾股定理及逆定理的證明方法,并結(jié)合數(shù)學(xué)和生活中的例子了解逆命題的概念,會(huì)識(shí)別兩個(gè)互逆命題,知道,原命題成立,其逆命題不一定成立,掌握了證明方法,進(jìn)一步發(fā)展了演繹推理能力.第七環(huán)節(jié):課后作業(yè)習(xí)題1.5第1、2、3、4題【板書設(shè)計(jì)】1.2直角三角形(一)已知:如圖,在△ABC中,∠C=90°,BC=a,AC=b,AB=c.求證:a2+b2=c2.證明:延長CB至D,使BD=b,作∠EBD=∠A,并取BE=c,連接ED、AE(如圖),則△ABC≌△BED.∴∠BDE=90°,ED=a(全等三角形的對應(yīng)角相等,對應(yīng)邊相等).∴四邊形ACDE是直角梯形.∴S梯形ACDE=EQ\F(1,2)(a+b)(a+b)=EQ\F(1,2)(a+b)2.∴∠ABE=180°-(∠ABC+∠EBD)=180°-90°=90°,AB=BE.∴S△ABE=EQ\F(1,2)c2∵S梯形ACDE=S△ABE+S△ABC+S△BED,∴EQ\F(1,2)(a+b)2=EQ\F(1,2)c2+EQ\F(1,2)ab+EQ\F(1,2)ab,即EQ\F(1,2)a2+ab+EQ\F(1,2)b2=EQ\F(1,2)c2+ab,∴a2+b2=c2【教學(xué)反思】第二課時(shí)【教學(xué)目標(biāo)】1.知識(shí)與技能能夠證明直角三角形全等的“HL”的判定定理,進(jìn)一步理解證明的必要性。2.過程與方法進(jìn)一步經(jīng)歷用幾何符號(hào)和圖形描述命題的條件和結(jié)論的過程,建立初步的符號(hào)感,發(fā)展抽象思維。3.情感態(tài)度與價(jià)值觀
進(jìn)一步掌握推理證明的方法,發(fā)展演繹推理能力?!窘虒W(xué)重點(diǎn)】能夠證明直角三角形全等的“HL”的判定定理?!窘虒W(xué)難點(diǎn)】進(jìn)一步理解證明的必要性?!窘虒W(xué)過程】教學(xué)過程教學(xué)隨筆第一環(huán)節(jié):復(fù)習(xí)提問1.判斷兩個(gè)三角形全等的方法有哪幾種?2.已知一條邊和斜邊,求作一個(gè)直角三角形。想一想,怎么畫?同學(xué)們相互交流。3、有兩邊及其中一邊的對角對應(yīng)相等的兩個(gè)三角形全等嗎?如果其中一個(gè)角是直角呢?請證明你的結(jié)論。我們曾從折紙的過程中得到啟示,作了等腰三角形底邊上的中線或頂角的角平分線,運(yùn)用公理,證明三角形全等,從而得出“等邊對等角”。那么我們能否通過作等腰三角形底邊的高來證明“等邊對等角”.要求學(xué)生完成,一位學(xué)生的過程如下:已知:在△ABC中,AB=AC.求證:∠B=∠C.證明:過A作AD⊥BC,垂足為C,∴∠ADB=∠ADC=90°又∵AB=AC,AD=AD,∴△ABD≌△ACD.∴∠B=∠C(全等三角形的對應(yīng)角相等)在實(shí)際的教學(xué)過程中,有學(xué)生對上述證明方法產(chǎn)生了質(zhì)疑。質(zhì)疑點(diǎn)在于“在證明△ABD≌△ACD時(shí),用了“兩邊及其中一邊的對角對相等的兩個(gè)三角形全等”.而我們在前面學(xué)習(xí)全等的時(shí)候知道,兩個(gè)三角形,如果有兩邊及其一邊的對角相等,這兩個(gè)三角形是不一定全等的.可以畫圖說明.(如圖所示在ABD和△ABC中,AB=AB,∠B=∠B,AC=AD,但△ABD與△ABC不全等)”.也有學(xué)生認(rèn)同上述的證明。教師順?biāo)浦郏儐柲芊褡C明:“在兩個(gè)直角三角形中,直角所對的邊即斜邊和一條直角邊對應(yīng)相等的兩個(gè)直角三角形全等.”,從而引入新課。第二環(huán)節(jié):引入新課(1).“HL”定理.由師生共析完成已知:在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,AB=A′B′,BC=B′C′.求證:Rt△ABC≌Rt△A′B′C′證明:在Rt△ABC中,AC=AB2一BC2(勾股定理).又∵在Rt△A'B'C'中,A'C'=A'C'=A'B'2一B'C'2(勾股定理).AB=A'B',BC=B'C',AC=A'C'.∴Rt△ABC≌Rt△A'B'C'(SSS).教師用多媒體演示:定理斜邊和一條直角邊對應(yīng)相等的兩個(gè)直角三角形全等.這一定理可以簡單地用“斜邊、直角邊”或“HL”表示.從而肯定了第一位同學(xué)通過作底邊的高證明兩個(gè)三角形全等,從而得到“等邊對等角”的證法是正確的.練習(xí):判斷下列命題的真假,并說明理由:(1)兩個(gè)銳角對應(yīng)相等的兩個(gè)直角三角形全等;(2)斜邊及一銳角對應(yīng)相等的兩個(gè)直角三角形全等;(3)兩條直角邊對應(yīng)相等的兩個(gè)直角三角形全等;(4)一條直角邊和另一條直角邊上的中線對應(yīng)相等的兩個(gè)直角三角形全等.