能源部門間歇性可再生能源整合成本綜述-英_第1頁
能源部門間歇性可再生能源整合成本綜述-英_第2頁
能源部門間歇性可再生能源整合成本綜述-英_第3頁
能源部門間歇性可再生能源整合成本綜述-英_第4頁
能源部門間歇性可再生能源整合成本綜述-英_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

CommentaryAn

Overview

of

Integration

Costs

of

VariableRenewables

in

thePower

SectorJune2023FarisF.

Aljamed,Frank

A.

Felder,

AmroM.

ElshurafaIntroductionInrecentyears,thecostofelectricitygeneratedbyrenewableshassigni?cantlydecreasedtothepointwhereitiscostcompetitivewithconventionalplants(HeptonstallandGross,2021).

However,

incorporatingvariablerenewableenergy(VRE)technologieslikewindandsolarphotovoltaics(PV)intothepowersystemcreatesintermittency.Byaddingintermittentsourcesofgeneration,demandandsupplywillnotalwaysmatch.Thismeansthatthesystemrequiresmorebackupgeneratorsandmore?exibilitytobalancethemismatchbetweensupplyanddemand.IntegrationcostsmustbefactoredintodeterminetheoptimalshareofVREandthetotalsystemcost.Traditionally,

thelevelizedcostofenergy(LCOE)hasbeenusedtocomparethecostsofdifferentpowergenerators.LCOEcalculatesthetotallifetimediscountedcostsofconstructingandoperatinga

plantanddividesitby

theprojectedtotalenergyproducedduringitsassumedlifespan.However,

LCOEdoesnotconsiderthecoststhatariseduetoVREintermittencyortheexpensesassociatedwithadaptingthepowersystemtothechangesbroughtby

VRE.Therefore,LCOEalonecannotcapturethetotalsystemcostswhenVREisintroducedtothegrid(Lothet

al.,

2022).

Thiscommentaryprovidesa

briefoverviewofhowVREintegrationcostsarecalculatedby

examiningvariousmethodsavailableintheliterature.De?nitionofIntegrationCostsandtheirComponentsIntegrationcostsarecategorizedintothreecomponents:balancingcosts,gridcosts,andpro?lecosts.BalancingcostsrefertothecostsimposedbytheunpredictablenatureofVREgeneration.Supplyuncertaintycausesday-aheadforecastingerrors,whichnecessitateoperatingreservesand/orstoragetobalancesupplyanddemand.GridcostsresultfromVREregion-speci?crequirements.VREtechnologiesareless?exiblethanconventionalgenerationintermsofwheretheycanbebuilt.Sometimes,VREgeneratorsarelocatedfarfromloadcenters,requiringadditionaltransmissioninfrastructuretodeliverenergy.Pro?lecostsaremostlyduetothevariablenatureofVRE(Ueckerdtetal.2013).Integrationcostsarecategorizedintothreecomponents:balancingcosts,gridcosts,andpro?lecostsPro?lecostswerepreviouslyreferredtoas‘adequacycosts.’Adequacycostsaretheexpensesattributabletothelow-capacitycreditofVRE.Conventionalgenerationcapacityisconsidered‘?rm’capacity,alwaysreadytomeetdemand,whichisnotthecaseforVRE.Asaresult,capacitycostsincreaseasmoreVREisintegratedintothesystem.Pro?lecostsareamorecomprehensiveconceptthatcapturesallcostsimposedbyVREvariability(HeptonstallandGross2021).Pro?lecostscomprisethreecomponents.The?rstcomponentisoverproductioncosts,whicharethecostsarisingfromthecurtailmentrequiredforover-generatedpower.

Thesecondcomponentisbackupcosts,whicharethecostsofbackupcapacityneededtobalancesupplyAnOverviewofIntegrationCostsofVariableRenewablesinthePowerSector2Figure1.

Hierarchyofintegrationcostsandtheircomponents.Source:Ueckerdtetal.(2013).anddemand.Thethirdcomponentisfull-loadhour(FLH)reductioncosts.VREsreducetheFLHofdispatchableplants,resultinginlowergenerationpercapacityfortheseplants(Ueckerdtetal.2013).

Figure1summarizestheintegrationcosts.ReviewofHowIntegrationCostsofVariableRenewableEnergyAreCalculatedLoaddurationcurvesmethodOnemethodtoassessintegrationcostsistheloaddurationcurve(LDC)method.AnLDCdisplaysthehourlyloadofayear,

sortedfromthehighestloadhourtotheleastloadhour.

