




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
CommentaryAn
Overview
of
Integration
Costs
of
VariableRenewables
in
thePower
SectorJune2023FarisF.
Aljamed,Frank
A.
Felder,
AmroM.
ElshurafaIntroductionInrecentyears,thecostofelectricitygeneratedbyrenewableshassigni?cantlydecreasedtothepointwhereitiscostcompetitivewithconventionalplants(HeptonstallandGross,2021).
However,
incorporatingvariablerenewableenergy(VRE)technologieslikewindandsolarphotovoltaics(PV)intothepowersystemcreatesintermittency.Byaddingintermittentsourcesofgeneration,demandandsupplywillnotalwaysmatch.Thismeansthatthesystemrequiresmorebackupgeneratorsandmore?exibilitytobalancethemismatchbetweensupplyanddemand.IntegrationcostsmustbefactoredintodeterminetheoptimalshareofVREandthetotalsystemcost.Traditionally,
thelevelizedcostofenergy(LCOE)hasbeenusedtocomparethecostsofdifferentpowergenerators.LCOEcalculatesthetotallifetimediscountedcostsofconstructingandoperatinga
plantanddividesitby
theprojectedtotalenergyproducedduringitsassumedlifespan.However,
LCOEdoesnotconsiderthecoststhatariseduetoVREintermittencyortheexpensesassociatedwithadaptingthepowersystemtothechangesbroughtby
VRE.Therefore,LCOEalonecannotcapturethetotalsystemcostswhenVREisintroducedtothegrid(Lothet
al.,
2022).
Thiscommentaryprovidesa
briefoverviewofhowVREintegrationcostsarecalculatedby
examiningvariousmethodsavailableintheliterature.De?nitionofIntegrationCostsandtheirComponentsIntegrationcostsarecategorizedintothreecomponents:balancingcosts,gridcosts,andpro?lecosts.BalancingcostsrefertothecostsimposedbytheunpredictablenatureofVREgeneration.Supplyuncertaintycausesday-aheadforecastingerrors,whichnecessitateoperatingreservesand/orstoragetobalancesupplyanddemand.GridcostsresultfromVREregion-speci?crequirements.VREtechnologiesareless?exiblethanconventionalgenerationintermsofwheretheycanbebuilt.Sometimes,VREgeneratorsarelocatedfarfromloadcenters,requiringadditionaltransmissioninfrastructuretodeliverenergy.Pro?lecostsaremostlyduetothevariablenatureofVRE(Ueckerdtetal.2013).Integrationcostsarecategorizedintothreecomponents:balancingcosts,gridcosts,andpro?lecostsPro?lecostswerepreviouslyreferredtoas‘adequacycosts.’Adequacycostsaretheexpensesattributabletothelow-capacitycreditofVRE.Conventionalgenerationcapacityisconsidered‘?rm’capacity,alwaysreadytomeetdemand,whichisnotthecaseforVRE.Asaresult,capacitycostsincreaseasmoreVREisintegratedintothesystem.Pro?lecostsareamorecomprehensiveconceptthatcapturesallcostsimposedbyVREvariability(HeptonstallandGross2021).Pro?lecostscomprisethreecomponents.The?rstcomponentisoverproductioncosts,whicharethecostsarisingfromthecurtailmentrequiredforover-generatedpower.
Thesecondcomponentisbackupcosts,whicharethecostsofbackupcapacityneededtobalancesupplyAnOverviewofIntegrationCostsofVariableRenewablesinthePowerSector2Figure1.
Hierarchyofintegrationcostsandtheircomponents.Source:Ueckerdtetal.(2013).anddemand.Thethirdcomponentisfull-loadhour(FLH)reductioncosts.VREsreducetheFLHofdispatchableplants,resultinginlowergenerationpercapacityfortheseplants(Ueckerdtetal.2013).