對于(1)、(2)、(3)一般可順利通過,這里教師將講解的重心放在了問題(4),學(xué)生感覺是真命題,一時(shí)有無法直接利用已知的定理支持,教師引導(dǎo)學(xué)生證明.已知:R△ABC和Rt△A'B'C',∠C=∠C'=90°,BC=B'C',BD、B'D'分別是AC、A'C'邊上的中線且BD—B'D'(如圖).求證:Rt△ABC≌Rt△A'B'C'.證明:在Rt△BDC和Rt△B'D'C'中,∵BD=B'D',BC=B'C',∴Rt△BDC≌Rt△B'D'C'(HL定理).CD=C'D'.又∵AC=2CD,A'C'=2C'D',∴AC=A'C'.∴在Rt△ABC和Rt△A'B'C'中,∵BC=B'C',∠C=∠C'=90°,AC=A'C',∴Rt△ABC≌CORt△A'B'C(SAS).通過上述師生共同活動(dòng),學(xué)生板書推理過程之后可發(fā)動(dòng)學(xué)生去糾錯(cuò),教師最后再總結(jié)。第三環(huán)節(jié):做一做問題你能用三角尺平分一個(gè)已知角嗎?請同學(xué)們用手中的三角尺操作完成,并在小組內(nèi)交流,用自己的語言清楚表達(dá)自己的想法.(設(shè)計(jì)做一做的目的為了讓學(xué)生體會(huì)數(shù)學(xué)結(jié)論在實(shí)際中的應(yīng)用,教學(xué)中就要求學(xué)生能用數(shù)學(xué)的語言清楚地表達(dá)自己的想法,并能按要求將推理證明過程寫出來。)第四環(huán)節(jié):議一議如圖,已知∠ACB=∠BDA=90°,要使△ACB≌BDA,還需要什么條件?把它們分別寫出來.這是一個(gè)開放性問題,答案不唯一,需要我們靈活地運(yùn)用公理和已學(xué)過的定理,觀察圖形,積極思考,并在獨(dú)立思考的基礎(chǔ)上,通過同學(xué)之間的交流,獲得各種不同的答案.(教師一定要提供時(shí)間和空間,讓同學(xué)們認(rèn)真思考,勇于向困難提出挑戰(zhàn))第五環(huán)節(jié):例題學(xué)習(xí)如圖,在△ABC≌△A'B'C'中,CD,C'D'分別分別是高,并且AC=A'C',CD=C'D'.∠ACB=∠A'C'B'.求證:△ABC≌△A'B'C'.分析:要證△ABC≌△A'B'C',由已知中找到條件:一組邊AC=A'C',一組角∠ACB=∠A'C'B'.如果尋求∠A=∠A',就可用ASA證明全等;也可以尋求么∠B=∠B',這樣就有AAS;還可尋求BC=B'C',那么就可根據(jù)SAS.……注意到題目中,通有CD、C'D'是三角形的高,CD=C'D'.觀察圖形,這里有三對三角形應(yīng)該是全等的,且題目中具備了HL定理的條件,可證的Rt△ADC≌Rt△A'D'C',因此證明∠A=∠A'就可行.證明:∵CD、C'D'分別是△ABC△A'B'C'的高(已知),∴∠ADC=∠A'D'C'=90°.在Rt△ADC和Rt△A'D'C'中,AC=A'C'(已知),CD=C'D'(已知),∴Rt△ADC≌Rt△A'D'C'(HL).∠A=∠A',(全等三角形的對應(yīng)角相等).在△ABC和△A'B'C'中,∠A=∠A'(已證),AC=A'C'(已知),∠ACB=∠A'C'B'(已知),∴△ABC≌△A'B'C'(ASA).第六環(huán)節(jié):課時(shí)小結(jié)本節(jié)課我們討論了在一般三角形中兩邊及其一邊對角對應(yīng)相等的兩個(gè)三角形不一定全等.而當(dāng)一邊的對角是直角時(shí),這兩個(gè)三角形是全等的,從而得出判定直角三角形全等的特殊方法——HL定理,并用此定理安排了一系列具體的、開放性的問題,不僅進(jìn)一步掌握了推理證明的方法,而且發(fā)展了同學(xué)們演繹推理的能力.同學(xué)們這一節(jié)課的表現(xiàn),很值得繼續(xù)發(fā)揚(yáng)廣大.第六環(huán)節(jié):布置作業(yè)習(xí)題1.6第3、4、5題【板書設(shè)計(jì)】1.2直角三角形(二)已知:R△ABC和Rt△A'B'C',∠C=∠C'=90°,BC=B'C',BD、B'D'分別是AC、A'C'邊上的中線且BD—B'D'(如圖).求證:Rt△ABC≌Rt△A'B'C'.證明:在Rt△BDC和Rt△B'D'C'中,∵BD=B'D',BC=B'C',∴Rt△BDC≌Rt△B'D'C'(HL定理).CD=C'D'.又∵AC=2CD,A'C'=2C'D',∴AC=A'C'.∴在Rt△ABC和Rt△A'B'C'中,∵BC=B'C',∠C=∠C'=90°,AC=A'C',∴Rt△ABC≌CORt△A'B'C(SAS).【教學(xué)反思】1.3線段的垂直平分線【教學(xué)目標(biāo)】1.知識(shí)與技能
證明線段垂直平分線的性質(zhì)定里和判定定理.2.過程與方法
經(jīng)歷探索、猜測、證明的過程,進(jìn)一步發(fā)展學(xué)生的推理證明能力.豐富對幾何圖形的認(rèn)識(shí)。3.情感態(tài)度與價(jià)值觀