When(VRE)isadded,theLDCischangedtoresidualloaddurationcurve(RLDC),

whichshowshowmuchelectricitydemandisleftaftersubtractingthesupplyfromrenewableresources.To

determinetheresidualcostsforthesystemwithVRE,oneneedstointegratealongtheinverseoftheRLDCandmultiplythevaluebytherespectiveminimumscreeningcurvevalue.ForthesystemwithoutVRE,theintegrationisalongtheinverseoftheLDC.Screeningcurvesshowthetotalcostperkilowatt(kW)peryearofdifferentgenerationtechnologies.Figure2displaysanexampleofanLDCandanRLDC.AnOverviewofIntegrationCostsofVariableRenewablesinthePowerSector3Figure2.

ConceptualschematicexplainingthedifferencebetweenLDCandRLDC.Source:Authors’illustration.Ueckerdtetal.(2013)

introducedthesystemLCOEmetric,whichisthesumoftheplant’smarginalgenerationcostsandmarginalintegrationcosts.TheauthorsdividedthecostsofthesystemintoVREgenerationcostandresidualcosts.TheresidualcostsarethegenerationcostsofconventionalplantsandtheintegrationcostsofVRE.Theauthorscomparedtheresidualcostsoftwosystems:onewithVREandonewithout.SincethesystemwithoutVREhasnointegrationcosts,comparingtheresidualcostsofthetwosystemsisolatestheVREintegrationcosts.Theintegrationcostsarede?nedasthedifferencebetweenthespeci?ccostsperunitofresidualloadofthetwosystemsmultipliedbytheresidualgeneration.Ueckerdtetal.estimatedbalancingandgridcostsfrompreviousstudiesandcalculatedpro?lecosts.Forwindsharesfrom5%

to30%,balancingcostsrangefrom2.5to5eurospermegawatthour(€/MWh),

andgridcostsarearound13

€/MWhfor40%windpenetration.Pro?lecostsreachabout30

€/MWhat30%windpenetration,andoverallintegrationcostscangoupto60

€/MWhat40%windpenetration.Integrationcostscanbereducedbyintroducingoptionssuchaslongdistanceinterconnection,storage,anddemandmanagement.Notethatthestudybeingrevieweddoesnotoptimizetheenergymix.Theonlyoptionconsideredwasthecapacitymixofresidualpowergenerationbythermalgenerators.Thus,thepro?lecostscalculatedareoverestimated.AnOverviewofIntegrationCostsofVariableRenewablesinthePowerSector4CostproductionmodelmethodAnothermethodtoassessintegrationcostsisthecostproductionmodelmethod.Here,themodelercomparesascenariowithoutrenewablestoanotherwithrenewables.Thedifferenceincostbetweenthetwoscenarioswouldbetheintegrationcosts.Themodelscanbebuiltusingstandardsoftwareorprogramminglanguages.Forinstance,Brouweretal.(2015)

usedPLEXOS,acommerciallyavailablesoftwarepackagethatmodelspowersystems,tosimulatethepowersectorforWesternEuropein2050.Fordifferentpenetrationlevels,theauthorsconsidered?vecomplementaryoptionstointegrateVREatthelowestcost:demandresponse(DR),

gas-?redpowerplantswithandwithoutcarboncapture,increasedinterconnectioncapacity,curtailment,andelectricitystorage.PLEXOSoptimizesunitcommitmentandeconomicdispatchwhilemeeting?veconstraints:balancingelectricitysupplyanddemand,?exibilityconstraintsofgenerators,limitedtransmissioncapacityforinterconnections,scheduledandunscheduledoutages,andthebalancingreservesrequirements.Pro?lecostswerecalculatedforvariablerenewableenergy(VRE)penetrationlevelsbetween22%and59%,withvaluesbetween0%and22%

linearlyinterpolated.Theincreaseinpro?lecostsduetoVREadditionismainlyattributedtotwofactors:thereductioninthecapacityfactorofthermalgeneratorscausedbyincreasedVRE,andtheneedformorecurtailmentduetooverproductionfromrenewables(Brouweretal.2015).Marginalpro?lecostsrangedfrom0€/MWhto100

€/MWhforpenetrationlevelsof0%to60%.

