廣東省梅縣東山中學2023-2024學年高一數(shù)學第一學期期末統(tǒng)考試題含解析_第1頁
廣東省梅縣東山中學2023-2024學年高一數(shù)學第一學期期末統(tǒng)考試題含解析_第2頁
廣東省梅縣東山中學2023-2024學年高一數(shù)學第一學期期末統(tǒng)考試題含解析_第3頁
廣東省梅縣東山中學2023-2024學年高一數(shù)學第一學期期末統(tǒng)考試題含解析_第4頁
廣東省梅縣東山中學2023-2024學年高一數(shù)學第一學期期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

廣東省梅縣東山中學2023-2024學年高一數(shù)學第一學期期末統(tǒng)考試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知角的頂點在原點,始邊與軸正半軸重合,終邊上有一點,,則()A. B.C. D.2.若角滿足,,則角所在的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限3.已知直二面角,點,,為垂足,,,為垂足.若,則到平面的距離等于A. B.C. D.14.已知,,,下列不等式正確個數(shù)有()①,②,③,④.A.1 B.2C.3 D.45.直線與直線互相垂直,則這兩條直線的交點坐標為()A. B.C. D.6.如圖所示,將等腰直角△ABC沿斜邊BC上的高AD折成一個二面角,使得∠B′AC=60°.那么這個二面角大小是()A.30° B.60°C.90° D.120°7.已知函數(shù),則()A. B.C. D.8.下列各組角中,兩個角終邊不相同的一組是()A.與 B.與C.與 D.與9.為了得到函數(shù)的圖像,只需把函數(shù)的圖像上()A.各點的橫坐標縮短到原來的倍,再向左平移個單位B.各點的橫坐標縮短到原來的倍,再向左平移個單位C.各點的橫坐標縮短到原來的2倍,再向左平移個單位D.各點的橫坐標縮短到原來的2倍,再向左平移個單位10.已知是第二象限角,且,則()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知角的頂點為坐標原點,始邊為軸的正半軸,終邊經(jīng)過點,則___________.12.若,則____13.設(shè)是R上的奇函數(shù),且當時,,則__________14.定義:如果函數(shù)在定義域內(nèi)給定區(qū)間上存在,滿足,則稱函數(shù)是上的“平均值函數(shù)”,是它的一個均值點.若函數(shù)是上的平均值函數(shù),則實數(shù)的取值范圍是____15.函數(shù)的定義域為_________16.無論實數(shù)k取何值,直線kx-y+2+2k=0恒過定點__三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)(其中)的圖象上相鄰兩個最高點的距離為(Ⅰ)求函數(shù)的圖象的對稱軸;(Ⅱ)若函數(shù)在內(nèi)有兩個零點,求的取值范圍及的值18.已知函數(shù)(1)判斷在區(qū)間上的單調(diào)性,并用函數(shù)單調(diào)性的定義給出證明;(2)設(shè)(k為常數(shù))有兩個零點,且,當時,求k的取值范圍19.設(shè)函數(shù).(1)當時,求函數(shù)的零點;(2)當時,判斷的奇偶性并給予證明;(3)當時,恒成立,求m的最大值.20.如圖,在平面直角坐標系xOy中,點A為單位圓與x軸正半軸的交點,點P為單位圓上的一點,且,點P沿單位圓按逆時針方向旋轉(zhuǎn)角后到達點.(1)求陰影部分的面積;(2)當時,求的值.21.已知函數(shù).(1)求;(2)設(shè),,求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】由三角函數(shù)定義列式,計算,再由所給條件判斷得解.【詳解】由題意知,故,又,∴.故選:B2、C【解析】根據(jù),,分別確定的范圍,綜合即得解.【詳解】解:由知,是一、三象限角,由知,是三、四象限角或終邊在y軸負半軸上,故是第三象限角故選:C3、C【解析】如圖,在平面內(nèi)過點作于點因為為直二面角,,所以,從而可得.又因為,所以面,故的長度就是點到平面的距離在中,因為,所以因為,所以.則在中,因為,所以.因為,所以,故選C4、D【解析】由于,得,根據(jù)基本不等式對選項一一判斷即可【詳解】因,,,所以,得,當且僅當時取等號,②對;由,當且僅當時取等號,①對;由得,所以,當且僅當時取等號,③對;由,當且僅當時取等號,④對故選:D5、B【解析】時,直線分別化為:,此時兩條直線不垂直.時,利用兩條直線垂直可得:,解得.聯(lián)立方程解出即可得出.【詳解】時,直線分別化為:,此時兩條直線不垂直.時,由兩條直線垂直可得:,解得.綜上可得:.聯(lián)立,解得,.∴這兩條直線的交點坐標為.故選:【點睛】本題考查了直線相互垂直、分類討論方法、方程的解法,考查了推理能力與計算能力,屬于基礎(chǔ)題.6、C【解析】根據(jù)折的過程中不變的角的大小、結(jié)合二面角的定義進行判斷即可.【詳解】因為AD是等腰直角△ABC斜邊BC上的高,所以,因此是二面角的平面角,∠B′AC=60°.所以是等邊三角形,因此,在中.