通過小組活動(dòng),學(xué)會(huì)與人合作,并能與他人交流思維的過程和結(jié)果。【教學(xué)重點(diǎn)】運(yùn)用幾何符號(hào)語言證明垂直平分線的性質(zhì)定理及其逆命題?!窘虒W(xué)難點(diǎn)】垂直平分線的性質(zhì)定理在實(shí)際問題中的運(yùn)用。【教學(xué)方法】講授法【課時(shí)安排】2課時(shí)第一課時(shí)【教學(xué)目標(biāo)】1.知識(shí)與技能
能夠證明三角形三邊垂直平分線交于一點(diǎn)。2.過程與方法
經(jīng)歷猜想、探索,能夠作出符合條件的三角形。3.情感態(tài)度與價(jià)值觀
學(xué)會(huì)與他人合作,并能與他人交流思維的過程和結(jié)果?!窘虒W(xué)重點(diǎn)】探索證明等腰三角形性質(zhì)定理的思路與方法,掌握證明的基本要求和方法?!窘虒W(xué)難點(diǎn)】明確推理證明的基本要求如明確條件和結(jié)論,能否用數(shù)學(xué)語言正確表達(dá)等?!窘虒W(xué)過程】教學(xué)過程教學(xué)隨筆第一環(huán)節(jié):創(chuàng)設(shè)情境,引入新課教師用多媒體演示:如圖,A、B表示兩個(gè)倉庫,要在A、B一側(cè)的河岸邊建造一個(gè)碼頭,使它到兩個(gè)倉庫的距離相等,碼頭應(yīng)建在什么位置?其中“到兩個(gè)倉庫的距離相等”,要強(qiáng)調(diào)這幾個(gè)字在題中有很重要的作用.線段是一個(gè)軸對稱圖形,其中線段的垂直平分線就是它的對稱軸.我們用折紙的方法,根據(jù)折疊過程中線段重合說明了線段垂直平分線的一個(gè)性質(zhì):線段垂直平分線上的點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等.所以在這個(gè)問題中,要求在“A、B一側(cè)的河岸邊建造一個(gè)碼頭,使它到兩個(gè)倉庫的距離相等”利用此性質(zhì)就能完成.進(jìn)一步提問:“你能用公理或?qū)W過的定理證明這一結(jié)論嗎?”第二環(huán)節(jié):性質(zhì)探索與證明教師鼓勵(lì)學(xué)生思考,想辦法來解決此問題。通過討論和思考,引導(dǎo)學(xué)生分析并寫出已知、求證的內(nèi)容。已知:如圖,直線MN⊥AB,垂足是C,且AC=BC,P是MN上的點(diǎn).求證:PA=PB.分析:要想證明PA=PB,可以考慮包含這兩條線段的兩個(gè)三角形是否全等.證明:∵M(jìn)N⊥AB,∴∠PCA=∠PCB=90°∵AC=BC,PC=PC,∴△PCA≌△PCB(SAS).;∴PA=PB(全等三角形的對應(yīng)邊相等).教師用多媒體完整演示證明過程.第三環(huán)節(jié):逆向思維,探索判定你能寫出上面這個(gè)定理的逆命題嗎?它是真命題嗎?這個(gè)命題不是“如果……那么……”的形式,要寫出它的逆命題,需分析原命題的條件和結(jié)論,將原命題寫成“如果……那么……”的形式,逆命題就容易寫出.鼓勵(lì)學(xué)生找出原命題的條件和結(jié)論。原命題的條件是“有一個(gè)點(diǎn)是線段垂直平分線上的點(diǎn)”.結(jié)論是“這個(gè)點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等”.此時(shí),逆命題就很容易寫出來.“如果有一個(gè)點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等,那么這個(gè)點(diǎn)在這條線段的垂直平分線上.”寫出逆命題后時(shí),就想到判斷它的真假.如果真,則需證明它;如果假,則需用反例說明.引導(dǎo)學(xué)生分析證明過程,有如下四種證法:證法一:已知:線段AB,點(diǎn)P是平面內(nèi)一點(diǎn)且PA=PB.求證:P點(diǎn)在AB的垂直平分線上.證明:過點(diǎn)P作已知線段AB的垂線PC,PA=PB,PC=PC,∴Rt△PAC≌Rt△PBC(HL定理).∴AC=BC,即P點(diǎn)在AB的垂直平分線上.證法二:取AB的中點(diǎn)C,過PC作直線.∵AP=BP,PC=PC.AC=CB,∴△APC≌△BPC(SSS).∴∠PCA=∠PCB(全等三角形的對應(yīng)角相等).又∵∠PCA+∠PCB=180°,∴∠PCA=∠PCB=∠90°,即PC⊥AB∴P點(diǎn)在AB的垂直平分線上.證法三:過P點(diǎn)作∠APB的角平分線.∵AP=BP,∠1=∠2,PC=PC,△APC≌△BPC(SAS).∴AC=BC,∠PCA=∠PCB(全等三角形的對應(yīng)角相等,對應(yīng)邊相等).又∵∠PCA+∠PCB=180°∴∠PCA=∠PCB=90°∴P點(diǎn)在線段AB的垂直平分線上.