Figure1summarizestheintegrationcosts.ReviewofHowIntegrationCostsofVariableRenewableEnergyAreCalculatedLoaddurationcurvesmethodOnemethodtoassessintegrationcostsistheloaddurationcurve(LDC)method.AnLDCdisplaysthehourlyloadofayear,
sortedfromthehighestloadhourtotheleastloadhour.
When(VRE)isadded,theLDCischangedtoresidualloaddurationcurve(RLDC),
whichshowshowmuchelectricitydemandisleftaftersubtractingthesupplyfromrenewableresources.To
determinetheresidualcostsforthesystemwithVRE,oneneedstointegratealongtheinverseoftheRLDCandmultiplythevaluebytherespectiveminimumscreeningcurvevalue.ForthesystemwithoutVRE,theintegrationisalongtheinverseoftheLDC.Screeningcurvesshowthetotalcostperkilowatt(kW)peryearofdifferentgenerationtechnologies.Figure2displaysanexampleofanLDCandanRLDC.AnOverviewofIntegrationCostsofVariableRenewablesinthePowerSector3Figure2.
ConceptualschematicexplainingthedifferencebetweenLDCandRLDC.Source:Authors’illustration.Ueckerdtetal.(2013)
introducedthesystemLCOEmetric,whichisthesumoftheplant’smarginalgenerationcostsandmarginalintegrationcosts.TheauthorsdividedthecostsofthesystemintoVREgenerationcostandresidualcosts.TheresidualcostsarethegenerationcostsofconventionalplantsandtheintegrationcostsofVRE.Theauthorscomparedtheresidualcostsoftwosystems:onewithVREandonewithout.SincethesystemwithoutVREhasnointegrationcosts,comparingtheresidualcostsofthetwosystemsisolatestheVREintegrationcosts.Theintegrationcostsarede?nedasthedifferencebetweenthespeci?ccostsperunitofresidualloadofthetwosystemsmultipliedbytheresidualgeneration.Ueckerdtetal.estimatedbalancingandgridcostsfrompreviousstudiesandcalculatedpro?lecosts.Forwindsharesfrom5%
to30%,balancingcostsrangefrom2.5to5eurospermegawatthour(€/MWh),
andgridcostsarearound13
€/MWhfor40%windpenetration.Pro?lecostsreachabout30
€/MWhat30%windpenetration,andoverallintegrationcostscangoupto60
€/MWhat40%windpenetration.Integrationcostscanbereducedbyintroducingoptionssuchaslongdistanceinterconnection,storage,anddemandmanagement.Notethatthestudybeingrevieweddoesnotoptimizetheenergymix.Theonlyoptionconsideredwasthecapacitymixofresidualpowergenerationbythermalgenerators.Thus,thepro?lecostscalculatedareoverestimated.AnOverviewofIntegrationCostsofVariableRenewablesinthePowerSector4CostproductionmodelmethodAnothermethodtoassessintegrationcostsisthecostproductionmodelmethod.Here,themodelercomparesascenariowithoutrenewablestoanotherwithrenewables.Thedifferenceincostbetweenthetwoscenarioswouldbetheintegrationcosts.Themodelscanbebuiltusingstandardsoftwareorprogramminglanguages.Forinstance,Brouweretal.(2015)
usedPLEXOS,acommerciallyavailablesoftwarepackagethatmodelspowersystems,tosimulatethepowersectorforWesternEuropein2050.Fordifferentpenetrationlevels,theauthorsconsidered?vecomplementaryoptionstointegrateVREatthelowestcost:demandresponse(DR),
gas-?redpowerplantswithandwithoutcarboncapture,increasedinterconnectioncapacity,curtailment,andelectricitystorage.PLEXOSoptimizesunitcommitmentandeconomicdispatchwhilemeeting?veconstraints:balancingelectricitysupplyanddemand,?exibilityconstraintsofgenerators,limitedtransmissioncapacityforinterconnections,scheduledandunscheduledoutages,andthebalancingreservesrequirements.Pro?lecostswerecalculatedforvariablerenewableenergy(VRE)penetrationlevelsbetween22%and59%,withvaluesbetween0%and22%
linearlyinterpolated.Theincreaseinpro?lecostsduetoVREadditionismainlyattributedtotwofactors:thereductioninthecapacityfactorofthermalgeneratorscausedbyincreasedVRE,andtheneedformorecurtailmentduetooverproductionfromrenewables(Brouweretal.2015).Marginalpro?lecostsrangedfrom0€/MWhto100
€/MWhforpenetrationlevelsof0%to60%.