Upto40%penetration,integrationcostsincreasedlinearly,reachingapproximately30

€/MWh.However,

afterthe40%mark,integrationcostsstartedtogrowexponentially.Reichenbergetal.(2018)

focusedontheintegrationcostsofVREinEuropebydividingitinto10

regions.Theyusedanelectricityinvestmentmodelthataccountsforvariabilityandvariationmanagementtooptimizethedispatchandinvestmentingeneration,storage,andtransmissionforallpenetrationlevels.Theauthorscalculatedthesystemlevelizedcostofelectricity(LCOE)usingthesamede?nitionasUeckerdtetal.ThemarginalsystemLCOEincreasedlinearlyasVREpenetrationincreased,witharateof6€/MWhforeach10%

increaseuntilreaching80%penetration.Afterthatpoint,themarginalsystemLCOEstartedtoincreaseexponentiallyduetoallocatingVREinregionswithlowercapacityfactorsandtheneedtocurtailorstoreexcessenergy.Xietal.(2022)calculatedtheintegrationcostsforthepowersystemintheJilinprovinceofChina,comparingasystemwithnoVREgenerationtoasystemwithVREgeneration.Duetothecoal-dominatednatureoftheJilinpowersystem,itexperiencedarapidincreaseinintegrationcostsatanearlierpenetrationlevelcomparedtootherpowersystems.Yao

etal.(2020)simulatedthepowersystemofGuangdongprovinceinChinaandfoundthatintegrationcostsforwindandsolarPV

rangedfrom-2.18€/MWhto11.47

€/MWhand-5.21€/MWhto6.73

€/MWh,respectively,forpenetrationlevelsupto30%.AnOverviewofIntegrationCostsofVariableRenewablesinthePowerSector5Overall,theintegrationcostsof

VREvaryOverall,theintegrationcostsofVREvarydependingonthepenetrationlevel,system?exibility,andthespeci?ccharacteristicsofthepowersystembeinganalyzed.WhilemarginalsystemLCOEandincrementaloperatingcostsofthermalplantstendtoincreaselinearlywithhigherVREpenetration,curtailmentcosts,idlecosts,andbalancingcostscandecreaseorremainconstantinmore?exiblepowersystems.dependingonthepenetrationlevel,system

?exibility,andthespeci?ccharacteristicsof

thepowersystem

beinganalyzedThetwostudieswe

discussedonChinaonlyconsiderintegrationcostsforpenetrationlevelsupto40%.However,

toincreasethedeploymentofVREintheChinesepowersystem,bettersystem?exibilityisneeded.Ruetal.(2022)proposethattheChinesepowersystemcanachieveVREpenetrationlevelsbetween70%and85%byimplementingvariationmanagementoptionssuchasdifferentenergystoragetechnologyandultra-highvoltagedirectcurrent-based(UHVDC-based)transmission.DiscussionInUeckerdtetal.’s

model,theintegrationcostsstartedtoincreaseatahigherrateatlowerpenetrationlevelsthaninotherstudies.Forwind,thejumpoccurredat25%penetration,whileforPV,

itoccurredat15%penetration.Reichenbergetal.suggestthatthereasonbehindthisrelativelyearlyjumpinintegrationcostsisduetotheabsenceofvariationmanagementsolutionssuchastrade,storage,demandresponse,orcomplementarityofwindandsolar.Brouweretal.calculatedtheintegrationcostsofVREforupto60%penetration.Thesharpincreaseinpro?lecostshappenedlaterthaninUeckerdtetal.’s

study.Brouweretal.’s

modelisimplementedacrossEurope,notjustinGermany.Thisgivesitawiderscopethataccountsfortradebetweenregions.However,

onedownsidetothemodelisthatVREcapacityandtransmissionlocationswerenotoptimized,andthesharpincreaseinpro?lecostsoccursataround40%penetrationduetoreducedFLHandcurtailmentcosts.Integrationcosts

inReichenberg

et

al.start

increasing

sharply

ata

muchhigher

penetration

level

thanthat

of

previousstudies,

which

happens

ataround

80%

penetration.The

authors

state

thatthe

values

ofthe

integrationcost

aremostly

attributed

tocost

assumptions,

while

the

point

atwhich

thecosts

start

toincrease

sharply

stemsfrom

systemdynamics.

This

studyshowsthe

bene?ts

ofaccounting

for

variation

managementoptions

andhow

theyaffect

the

linearincrease

of

integrationcosts

with

respectto

VREpenetration

atsmall

shares.

Employingdifferent

integrationoptions

couldalso

prove

tobe

complementary

toeach

other.