故選:C【點睛】本題考查了二面角的判斷,考查了數(shù)學運算能力,屬于基礎(chǔ)題.7、A【解析】由題中條件,推導出,,,,由此能求出的值【詳解】解:函數(shù),,,,,故選A【點睛】本題考查函數(shù)值的求法,考查函數(shù)性質(zhì)等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題8、D【解析】由終邊相同的角的性質(zhì)逐項判斷即可得解.【詳解】對于A,因為,所以與終邊相同;對于B,因為,所以與終邊相同;對于C,因為,所以與終邊相同;對于D,若,解得,所以與終邊不同.故選:D.9、B【解析】各點的橫坐標縮短到原來的倍,變?yōu)椋傧蜃笃揭苽€單位,得到.10、B【解析】先由求出,再結(jié)合是第二象限角,求即可.【詳解】∵∴,∵是第二象限角,∴,∴,故A,C,D錯,B對,故選:B.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】利用三角函數(shù)定義求出、的值,結(jié)合誘導公式可求得所求代數(shù)式的值.【詳解】由三角函數(shù)的定義可得,,因此,.故答案為:.12、##0.25【解析】運用同角三角函數(shù)商數(shù)關(guān)系式,把弦化切代入即可求解.【詳解】,故答案為:.13、【解析】由函數(shù)的性質(zhì)得,代入當時的解析式求出的值,即可得解.【詳解】當時,,,是上的奇函數(shù),故答案為:14、##,##【解析】根據(jù)題意,方程,即在內(nèi)有實數(shù)根,若函數(shù)在內(nèi)有零點.首先滿足,解得,或.對稱軸為.對分類討論即可得出【詳解】解:根據(jù)題意,若函數(shù)是,上的平均值函數(shù),則方程,即在內(nèi)有實數(shù)根,若函數(shù)在內(nèi)有零點則,解得,或(1),.對稱軸:①時,,,(1),因此此時函數(shù)在內(nèi)一定有零點.滿足條件②時,,由于(1),因此函數(shù)在內(nèi)不可能有零點,舍去綜上可得:實數(shù)的取值范圍是,故答案為:,15、【解析】根據(jù)被開放式大于等于零和對數(shù)有意義,解對數(shù)不等式得到結(jié)果即可.【詳解】∵函數(shù)∴x>0且,∴∴函數(shù)的定義域為故答案為【點睛】本題考查了根據(jù)函數(shù)的解析式求定義域的應(yīng)用問題,是基礎(chǔ)題目16、【解析】由kx-y+2+2k=0,得(x+2)k+(2-y)=0,由此能求出無論實數(shù)k取何值,直線kx-y+2+2k=0恒過定點【詳解】∵kx-y+2+2k=0,∴(x+2)k+(2-y)=0,解方程組,得∴無論實數(shù)k取何值,直線kx-y+2+2k=0恒過定點故答案為:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ),.【解析】(Ⅰ)由題意,圖象上相鄰兩個最高點的距離為,即周期,可得,即可求解對稱軸;(Ⅱ)函數(shù)在,內(nèi)有兩個零點,,轉(zhuǎn)化為函數(shù)與函數(shù)有兩個交點,即可求解的范圍;在,內(nèi)有兩個零點,是關(guān)于對稱軸是對稱的,即可求解的值【詳解】(Ⅰ)∵已知函數(shù)(其中)的圖象上相鄰兩個最高點的距離為,∴,故函數(shù).令,得+,故函數(shù)的圖象的對稱軸方程為+,;(Ⅱ)由(Ⅰ)可知函數(shù).∵x∈,∴∈[,]∴-≤≤,要使函數(shù)在內(nèi)有兩個零點∴-<m<,且m即m的取值范圍是(-,)∪(,)函數(shù)在內(nèi)有兩個零點,可得是關(guān)于對稱軸是對稱的,對稱軸為=2x-,得x=,在內(nèi)的對稱軸x=或當m∈(-,1)時,可得=,=當m∈(-1,-)時,可得x1+x2=,∴==18、(1)在區(qū)間上的單調(diào)遞減,證明詳見解析;(2)【解析】(1)在區(qū)間上的單調(diào)遞減,任取,且,再判斷的符號即可;(2)令,得到,根據(jù),轉(zhuǎn)化為有兩個零點,且,求解.【小問1詳解】解:在區(qū)間上的單調(diào)遞減,證明如下:任取,且,則,因為,所以,因為,所以,所以,即,所以在區(qū)間上的單調(diào)遞減;【小問2詳解】令,則,因為,所以,則,即,因為(k為常數(shù))有兩個零點,且,,所以(k為常數(shù))有兩個零點,且,,所以,解得.19、(1)﹣3和1(2)奇函數(shù),證明見解析(3)3【解析】(1)令求解;(2)由(1)得到,再利用奇偶性的定義判斷;(3)將時,恒成立,轉(zhuǎn)化為,在上恒成立求解.【小問1詳解】解:當時,由,解得或,∴函數(shù)的零點為﹣3和1;【小問2詳解】由(1)知,則,由,解得,故的定義域關(guān)于原點對稱,又,,∴,∴是上的奇函數(shù).【小問3詳解】∵,且當時,恒成立,即,在上恒成立,∴,在上恒成立,令,易知在上單調(diào)遞增∴,∴,故m的最大值為3.20、(1)(2)【解析】(1)由三角函數(shù)定義求出點坐標,用扇形面積減三角形面積可得弓形面積;(2)由三角函數(shù)定義寫出點坐標,計算后用二倍角公式和誘導公式計算【詳解】(1)由三角函數(shù)定義可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論