版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
甘肅省靖遠一中2023-2024學年高一上數(shù)學期末監(jiān)測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,都為單位向量,且,夾角的余弦值是,則A. B.C. D.2.若表示空間中兩條不重合的直線,表示空間中兩個不重合的平面,則下列命題中正確的是()A.若,則 B.若,則C.若,則 D.若,則3.樣本,,,的平均數(shù)為,樣本,,,的平均數(shù)為,則樣本,,,,,,,的平均數(shù)為A B.C. D.4.函數(shù)在的圖象大致為()A. B.C. D.5.若關(guān)于的函數(shù)的最大值為,最小值為,且,則實數(shù)的值為()A.2020 B.2019C.1009 D.10106.形如的函數(shù)因其函數(shù)圖象類似于漢字中的“囧”字,故我們把其生動地稱為“囧函數(shù)”.若函數(shù)(且)有最小值,則當時的“囧函數(shù)”與函數(shù)的圖象交點個數(shù)為A. B.C. D.7.下列函數(shù)中,最小正周期為且圖象關(guān)于原點對稱的函數(shù)是()A. B.C. D.8.某圓的一條弦長等于半徑,則這條弦所對的圓心角為A. B.C. D.19.設(shè)a是方程的解,則a在下列哪個區(qū)間內(nèi)()A.(0,1) B.(3,4)C.(2,3) D.(1,2)10.已知函數(shù)為上偶函數(shù),且在上的單調(diào)遞增,若,則滿足的的取值范圍是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.__________.12.若命題“”為真命題,則的取值范圍是______13.已知一組數(shù)據(jù),,…,的平均數(shù),方差,則另外一組數(shù)據(jù),,…,的平均數(shù)為______,方差為______14.已知函數(shù),若,使得,則實數(shù)a的取值范圍是___________.15.已知向量,其中,若,則的值為_________.16.已知函數(shù),若函數(shù)恰有三個不同的零點,則實數(shù)k的取值范圍是_____________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知圓,直線(1)直線l一定經(jīng)過哪一點;(2)若直線l平分圓C,求k的值;(3)若直線l與圓C相交于A,B,求弦長的最小值及此時直線的方程18.已知函數(shù)的部分圖象如圖所示.(1)寫出函數(shù)f(x)的最小正周期T及ω、φ的值;(2)求函數(shù)f(x)在區(qū)間上的最大值與最小值.19.已知函數(shù)的定義域為.(1)求;(2)設(shè)集合,若,求實數(shù)的取值范圍.20.已知向量m=(cos,sin),n=(2+sinx,2-cos),函數(shù)=m·n,x∈R.(1)求函數(shù)的最大值;(2)若且=1,求值.21.已知,,求,的值;求的值
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】利用,結(jié)合數(shù)量積的定義可求得的平方的值,再開方即可【詳解】依題意,,故選D【點睛】本題考查了平面向量數(shù)量積的性質(zhì)及其運算,屬基礎(chǔ)題.向量數(shù)量積的運算主要掌握兩點:一是數(shù)量積的基本公式;二是向量的平方等于向量模的平方.2、C【解析】利用空間位置關(guān)系的判斷及性質(zhì)定理進行判斷或舉反例判斷【詳解】對于A,若n?平面α,顯然結(jié)論錯誤,故A錯誤;對于B,若m?α,n?β,α∥β,則m∥n或m,n異面,故B錯誤;對于C,若m⊥n,m⊥α,n⊥β,則α⊥β,根據(jù)面面垂直的判定定理進行判定,故C正確;對于D,若α⊥β,m?α,n?