For

example,

Auguadraet

al.

(2023)demonstrate

thatdemand

response

is

complementary

toenergystorageand

provides

?exibility

for

storagetechnology.AlimitationofReichenbergetal.’s

modelisthatitdoesn’tconsidersometechnicalaspectslikeforecastingerrorsandtheneedforbalancingpowerfromthermalplants.Anotherlimitationisthat,whilethemodelinvestsintransmissionbetweentheregions,transmissionwithineachregionisunaccountedfor.

AlimitationofsolarPVs

isthatthetimeresolutionisnothourly,whichimpactssolaravailability,asitcanchangedrasticallyAnOverviewofIntegrationCostsofVariableRenewablesinthePowerSector6fromonepointintimetothenext(e.g.,

from9a.m.to11

a.m.).

Finally,alimitationofwindgenerationistheinterannualvariabilityofwindspeed,whichwasnotaccountedforinthestudy.Accordingtotheliterature,balancingcostsaregenerallylowwhencomparedtoothercomponents,withestimatestheirvaluestypicallybelow6€/MWh.Whenthetrendlineis?ttedtothedata,balancingcostsincreasefrom2€/MWhto4€/MWhforwindpenetrationfrom0%to40%(Hirthetal.2014).

Hirthetal.?ndthatgridcostsarealsosmall,andtheyarenotusuallyreportedinmarginalterms.Furthermore,theresultsareusuallynotbasedoncostoptimization.Gridcostsareestimatedtobeintheorderof5€/MWh.Windpro?lecostsareestimatedtobenegativeorclosetozeroatlowpenetrationrates.However,

athigherpenetrationratesofbetween30%and40%,pro?lecostsforwindareestimatedtobearound15

to25€/MWh(Hirthetal.2014).Accordingto

theliterature,balancingcostsaregenerallylow

whencomparedtoother

components,withestimatestheirvalues

typicallybelow6€/MWhAnotherstudythatreviewedpastliteratureestimateswasconductedbyHeptonstallandGross(2021).

Theyestimatedthatadditionalcostsforoperatingreserves(usedtobalancesupplyanddemand)arebelow5€/MWhforupto35%penetrationandbelow10

€/MWhforpenetrationlevelsupto45%,withthesizeofthesecostsdependingonthe?exibilityofthesystem.Adequacycosts,whichareaspeci?ctype

ofpro?lecost,areestimatedtobearound10

€/MWhorlessforallpenetrationlevels.Pro?lecostsareestimatedtorangefrom15

to25€/MWhat25%to35%penetration.Theauthorsalsoestimatedgridcoststobeintherangeof7to28€/MWh.However,

theynotedthatestimatesforthesecostsvarywidelyacrosstheliterature,anditischallengingtoattributeallgridandtransmissionupgradestothevariablegenerationofVRE.Table

1,

below,summarizesthecostsdiscussedinthissection.Table

1.

Anestimateofthecostscalculatedinthestudiescovered.Point

ofGridcosts

Pro?lecostsexponentialPenetrationpercentageBalancingcosts(€/MWh)

(€/MWh)StudyMethodLocation(€/MWh)increaseUeckertdetal.LDCcalculations0%-40%

(wind)0%-25%(Solar)-5

-

60

(wind)-10

-

100

(solar)

15%

(solar)25%(wind)GermanyEuropeEuropeChina2.5-5(wind)0.2-10

-

13

(wind)N/ABrouweretal.Cost

productionmodel0%-60%0%-100%0%-40%0-1000-16.840%80%20%N/AReichenberg

Cost

productionetal.N/A0-110modelCost

productionmodelIncludedwithpro?leXietal.N/ACost

productionmodel-2.18

-11.47

(wind)-5.21-6.73(solar)Yao

etal.China0%-30%USA

andEuropeancountriesCost

productionmodelsHirth

etal.0%-40%2-450-250-25N/AN/AEurope,USA,Asia0%

-

45%

(Balancing)0%-35%(Pro?le)N/A(Grid)Heptonstall

Cost

productionandGross

models0-107-28AnOverviewofIntegrationCostsofVariableRenewablesinthePowerSector7ConclusionTherearegenerallytwomethodsforcalculatingintegrationcosts.The?rstmethodwe

coveredusestheloaddurationcurveandresidualloaddurationcurvetocomparetheresidualcostsofanon-VREsystemandasystemwithVRE.Thesecondmethodusesproductioncostmodels,whichisthemostcommonlyusedmethodduetoitshigheraccuracyanddescriptivepower.