Upto40%penetration,integrationcostsincreasedlinearly,reachingapproximately30
€/MWh.However,
afterthe40%mark,integrationcostsstartedtogrowexponentially.Reichenbergetal.(2018)
focusedontheintegrationcostsofVREinEuropebydividingitinto10
regions.Theyusedanelectricityinvestmentmodelthataccountsforvariabilityandvariationmanagementtooptimizethedispatchandinvestmentingeneration,storage,andtransmissionforallpenetrationlevels.Theauthorscalculatedthesystemlevelizedcostofelectricity(LCOE)usingthesamede?nitionasUeckerdtetal.ThemarginalsystemLCOEincreasedlinearlyasVREpenetrationincreased,witharateof6€/MWhforeach10%
increaseuntilreaching80%penetration.Afterthatpoint,themarginalsystemLCOEstartedtoincreaseexponentiallyduetoallocatingVREinregionswithlowercapacityfactorsandtheneedtocurtailorstoreexcessenergy.Xietal.(2022)calculatedtheintegrationcostsforthepowersystemintheJilinprovinceofChina,comparingasystemwithnoVREgenerationtoasystemwithVREgeneration.Duetothecoal-dominatednatureoftheJilinpowersystem,itexperiencedarapidincreaseinintegrationcostsatanearlierpenetrationlevelcomparedtootherpowersystems.Yao
etal.(2020)simulatedthepowersystemofGuangdongprovinceinChinaandfoundthatintegrationcostsforwindandsolarPV
rangedfrom-2.18€/MWhto11.47
€/MWhand-5.21€/MWhto6.73
€/MWh,respectively,forpenetrationlevelsupto30%.AnOverviewofIntegrationCostsofVariableRenewablesinthePowerSector5Overall,theintegrationcostsof
VREvaryOverall,theintegrationcostsofVREvarydependingonthepenetrationlevel,system?exibility,andthespeci?ccharacteristicsofthepowersystembeinganalyzed.WhilemarginalsystemLCOEandincrementaloperatingcostsofthermalplantstendtoincreaselinearlywithhigherVREpenetration,curtailmentcosts,idlecosts,andbalancingcostscandecreaseorremainconstantinmore?exiblepowersystems.dependingonthepenetrationlevel,system
?exibility,andthespeci?ccharacteristicsof
thepowersystem
beinganalyzedThetwostudieswe
discussedonChinaonlyconsiderintegrationcostsforpenetrationlevelsupto40%.However,
toincreasethedeploymentofVREintheChinesepowersystem,bettersystem?exibilityisneeded.Ruetal.(2022)proposethattheChinesepowersystemcanachieveVREpenetrationlevelsbetween70%and85%byimplementingvariationmanagementoptionssuchasdifferentenergystoragetechnologyandultra-highvoltagedirectcurrent-based(UHVDC-based)transmission.DiscussionInUeckerdtetal.’s
model,theintegrationcostsstartedtoincreaseatahigherrateatlowerpenetrationlevelsthaninotherstudies.Forwind,thejumpoccurredat25%penetration,whileforPV,
itoccurredat15%penetration.Reichenbergetal.suggestthatthereasonbehindthisrelativelyearlyjumpinintegrationcostsisduetotheabsenceofvariationmanagementsolutionssuchastrade,storage,demandresponse,orcomplementarityofwindandsolar.Brouweretal.calculatedtheintegrationcostsofVREforupto60%penetration.Thesharpincreaseinpro?lecostshappenedlaterthaninUeckerdtetal.’s
study.Brouweretal.’s
modelisimplementedacrossEurope,notjustinGermany.Thisgivesitawiderscopethataccountsfortradebetweenregions.However,
onedownsidetothemodelisthatVREcapacityandtransmissionlocationswerenotoptimized,andthesharpincreaseinpro?lecostsoccursataround40%penetrationduetoreducedFLHandcurtailmentcosts.Integrationcosts
inReichenberg
et
al.start
increasing
sharply
ata
muchhigher
penetration
level
thanthat
of
previousstudies,
which
happens
ataround
80%
penetration.The
authors
state
thatthe
values
ofthe
integrationcost
aremostly
attributed
tocost
assumptions,
while
the
point
atwhich
thecosts
start
toincrease
sharply
stemsfrom
systemdynamics.