證法四:過P作線段AB的垂直平分線PC.∵AC=CB,∠PCA=∠PCB=90°,∴P在AB的垂直平分線上.從同學(xué)們的推理證明過程可知線段垂直平分線的性質(zhì)定理的逆命題是真命題,我們把它稱做線段垂直平分線的判定定理.第四環(huán)節(jié):鞏固應(yīng)用在做完性質(zhì)定理和判定定理的證明以后,引導(dǎo)學(xué)生進(jìn)行總結(jié):(1)線段的垂直平分線可以看成是到線段兩個(gè)端點(diǎn)距離相等的所有點(diǎn)的集合。(2)到一條線段兩個(gè)端點(diǎn)的距離相等個(gè)點(diǎn)在這條線段的垂直平分線上.因此只需做出這樣的兩個(gè)點(diǎn)即可做出線段的垂直平分線。例題:已知:如圖1-18,在△ABC中,AB=AC,O是△ABC內(nèi)一點(diǎn),且OB=OC.求證:直線AO垂直平分線段BC。.證明:∵AB=AC,∴點(diǎn)A在線段BC的垂直平分線上(到一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上).同理,點(diǎn)O在線段BC的垂直平分線上.∴直線AO是線段BC的垂直平分線(兩點(diǎn)確定一條直線).學(xué)生是第一次證明一條直線是已知線段的垂直平分線,因此老師要引導(dǎo)學(xué)生理清證明的思路和方法并給出完整的證明過程。第五環(huán)節(jié):隨堂練習(xí)課本P23;習(xí)題1.7:第1、2題第六環(huán)節(jié):課堂小結(jié)通過這節(jié)課的學(xué)習(xí)你有哪些新的收獲?還有哪些困惑?第七環(huán)節(jié):課后作業(yè)習(xí)題l.7第3、4題【板書設(shè)計(jì)】1.3線段的垂直平分線(一)已知:線段AB,點(diǎn)P是平面內(nèi)一點(diǎn)且PA=PB.求證:P點(diǎn)在AB的垂直平分線上.證明:過點(diǎn)P作已知線段AB的垂線PC,PA=PB,PC=PC,∴Rt△PAC≌Rt△PBC(HL定理).∴AC=BC,【教學(xué)反思】第二課時(shí)【教學(xué)目標(biāo)】1.知識(shí)與技能
能夠證明三角形三邊垂直平分線交于一點(diǎn)。2.過程與方法經(jīng)歷探索、猜測、證明的過程,進(jìn)一步發(fā)展學(xué)生的推理證明意識(shí)和能力.體驗(yàn)解決問題的方法,發(fā)展實(shí)踐能力和創(chuàng)新意識(shí)。3.情感態(tài)度與價(jià)值觀
體驗(yàn)數(shù)學(xué)活動(dòng)中的探索與創(chuàng)造,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性?!窘虒W(xué)重點(diǎn)】能夠證明與線段垂直平分線相關(guān)的結(jié)論。【教學(xué)難點(diǎn)】證明三線共點(diǎn)?!窘虒W(xué)過程】教學(xué)過程教學(xué)隨筆一、情景引入教師提問:“[利用尺規(guī)作三角形三條邊的垂直平分線,當(dāng)作完此題時(shí)你發(fā)現(xiàn)了什么?(教師可用多媒體演示作圖過程)”“三角形三邊的垂直平分線交于一點(diǎn).”、“這一點(diǎn)到三角形三個(gè)頂點(diǎn)的距離相等.”等都是學(xué)生可以發(fā)現(xiàn)的直觀性質(zhì)。下面請同學(xué)們剪一個(gè)三角形紙片,通過折疊找出每條邊的垂直平分線,觀察這三條垂直平分線,你是否發(fā)現(xiàn)同樣的結(jié)論?與同伴交流.教師質(zhì)疑:“這只是用我們的眼睛觀察到的,看到的一定是真的嗎?我們還需運(yùn)用公理和已學(xué)過的定理進(jìn)行推理證明,這樣的發(fā)現(xiàn)才更有意義.”這節(jié)課我們來學(xué)習(xí)探索和線段垂直平分線有關(guān)的結(jié)論.上述活動(dòng)中,教師要注意多畫幾種特殊的三角形讓學(xué)生親自體驗(yàn)和觀察結(jié)論的正確性。二、例題解析(1)教師引導(dǎo)學(xué)生分析,尋找證明方法。我們要從理論上證明這個(gè)結(jié)論,也就是證明“三線共點(diǎn)”,但這是我們沒有遇到過的.不妨我們再來看一下演示過程,或許你能從中受到啟示.通過演示和啟發(fā),引導(dǎo)學(xué)生認(rèn)同:“兩直線必交于一點(diǎn),那么要想證明‘“三線共點(diǎn)’,只要證第三條直線過這個(gè)交點(diǎn)或者說這個(gè)點(diǎn)在第三條直線上即可.”雖然我們已找到證明“三線共點(diǎn)”的突破口,詢問學(xué)生如何知道這個(gè)交點(diǎn)在第三邊的垂直平分線上呢?師生共析,完成證明(2)討論結(jié)束后,學(xué)生書寫證明過程。教師點(diǎn)評,注意幾何符號(hào)語言的規(guī)范性。