β,則m,n位置關(guān)系不能確定,故D錯誤故選C【點睛】本題考查了空間線面位置關(guān)系的性質(zhì)與判斷,屬于中檔題3、D【解析】樣本,,,的總和為,樣本,,,的總和為,樣本,,,,,,,的平均數(shù)為,選D.4、A【解析】根據(jù)函數(shù)解析式,結(jié)合特殊值,即可判斷函數(shù)圖象.【詳解】設(shè),則,故為上的偶函數(shù),故排除B又,,排除C、D故選:A.【點睛】本題考查圖象識別,注意從函數(shù)的奇偶性、單調(diào)性和特殊點函數(shù)值的正負等方面去判斷,本題屬于中檔題.5、D【解析】化簡函數(shù),構(gòu)造函數(shù),再借助函數(shù)奇偶性,推理計算作答.【詳解】依題意,當時,,,則,當時,,,即函數(shù)定義域為R,,令,,顯然,即函數(shù)是R上的奇函數(shù),依題意,,,而,即,而,解得,所以實數(shù)的值為.故選:D6、C【解析】當時,,而有最小值,故.令,,其圖像如圖所示:共4個不同的交點,選C.點睛:考慮函數(shù)圖像的交點的個數(shù),關(guān)鍵在于函數(shù)圖像的正確刻畫,注意利用函數(shù)的奇偶性來簡化圖像的刻畫過程.7、A【解析】求出函數(shù)的周期,函數(shù)的奇偶性,判斷求解即可【詳解】解:y=cos(2x)=﹣sin2x,是奇函數(shù),函數(shù)的周期為:π,滿足題意,所以A正確y=sin(2x)=cos2x,函數(shù)是偶函數(shù),周期為:π,不滿足題意,所以B不正確;y=sin2x+cos2xsin(2x),函數(shù)是非奇非偶函數(shù),周期為π,所以C不正確;y=sinx+cosxsin(x),函數(shù)是非奇非偶函數(shù),周期為2π,所以D不正確;故選A考點:三角函數(shù)的性質(zhì).8、C【解析】直接利用已知條件,轉(zhuǎn)化求解弦所對的圓心角即可.【詳解】圓的一條弦長等于半徑,故由此弦和兩條半徑構(gòu)成的三角形是等邊三角形,所以弦所對的圓心角為.故選C.【點睛】本題考查扇形圓心角的求法,是基本知識的考查.9、C【解析】設(shè),再分析得到即得解.【詳解】由題得設(shè),由零點定理得a∈(2,3).故答案為C【點睛】本題主要考查函數(shù)的零點和零點定理,意在考查學生對這些知識的掌握水平和分析推理能力.10、B【解析】根據(jù)偶函數(shù)的性質(zhì)和單調(diào)性解函數(shù)不等式【詳解】是偶函數(shù),.所以不等式化為,又在上遞增,所以,或,即或故選:B二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】應用誘導公式化簡求值即可.【詳解】原式.故答案為:1.12、【解析】依題意可得恒成立,則,得到一元二次不等式,解得即可;【詳解】解:依題意可得,命題等價于恒成立,故只需要解得,即故答案為:13、①.11②.54【解析】由平均數(shù)與方差的性質(zhì)即可求解.【詳解】解:由題意,數(shù)據(jù),,…,的平均數(shù)為,方差為故答案:11,54.14、【解析】將“對,使得,”轉(zhuǎn)化為,再根據(jù)二次函數(shù)的性質(zhì)和指數(shù)函數(shù)的單調(diào)性求得最值代入即可解得結(jié)果.【詳解】當時,,∴當時,,當時,為增函數(shù),所以時,取得最大值,∵對,使得,∴,∴,解得.故答案為:.15、4【解析】利用向量共線定理即可得出【詳解】∵∥,∴=8,解得,其中,故答案為【點睛】本題考查了向量共線定理,考查了向量的坐標運算,屬于基礎(chǔ)題16、【解析】根據(jù)函數(shù)解析式畫出函數(shù)圖象,則函數(shù)的零點個數(shù),轉(zhuǎn)化為函數(shù)與有三個交點,結(jié)合函數(shù)圖象判斷即可;【詳解】解:因為,函數(shù)圖象如下所示:依題意函數(shù)恰有三個不同的零點,即函數(shù)與有三個交點,結(jié)合函數(shù)圖象可得,即;故答案為:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)(3)弦長的最小值為,此時直線的方程為【解析】(1)由可求出結(jié)果;(2)轉(zhuǎn)化為圓心在直線上可求出結(jié)果;(3)當時,弦長最小,根據(jù)垂直關(guān)系求出直線斜率,根據(jù)點斜式求出直線的方程,利用勾股定理可求出最小弦長.