This
studyshowsthe
bene?ts
ofaccounting
for
variation
managementoptions
andhow
theyaffect
the
linearincrease
of
integrationcosts
with
respectto
VREpenetration
atsmall
shares.
Employingdifferent
integrationoptions
couldalso
prove
tobe
complementary
toeach
other.
For
example,
Auguadraet
al.
(2023)demonstrate
thatdemand
response
is
complementary
toenergystorageand
provides
?exibility
for
storagetechnology.AlimitationofReichenbergetal.’s
modelisthatitdoesn’tconsidersometechnicalaspectslikeforecastingerrorsandtheneedforbalancingpowerfromthermalplants.Anotherlimitationisthat,whilethemodelinvestsintransmissionbetweentheregions,transmissionwithineachregionisunaccountedfor.
AlimitationofsolarPVs
isthatthetimeresolutionisnothourly,whichimpactssolaravailability,asitcanchangedrasticallyAnOverviewofIntegrationCostsofVariableRenewablesinthePowerSector6fromonepointintimetothenext(e.g.,
from9a.m.to11
a.m.).
Finally,alimitationofwindgenerationistheinterannualvariabilityofwindspeed,whichwasnotaccountedforinthestudy.Accordingtotheliterature,balancingcostsaregenerallylowwhencomparedtoothercomponents,withestimatestheirvaluestypicallybelow6€/MWh.Whenthetrendlineis?ttedtothedata,balancingcostsincreasefrom2€/MWhto4€/MWhforwindpenetrationfrom0%to40%(Hirthetal.2014).
Hirthetal.?ndthatgridcostsarealsosmall,andtheyarenotusuallyreportedinmarginalterms.Furthermore,theresultsareusuallynotbasedoncostoptimization.Gridcostsareestimatedtobeintheorderof5€/MWh.Windpro?lecostsareestimatedtobenegativeorclosetozeroatlowpenetrationrates.However,
athigherpenetrationratesofbetween30%and40%,pro?lecostsforwindareestimatedtobearound15
to25€/MWh(Hirthetal.2014).Accordingto
theliterature,balancingcostsaregenerallylow
whencomparedtoother
components,withestimatestheirvalues
typicallybelow6€/MWhAnotherstudythatreviewedpastliteratureestimateswasconductedbyHeptonstallandGross(2021).
Theyestimatedthatadditionalcostsforoperatingreserves(usedtobalancesupplyanddemand)arebelow5€/MWhforupto35%penetrationandbelow10
€/MWhforpenetrationlevelsupto45%,withthesizeofthesecostsdependingonthe?exibilityofthesystem.Adequacycosts,whichareaspeci?ctype
ofpro?lecost,areestimatedtobearound10
€/MWhorlessforallpenetrationlevels.Pro?lecostsareestimatedtorangefrom15
to25€/MWhat25%to35%penetration.Theauthorsalsoestimatedgridcoststobeintherangeof7to28€/MWh.However,
theynotedthatestimatesforthesecostsvarywidelyacrosstheliterature,anditischallengingtoattributeallgridandtransmissionupgradestothevariablegenerationofVRE.Table
1,
below,summarizesthecostsdiscussedinthissection.Table
1.