已知:在△ABC中,設(shè)AB、BC的垂直平分線交于點(diǎn)P,連接AP,BP,CP.求證:P點(diǎn)在AC的垂直平分線上.證明:∵點(diǎn)P在線段AB的垂直平分線上,∴PA=PB(線段垂直平分線上的點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等).同理PB=PC.∴PA=PC.∴P點(diǎn)在AC的垂直平分線上(到線段兩個(gè)端點(diǎn)距離相等的點(diǎn).在這條線段的垂直平分線上).∴AB、BC、AC的垂直平分線相交于點(diǎn)P.進(jìn)一步設(shè)問:“從證明三角形三邊的垂直平分線交于一點(diǎn),你還能得出什么結(jié)論?”(交點(diǎn)P到三角形三個(gè)頂點(diǎn)的距離相等.)(3)多媒體演示我們得出的結(jié)論:定理三角形三邊的垂直平分線相交于一點(diǎn),并且這一點(diǎn)到三個(gè)頂點(diǎn)的距離相等(1)已知三角形的一條邊及這條邊上的高,你能作出三角形嗎?如果能,能作幾個(gè)?所作出的三角形都全等嗎?(2)已知等腰三角形的底邊,你能用尺規(guī)作出等腰三角形嗎?如果能,能作幾個(gè)?所作出的三角形都全等嗎?(3)已知等腰三角形的底邊及底邊上的高,你能用尺規(guī)作出等腰三角形嗎?能作幾個(gè)?學(xué)生通過小組討論,并嘗試作出草圖,驗(yàn)證自己的結(jié)論。由學(xué)生思考可得:(1)已知三角形的一條邊及這條邊上的高,能作出三角形,并且能作出無數(shù)多個(gè),如下圖:已知:三角形的一條邊a和這邊上的高h(yuǎn)求作:△ABC,使BC=a,BC邊上的高為h_()__()_1_A_D_C_B_A_a_h從上圖我們會(huì)發(fā)現(xiàn),先作已知線段BC=a;然后再作BC邊上的高h(yuǎn),但垂足不確定,我們可將垂足取在線段BC上或其所在直線上的任意一點(diǎn)D,過此點(diǎn)作BC邊的垂線,最后以D為端點(diǎn)在垂線上截取AD(或A1D),使AD=A1D=h,連接AB,AC(或△A1B,AlC),所得△ABC(或△A1BC)都滿足條件,所以這樣的三角形有無數(shù)多個(gè).觀察還可以發(fā)現(xiàn)這些三角形不都全等.(見幾何畫板課件)(2)如果已知等腰三角形的底邊,用尺規(guī)作出等腰三角形,這樣的等腰三角形也有無數(shù)多個(gè).根據(jù)線段垂直平分線的性質(zhì)定理可知,線段垂直平分線上的點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等,因?yàn)橹灰饕阎妊切蔚走叺拇怪逼椒志€,取它上面的任意一點(diǎn),和底邊的兩個(gè)端點(diǎn)相連接,都可以得到一個(gè)等腰三角形.另外有學(xué)生補(bǔ)充:“不是底邊垂直平分線上的任意一點(diǎn)都滿足條件,如底邊的中點(diǎn)在底邊上,不能構(gòu)成三角形,應(yīng)將這一點(diǎn)從底邊的垂直平分線上挖去.”(3)如果底邊和底邊上的高都一定,這樣的等腰三角形應(yīng)該只有兩個(gè),并且它們是全等的,分別位于已知底邊的兩側(cè).(5)例題學(xué)習(xí)已知底邊及底邊上的高,求作等腰三角形.已知:線段a、h求作:△ABC,使AB=AC,BC=a,高AD=h作法:1.作BC=a;2.作線段Bc的垂直平分線MN交BC于D點(diǎn);3.以D為圓心,h長為半徑作弧交MN于A點(diǎn);4.連接AB、AC∴△ABC就是所求作的三角形(如圖所示).(6)做一做:課本第25頁:教師引導(dǎo)學(xué)生分析作出草圖,注意對學(xué)生作法敘述的準(zhǔn)確性加以更正。四、動(dòng)手操作(1)例題:已知直線l和l上一點(diǎn)P,用尺規(guī)作l的垂線,使它經(jīng)過點(diǎn)P.學(xué)生先獨(dú)立思考完成,然后交流:說出做法并解釋作圖的理由。(2)拓展:如果點(diǎn)P是直線l外一點(diǎn),那么怎樣用尺規(guī)作l的垂線,使它經(jīng)過點(diǎn)P呢?說說你的作法,并與同伴交流.五、隨堂練習(xí)::習(xí)題1.8第1、2題。六、課時(shí)小結(jié)本節(jié)課通過推理證明了“到三角形三個(gè)頂點(diǎn)距離的點(diǎn)是三角形三條邊的垂直平分線的交點(diǎn),及三角形三條邊的垂直平分線交于一點(diǎn)”的結(jié)論,并能根據(jù)此結(jié)論“已知等腰三角形的底和底邊的高,求作等腰三角形”.七、課后作業(yè)習(xí)題1.8第3、4題【板書設(shè)計(jì)】1.3線段的垂直平分線(二)定理三角形三邊的垂直平分線相交于一點(diǎn),并且這一點(diǎn)到三個(gè)頂點(diǎn)的距離相等根據(jù)線段垂直平分線的性質(zhì)定理可知,線段垂直平分線上的點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等,因?yàn)橹灰饕阎妊切蔚走叺拇怪逼椒志€,取它上面的任意一點(diǎn),和底邊的兩個(gè)端點(diǎn)相連接,都可以得到一個(gè)等腰三角形.【教學(xué)反思】1.4角平分線【教學(xué)目標(biāo)】1.知識(shí)與技能