We

alsosawthateachsystemhasitsowncharacteristicsandintegrationchallenges,andthereforerequiresadedicatedstudy.Theproductioncostmethodisthemostcommonlyusedmethodtoestimateintegrationcostsduetoitshigheraccuracy,despiteitbeingmoredataandmodelingheavy.Althoughthecalculationsperformedondifferentsystemswerenotexactlythesame,we

generallyobservesimilartrends.Balancingcostsareusuallybelow10

€/MWhandaretypicallyinthesingledigits.Whileliteratureongridcostsisscarce,thesecostsareusuallygreaterthanbalancingcosts.Pro?lecostsarealwaysthelargestcomponentofintegrationcosts,andtheytypicallyamounttoaround25€/MWhat35%to40%penetration.Insomecases,theycanevenbehigherifthesystemdoesnotaccountforappropriatevariationmanagementsolutions.At

lowerVREpenetrationlevels,integrationcostscanbeclosetozeroorevennegativeinsomecases.However,

asmoreVREgenerationisaddedtothesystem,thesecostsincreaserapidly.Dependingonthesystemcharacteristicsandintegrationoptionsconsidered,thelevelofincreaseinintegrationcostsvaries.Moreover,thepointatwhichthesecostsbegintoincreaseexponentiallyalsodependsontheaforementionedfactors.For?exiblesystems,integrationcostsstarttoincreaseexponentiallyatpenetrationlevelsabove40%.Ifthesystemalsoimplementsvariationmanagementsolutions,thenthepointofexponentialcostincreasescanbedelayedtoupto80%penetration.TheseresultsmustbeconsideredwhenVREtechnologiesareintegratedintothepowersystem.Factorssuchassystem?exibilityandinterconnectivity,forexample,needtobecarefullyevaluatedtoensureasmoothtransitiontothetargetedVREpenetrationlevel.Furthermore,keepinginmindthepowersystem’scharacteristicandchallengesisoftheutmostimportancetosuccessfullyselecttheappropriateintegrationoptions.AlthoughtheseconsiderationswillnotaffecttheLCOEofVRE,thesystemLCOE(theoverallsystemmarginalcosts)willbedecreased.AnOverviewofIntegrationCostsofVariableRenewablesinthePowerSector8ReferencesAuguadra,Marco,DavidRibó-Pérez,andTomás

Gómez-Navarro.2023.“Planningthedeploymentofenergystoragesystemstointegratehighsharesofrenewables:TheSpaincasestudy.”

Energy264:126275.Brouwer,AnneSjoerd,MachteldvandenBroek,WilliamZappa,WimC.Turkenburg,andAndréFaaij.2016.

“Least-costoptionsforintegratingintermittentrenewablesinlow-carbonpowersystems.”AppliedEnergy161:48-74.Heptonstall,PhilipJ.,

andRobertJKGross.2021.

“A

systematicreviewofthecostsandimpactsofintegratingvariablerenewablesintopowergrids.”NatureEnergy6(1):

72-83.Hirth,Lion,FalkoUeckerdt,andOttmarEdenhofer.2015.

“Integrationcostsrevisited–Aneconomicframeworkforwindandsolarvariability.”RenewableEnergy74:

925-939.Joos,Michael,andIainStaffell.2018.

“Short-termintegrationcostsofvariablerenewableenergy:WindcurtailmentandbalancinginBritainandGermany.”

RenewableandSustainableEnergyReviews86:

45-65.Li,Ru,Bao-JunTang,

BiyingYu,

HuaLiao,ChenZhang,andYi-MingWei.

2022.“Cost-optimaloperationstrategyforintegratinglargescaleofrenewableenergyinChina’spowersystem:Fromamulti-regionalperspective.”AppliedEnergy325:

119780.Loth,Eric,ChrisQin,JulietG.Simpson,andKatherineDykes.2022.“Whywe

mustmovebeyondLCOEforrenewableenergydesign.”AdvancesinAppliedEnergy8:

100112.Reichenberg,Lina,FredrikHedenus,MikaelOdenberger,andFilipJohnsson.2018.

“The

marginalsystemLCOEofvariablerenewables–EvaluatinghighpenetrationlevelsofwindandsolarinEurope.”Energy152:914-924.Ueckerdt,Falko,

LionHirth,GunnarLuderer,andOttmarEdenhofer.2013.“System

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論