Anestimateofthecostscalculatedinthestudiescovered.Point
ofGridcosts
Pro?lecostsexponentialPenetrationpercentageBalancingcosts(€/MWh)
(€/MWh)StudyMethodLocation(€/MWh)increaseUeckertdetal.LDCcalculations0%-40%
(wind)0%-25%(Solar)-5
-
60
(wind)-10
-
100
(solar)
15%
(solar)25%(wind)GermanyEuropeEuropeChina2.5-5(wind)0.2-10
-
13
(wind)N/ABrouweretal.Cost
productionmodel0%-60%0%-100%0%-40%0-1000-16.840%80%20%N/AReichenberg
Cost
productionetal.N/A0-110modelCost
productionmodelIncludedwithpro?leXietal.N/ACost
productionmodel-2.18
-11.47
(wind)-5.21-6.73(solar)Yao
etal.China0%-30%USA
andEuropeancountriesCost
productionmodelsHirth
etal.0%-40%2-450-250-25N/AN/AEurope,USA,Asia0%
-
45%
(Balancing)0%-35%(Pro?le)N/A(Grid)Heptonstall
Cost
productionandGross
models0-107-28AnOverviewofIntegrationCostsofVariableRenewablesinthePowerSector7ConclusionTherearegenerallytwomethodsforcalculatingintegrationcosts.The?rstmethodwe
coveredusestheloaddurationcurveandresidualloaddurationcurvetocomparetheresidualcostsofanon-VREsystemandasystemwithVRE.Thesecondmethodusesproductioncostmodels,whichisthemostcommonlyusedmethodduetoitshigheraccuracyanddescriptivepower.
We
alsosawthateachsystemhasitsowncharacteristicsandintegrationchallenges,andthereforerequiresadedicatedstudy.Theproductioncostmethodisthemostcommonlyusedmethodtoestimateintegrationcostsduetoitshigheraccuracy,despiteitbeingmoredataandmodelingheavy.Althoughthecalculationsperformedondifferentsystemswerenotexactlythesame,we
generallyobservesimilartrends.Balancingcostsareusuallybelow10
€/MWhandaretypicallyinthesingledigits.Whileliteratureongridcostsisscarce,thesecostsareusuallygreaterthanbalancingcosts.Pro?lecostsarealwaysthelargestcomponentofintegrationcosts,andtheytypicallyamounttoaround25€/MWhat35%to40%penetration.Insomecases,theycanevenbehigherifthesystemdoesnotaccountforappropriatevariationmanagementsolutions.At
lowerVREpenetrationlevels,integrationcostscanbeclosetozeroorevennegativeinsomecases.However,
asmoreVREgenerationisaddedtothesystem,thesecostsincreaserapidly.Dependingonthesystemcharacteristicsandintegrationoptionsconsidered,thelevelofincreaseinintegrationcostsvaries.Moreover,thepointatwhichthesecostsbegintoincreaseexponentiallyalsodependsontheaforementionedfactors.For?exiblesystems,integrationcostsstarttoincreaseexponentiallyatpenetrationlevelsabove40%.Ifthesystemalsoimplementsvariationmanagementsolutions,thenthepointofexponentialcostincreasescanbedelayedtoupto80%penetration.TheseresultsmustbeconsideredwhenVREtechnologiesareintegratedintothepowersystem.Factorssuchassystem?exibilityandinterconnectivity,forexample,needtobecarefullyevaluatedtoensureasmoothtransitiontothetargetedVREpenetrationlevel.Furthermore,keepinginmindthepowersystem’scharacteristicandchallengesisoftheutmostimportancetosuccessfullyselecttheappropriateintegrationoptions.AlthoughtheseconsiderationswillnotaffecttheLCOEofVRE,thesystemLCOE(theoverallsystemmarginalcosts)willbedecreased.AnOverviewofIntegrationCostsofVariableRenewablesinthePowerSector8ReferencesAuguadra,Marco,DavidRibó-Pérez,andTomás
Gómez-Navarro.2023.“Planningthedeploymentofenergystoragesystemstointegratehighsharesofrenewables:TheSpaincasestudy.”