會(huì)證明角平分線的性質(zhì)定理及其逆定理。2.過程與方法
經(jīng)歷探索、猜測、證明的過程,進(jìn)一步發(fā)展學(xué)生的推理證明能力.豐富對幾何圖形的認(rèn)識(shí)。3.情感態(tài)度與價(jià)值觀
通過小組活動(dòng),學(xué)會(huì)與人合作,并能與他人交流思維的過程和結(jié)果?!窘虒W(xué)重點(diǎn)】運(yùn)用幾何符號(hào)語言證明角平分線的性質(zhì)定理及其逆命題?!窘虒W(xué)難點(diǎn)】角平分線的性質(zhì)定理在實(shí)際問題中的運(yùn)用?!窘虒W(xué)方法】講授法【課時(shí)安排】2課時(shí)第一課時(shí)【教學(xué)目標(biāo)】1.知識(shí)與技能
會(huì)證明角平分線的性質(zhì)定理及其逆定理。2.過程與方法
進(jìn)一步發(fā)展學(xué)生的推理證明意識(shí)和能力,培養(yǎng)學(xué)生將文字語言.轉(zhuǎn)化為符號(hào)語言、圖形語言的能力。3.情感態(tài)度與價(jià)值觀
經(jīng)歷探索,猜想,證明使學(xué)生掌握研究解決問題的方法?!窘虒W(xué)重點(diǎn)】正確地表述角平分線性質(zhì)定理的逆命題及其證明?!窘虒W(xué)難點(diǎn)】正確地表述角平分線性質(zhì)定理的逆命題及其證明?!窘虒W(xué)過程】教學(xué)過程教學(xué)隨筆一、情境引入我們曾用折紙的方法探索過角平分線上的點(diǎn)的性質(zhì),步驟如下:從折紙過程中,我們可以得出CD=CE,即角平分線上的點(diǎn)到角兩邊的距離相等.你能證明它嗎?二、探究新知(1)引導(dǎo)學(xué)生證明性質(zhì)定理請同學(xué)們自己嘗試著證明上述結(jié)論,然后在全班進(jìn)行交流.已知:如圖,OC是∠AOB的平分線,點(diǎn)P在OC上,PD⊥OA,PE⊥OB,垂足分別為D、E.求證:PD=PE.證明:∵∠1=∠2,OP=OP,∠PDO=∠PEO=90°,∴△PDO≌△PEO(AAS).∴PD=PE(全等三角形的對應(yīng)邊相等).(教師在教學(xué)過程中對有困難的學(xué)生要給以指導(dǎo))我們用公理和已學(xué)過的定理證明了我們折紙過程中得出的結(jié)論.我們把它叫做角平分線的性質(zhì)定理。(用多媒體演示)角平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等.(2)你能寫出這個(gè)定理的逆命題嗎?我們在前面學(xué)習(xí)線段的垂直平分線時(shí),已經(jīng)歷過構(gòu)造其逆命題的過程,我們可以類比著構(gòu)造角平分線性質(zhì)定理的逆命題.引導(dǎo)學(xué)生分析結(jié)論后完整地?cái)⑹龀鼋瞧椒志€性質(zhì)定理的逆命題:在一個(gè)角的內(nèi)部且到角的兩邊距離相等的點(diǎn),在這個(gè)角的角平分線上.它是真命題嗎?你能證明它嗎?沒有加“在角的內(nèi)部”時(shí),是假命題.(由學(xué)生自己獨(dú)立思考完成,在全班討論交流,對困難學(xué)生可個(gè)別輔導(dǎo))證明如下:已知:在么AOB內(nèi)部有一點(diǎn)P,且PD上OA,PE⊥OB,D、E為垂足且PD=PE,求證:點(diǎn)P在么AOB的角平分線上.證明:PD⊥OA,PE⊥OB,∴∠PDO=∠PEO=90°.在Rt△ODP和Rt△OEP中OP=OP,PD=PE,∴Rt△ODP≌Rt△OEP(HL定理).∴∠1=∠2(全等三角形對應(yīng)角相等).逆命題利用公理和我們已證過的定理證明了,那么我們就可以把這個(gè)逆命題叫做原定理的逆定理.我們就把它叫做角平分線的判定定理。(3)用直尺和圓規(guī)畫已知角的平方線及作圖的依據(jù)討論。三、鞏固練習(xí)綜合利用角平分線的性質(zhì)和判定、直角三角形的相關(guān)性質(zhì)解決問題。進(jìn)一步發(fā)展學(xué)生的推論證明能力。在學(xué)生獨(dú)立完成推理過程的基礎(chǔ)上,教師要給出書寫示范例題:在△ABC中,∠BAC=60°,點(diǎn)D在BC上,AD=10,DE⊥AB,DF⊥AC,垂足分別為E,F(xiàn),且DE=DF,求DE的長.(4)課本例題學(xué)習(xí)四、隨堂練習(xí)課本第29頁1、2題。五、課堂小結(jié)這節(jié)課證明了角平分線的性質(zhì)定理和判定定理,在有角的平分線(或證明是角的平分線)時(shí),過角平分線上的點(diǎn)向兩邊作垂線段,利用角平分線的判定或性質(zhì)則使問題迅速得到解決。六、布置作業(yè)習(xí)題1.9第1,2,3,4題.【板書設(shè)計(jì)】1.4角平分線(一)已知:在么AOB內(nèi)部有一點(diǎn)P,且PD上OA,PE⊥OB,D、E為垂足且PD=PE,求證:點(diǎn)P在么AOB的角平分線上.證明:PD⊥OA,PE⊥OB,∴∠PDO=∠PEO=90°.在Rt△ODP和Rt△OEP中OP=OP,PD=PE,∴Rt△ODP≌Rt△OEP(HL定理).∴∠1=∠2(全等三角形對應(yīng)角相等).【教學(xué)反思】第二課時(shí)【教學(xué)目標(biāo)】1.知識(shí)與技能