【詳解】(1)由得得,所以直線l一定經(jīng)過點.(2)因為直線l平分圓C,所以圓心在直線上,所以,解得.(3)依題意可知當時,弦長最小,此時,所以,所以,即,圓心到直線的距離,所以.所以弦長的最小值為,此時直線的方程為.【點睛】關(guān)鍵點點睛:(3)中,將弦長最小轉(zhuǎn)化為是解題關(guān)鍵.18、(1),,;(2)最小值為,最大值為1.【解析】(1)由函數(shù)的部分圖象求解析式,由周期求出,代入求出的值,可得函數(shù)的解析式;(2)由以上可得,,再利用正弦函數(shù)的定義域和值域,求得函數(shù)的最值.【詳解】(1)根據(jù)函數(shù)的部分圖象,可得,解得,,將代入可得,解得;(2)由以上可得,,,,,當時,即,函數(shù)取得最小值為.當時,即,函數(shù)取得最大值為1.【點睛】本題考查三角函數(shù)部分圖象求解析式,考查三角函數(shù)給定區(qū)間的最值,屬于基礎(chǔ)題.19、(1)A(2)【解析】(1)由函數(shù)的解析式分別令真數(shù)為正數(shù),被開方數(shù)非負確定集合A即可;(2)分類討論和兩種情況確定實數(shù)的取值范圍即可.【詳解】(1)由,解得,由,解得,∴.(2)當時,函數(shù)在上單調(diào)遞增.∵,∴,即.于是.要使,則滿足,解得.∴.當時,函數(shù)在上單調(diào)遞減.∵,∴,即.于是要使,則滿足,解得與矛盾.∴.綜上,實數(shù)的取值范圍為.【點睛】本題主要考查函數(shù)定義域的求解,集合之間的關(guān)系與運算等知識,意在考查學生的轉(zhuǎn)化能力和計算求解能力.20、(1)f(x)的最大值是4(2)-【解析】(1)先由向量數(shù)量積坐標表示得到函數(shù)的三角函數(shù)解析式,再將其化簡得到f(x)=4sin(x∈R),最大值易得;(2)若且=1,,解三角方程求出符合條件的x的三角函數(shù)值,再有余弦的和角公式求的值【詳解】(1)因為f(x)=m·n=cosx(2+sinx)+sinx·(2-cosx)=2(sinx+cosx)=4sin(x∈R),所以f(x)的最大值是4.(2)因為f(x)=1,所以sin=.又因為x∈,即x+∈.所以cos=-cos=cos.=coscos-sinsin=-×-×=-.【點睛】本題考查平面向量的綜合題21、(1),;(2).【解析】正切的二倍角公式得,再由同角三角函數(shù)關(guān)系式即可得的值.先計算然后
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版奶粉生產(chǎn)廢棄物資源化利用服務(wù)合同范本頁24篇
- 2025版教育培訓機構(gòu)品牌授權(quán)及門店移交合同3篇
- 二零二五年度農(nóng)機零部件進出口貿(mào)易合同
- 2025年度綠色環(huán)保內(nèi)墻涂料工程高品質(zhì)施工服務(wù)合同4篇
- 二零二五年度面粉原料進口關(guān)稅減免申請合同4篇
- 二零二五年度二手房買賣合同補充條款協(xié)議書(含交易透明)3篇
- 二零二五年度文化演出活動贊助合同正規(guī)范本
- 二零二四年度嬰幼兒專用奶粉代理權(quán)租賃合同范本3篇
- 二零二五年度企業(yè)人力資源戰(zhàn)略規(guī)劃與實施合同范本9篇
- 2025年度個人與個人藝術(shù)品拍賣合同范本4篇
- 農(nóng)民工工資表格
- 【寒假預習】專題04 閱讀理解 20篇 集訓-2025年人教版(PEP)六年級英語下冊寒假提前學(含答案)
- 2024年智能監(jiān)獄安防監(jiān)控工程合同3篇
- 100道20以內(nèi)的口算題共20份
- 高三完形填空專項訓練單選(部分答案)
- 護理查房高鉀血癥
- 項目監(jiān)理策劃方案匯報
- 《職業(yè)培訓師的培訓》課件
- 建筑企業(yè)新年開工儀式方案
- 一例產(chǎn)后出血的個案護理
- 急診與災難醫(yī)學課件 03 呼吸困難大課何琳zhenshi
評論
0/150
提交評論