Energy264:126275.Brouwer,AnneSjoerd,MachteldvandenBroek,WilliamZappa,WimC.Turkenburg,andAndréFaaij.2016.
“Least-costoptionsforintegratingintermittentrenewablesinlow-carbonpowersystems.”AppliedEnergy161:48-74.Heptonstall,PhilipJ.,
andRobertJKGross.2021.
“A
systematicreviewofthecostsandimpactsofintegratingvariablerenewablesintopowergrids.”NatureEnergy6(1):
72-83.Hirth,Lion,FalkoUeckerdt,andOttmarEdenhofer.2015.
“Integrationcostsrevisited–Aneconomicframeworkforwindandsolarvariability.”RenewableEnergy74:
925-939.Joos,Michael,andIainStaffell.2018.
“Short-termintegrationcostsofvariablerenewableenergy:WindcurtailmentandbalancinginBritainandGermany.”
RenewableandSustainableEnergyReviews86:
45-65.Li,Ru,Bao-JunTang,
BiyingYu,
HuaLiao,ChenZhang,andYi-MingWei.
2022.“Cost-optimaloperationstrategyforintegratinglargescaleofrenewableenergyinChina’spowersystem:Fromamulti-regionalperspective.”AppliedEnergy325:
119780.Loth,Eric,ChrisQin,JulietG.Simpson,andKatherineDykes.2022.“Whywe
mustmovebeyondLCOEforrenewableenergydesign.”AdvancesinAppliedEnergy8:
100112.Reichenberg,Lina,FredrikHedenus,MikaelOdenberger,andFilipJohnsson.2018.
“The
marginalsystemLCOEofvariablerenewables–EvaluatinghighpenetrationlevelsofwindandsolarinEurope.”Energy152:914-924.Ueckerdt,Falko,
LionHirth,GunnarLuderer,andOttmarEdenhofer.2013.“System
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 室外庭院涂料施工方案
- 機房 施工方案
- 開工施工方案
- 灘涂錨桿施工方案
- TSHJNXH 0014-2024 火力發(fā)電廠煙氣二氧化碳捕集系統(tǒng)(化學吸收法)能效評價方法
- TSHAEPI 003-2022 餐飲油煙在線監(jiān)測(光散射法)與監(jiān)控技術規(guī)范
- 二零二五年度解除影視制作解除擔保合同
- 二零二五年度個人債權轉讓及債務清收執(zhí)行合作協(xié)議
- 二零二五年度跨境離婚協(xié)議書電子化執(zhí)行合同
- 二零二五年度子女自愿離婚協(xié)議書范本及離婚后子女監(jiān)護權
- 水庫移民安置檔案分類大綱與編號方案
- 衛(wèi)生和微生物基礎知識培訓-
- 外徑千分尺檢定證書
- ICU輪轉護士培訓計劃和手冊
- GB/T 9787-1988熱軋等邊角鋼尺寸、外形、重量及允許偏差
- GB/T 17614.1-2015工業(yè)過程控制系統(tǒng)用變送器第1部分:性能評定方法
- 財務工作督導檢查記錄表
- 輿情大數據監(jiān)測平臺建設方案
- CO2驅油后期氣竄機理及解決方法解讀課件
- 屏蔽泵知識-課件
- 醫(yī)療機構主要負責人簽字表(示例)
評論
0/150
提交評論