證明與角的平分線的性質(zhì)定理和判定定理相關(guān)的結(jié)論。2.過程與方法經(jīng)歷探索、猜測、證明的過程,進(jìn)一步發(fā)展學(xué)生的推理證明意識(shí)和能力.體驗(yàn)解決問題的方法,發(fā)展實(shí)踐能力和創(chuàng)新意識(shí)。3.情感態(tài)度與價(jià)值觀
在數(shù)學(xué)活動(dòng)中獲得成功的體驗(yàn),鍛煉克服困難的意志,建立自信心?!窘虒W(xué)重點(diǎn)】三角形三個(gè)內(nèi)角的平分線的性質(zhì)。【教學(xué)難點(diǎn)】角平分線的性質(zhì)定理和判定定理的綜合應(yīng)用。【教學(xué)過程】教學(xué)過程教學(xué)隨筆第一環(huán)節(jié):設(shè)置情境問題,搭建探究平臺(tái)問題l習(xí)題1.8的第1題作三角形的三個(gè)內(nèi)角的角平分線,你發(fā)現(xiàn)了什么?能證明自己發(fā)現(xiàn)的結(jié)論一定正確嗎?于是,首先證明“三角形的三個(gè)內(nèi)角的角平分線交于一點(diǎn)”.教師要引導(dǎo)學(xué)生進(jìn)行邏輯上的證明。第二環(huán)節(jié):展示思維過程,構(gòu)建探究平臺(tái)已知:如圖,設(shè)△ABC的角平分線.BM、CN相交于點(diǎn)P,證明:P點(diǎn)在∠BAC的角平分線上.證明:過P點(diǎn)作PD⊥AB,PF⊥AC,PE⊥BC,其中D、E、F是垂足.∵BM是△ABC的角平分線,點(diǎn)P在BM上,∴PD=PE(角平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等).同理:PE=PF.∴PD=PF.∴點(diǎn)P在∠BAC的平分線上(在一個(gè)角的內(nèi)部,且到角兩邊距離相等的點(diǎn),在這個(gè)角的平分線上).∴△ABC的三條角平分線相交于點(diǎn)P.在證明過程中,我們除證明了三角形的三條角平分線相交于一點(diǎn)外,還有什么“附帶”的成果呢?(PD=PE=PF,即這個(gè)交點(diǎn)到三角形三邊的距離相等.)于是我們得出了有關(guān)三角形的三條角平分線的結(jié)論,即定理三角形的三條角平分線相交于一點(diǎn),并且這一點(diǎn)到三條邊的距離相等.通過列表來比較三角形三邊的垂直平分線和三條角平分線的性質(zhì)定理(板書)問題2如圖:直線l1、l2、l3表示三條相互交叉的公路,現(xiàn)要建一個(gè)貨物中轉(zhuǎn)站,要求它到三條公路的距離相等,則可選擇的地址有幾處?你如何發(fā)現(xiàn)的?要求學(xué)生思考、交流。實(shí)況如下:[生]有一處.在三條公路的交點(diǎn)A、B、C組成的△ABC三條角平分線的交點(diǎn)處.因?yàn)槿切稳龡l角平分線交于一點(diǎn),且這一點(diǎn)到三邊的距離相等.而現(xiàn)在要建的貨物中轉(zhuǎn)站要求它到三條公路的距離相等.這一點(diǎn)剛好符合.[生]我找到四處.(同學(xué)們很吃驚)除了剛才同學(xué)找到的三角形ABC內(nèi)部的一點(diǎn)外,我認(rèn)為在三角形外部還有三點(diǎn).作∠ACB、∠ABC外角的平分線交于點(diǎn)P1(如下圖所示),我們利用角平分線的性質(zhì)定理和判定定理,可知點(diǎn)P1在∠CAB的角平分線上,且到l1、l2、l3的距離相等.同理還有∠BAC、∠BCA的外角的角平分線的交點(diǎn)P3;因此滿足條件共4個(gè),分別是P、P1、P2、P3第三環(huán)節(jié):例題講解[例1]如圖,在△ABC中.AC=BC,∠C=90°,AD是△ABC的角平分線,DE⊥AB,垂足為E.(1)已知CD=4cm,求AC的長;(2)求證:AB=AC+CD.分析:本例需要運(yùn)用前面所學(xué)的多個(gè)定理,而且將計(jì)算和證明融合在一起,目的是使學(xué)生進(jìn)一步理解、掌握這些知識(shí)和方法,并能綜合運(yùn)用它們解決問題.第(1)問中,求AC的長,需求出BC的長,而BC=CD+DB,CD=4cIn,而BD在等腰直角三角形DBE中,根據(jù)角平分線的性質(zhì),DE=CD=4cm,再根據(jù)勾股定理便可求出DB的長.第(2)問中,求證AB=AC+CD.這是我們第一次遇到這種形式的證明,利用轉(zhuǎn)化的思想AB=AE+BE,所以需證AC=AE,CD=BE.(1)解:∵AD是△ABC的角平分線,∠C=90°,DE⊥AB.∴DE=CD=4cm(角平分線上的點(diǎn)到這個(gè)角兩邊的距離相等).∵∠AC=∠BC∴∠B=∠BAC(等邊對等角).∵∠C=90°,∴∠B=EQ\F(1,2)×90°=45°.∴∠BDE=90°—45°=45°.∴BE=DE(等角對等邊).在等腰直角三角形BDE中BD=2DE2.=42cm(勾股定理),∴AC=BC=CD+BD=(4+42)cm.(2)證明:由(1)的求解過程可知,Rt△ACD≌Rt△AED(HL定理)∴AC=AE.∵BE=DE=CD,∴AB=AE+BE=AC+CD.[例2]已知:如圖,P是么AOB平分線上的一點(diǎn),PC⊥OA,PD⊥OB,垂足分別為C、D.求證:(1)OC=OD;(2)OP是CD的垂直平分線.證明:(1)P是∠AOB角平分線上的一點(diǎn),PC⊥OA,PD⊥OB,∴PC=PD(角平分線上的點(diǎn)到角兩邊的距離相等).在Rt△OPC和Rt△OPD中,OP=OP,PC=PD,∴Rt△OPC≌Rt△OPD(HL定理).∴OC=OD(全等三角形對應(yīng)邊相等).(2)又OP是∠AOB的角平分線,∴OP是CD的垂直平分線(等腰三角形“三線合一”定理).思考:圖中還有哪些相等的線段和角呢?第四環(huán)節(jié):課時(shí)小結(jié)本節(jié)課我們利用角平分線的性質(zhì)和判定定理證明了三角形三條角平分線交于一點(diǎn),且這一點(diǎn)到三角形各邊的距離相等.并綜合運(yùn)用我們前面學(xué)過的性質(zhì)定理等解決了幾何中的計(jì)算和證明問題.第五環(huán)節(jié):課后作業(yè)習(xí)題1.10第1、2題【板書設(shè)計(jì)】1.4角平分線(二)三邊垂直平分線三條角平分線三角形銳角三角形交于三角形內(nèi)一點(diǎn)交于三角形內(nèi)一點(diǎn)鈍角三角形交于三角形外一點(diǎn)直角三角形交于斜邊的中點(diǎn)交點(diǎn)性質(zhì)到三角形三個(gè)頂點(diǎn)的距離相等到三角形三邊的距離相等【教學(xué)反思】回顧與思考【教學(xué)目標(biāo)】1.知識(shí)與技能
在回顧與思考中建立本章的知識(shí)框架圖,復(fù)習(xí)有關(guān)定理的探索與證明,證明的思路和方法,尺規(guī)作圖等。2.過程與方法
進(jìn)一步體會(huì)證明的必要性,發(fā)展學(xué)生的初步的演繹推理能力;進(jìn)一步掌握綜合法的證明方法,結(jié)合實(shí)例體會(huì)反證法的含義;提高學(xué)生用規(guī)范的數(shù)學(xué)語言表達(dá)論證過程的能力。3.情感態(tài)度與價(jià)值觀
通過積極參與數(shù)學(xué)學(xué)習(xí)活動(dòng),對數(shù)學(xué)的證明產(chǎn)生好奇心和求知欲,培養(yǎng)學(xué)生合作交流的能力,以及獨(dú)立思考的良好學(xué)習(xí)習(xí)慣?!窘虒W(xué)重點(diǎn)】通過例題的講解和課堂練習(xí)對所學(xué)知識(shí)進(jìn)行復(fù)習(xí)鞏固是重點(diǎn)?!窘虒W(xué)難點(diǎn)】本章知識(shí)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- CJ/T 374-2011城鎮(zhèn)橋梁球型鋼支座
- CJ/T 262-2016給水排水用直埋式閘閥
- CJ/T 173-2002電子式出租汽車計(jì)價(jià)器磁電式傳感器
- CJ/T 108-1999鋁塑復(fù)合壓力管(搭接焊)
- 中級(jí)社會(huì)工作者心理學(xué)試題及答案
- 軟件評測師考試成功的試題與答案
- 新生兒簡答試題及答案
- 全面復(fù)習(xí)2025年網(wǎng)絡(luò)規(guī)劃設(shè)計(jì)師試題及答案
- 詞語理解面試題庫及答案
- Msoffice文檔管理策略與方法試題及答案
- 動(dòng)物生理學(xué)實(shí)驗(yàn)指導(dǎo)書
- GB/T 3077-2015合金結(jié)構(gòu)鋼
- 閩侯縣國土空間總體規(guī)劃(2021-2035年)
- 城鎮(zhèn)污水排入排水管網(wǎng)許可申請表(模板)
- 中國兒童青少年膳食指南
- 風(fēng)電項(xiàng)目造價(jià)控制的方法
- 六年級(jí)下冊道德與法治課件第四單元第九課
- 象棋比賽計(jì)分表
- 烙鐵溫度點(diǎn)檢表
- 熱式質(zhì)量流量計(jì)技術(shù)協(xié)議
- 公司質(zhì)量異常處理單
評論
0/150
提交評論