襄樊市重點中學2024屆中考五模數(shù)學試題含解析_第1頁
襄樊市重點中學2024屆中考五模數(shù)學試題含解析_第2頁
襄樊市重點中學2024屆中考五模數(shù)學試題含解析_第3頁
襄樊市重點中學2024屆中考五模數(shù)學試題含解析_第4頁
襄樊市重點中學2024屆中考五模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

襄樊市重點中學2024學年中考五模數(shù)學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.體育測試中,小進和小俊進行800米跑測試,小進的速度是小俊的1.25倍,小進比小俊少用了40秒,設(shè)小俊的速度是米/秒,則所列方程正確的是()A. B.C. D.2.-4的絕對值是()A.4 B. C.-4 D.3.衡陽市某生態(tài)示范園計劃種植一批梨樹,原計劃總產(chǎn)值30萬千克,為了滿足市場需求,現(xiàn)決定改良梨樹品種,改良后平均每畝產(chǎn)量是原來的1.5倍,總產(chǎn)量比原計劃增加了6萬千克,種植畝數(shù)減少了10畝,則原來平均每畝產(chǎn)量是多少萬千克?設(shè)原來平均每畝產(chǎn)量為萬千克,根據(jù)題意,列方程為A. B.C. D.4.如圖是二次函數(shù)y=ax2+bx+c的圖象,對于下列說法:①ac>0,②2a+b>0,③4ac<b2,④a+b+c<0,⑤當x>0時,y隨x的增大而減小,其中正確的是()A.①②③ B.①②④ C.②③④ D.③④⑤5.如圖所示的工件,其俯視圖是()A. B. C. D.6.如圖,BD是∠ABC的角平分線,DC∥AB,下列說法正確的是()A.BC=CD B.AD∥BCC.AD=BC D.點A與點C關(guān)于BD對稱7.如圖,AB∥CD,F(xiàn)E⊥DB,垂足為E,∠1=60°,則∠2的度數(shù)是()A.60° B.50° C.40° D.30°8.關(guān)于x的一元二次方程x2-2x-(m-1)=0有兩個不相等的實數(shù)根,則實數(shù)m的取值范圍是()A.且 B. C.且 D.9.﹣3的相反數(shù)是()A. B. C. D.10.已知點,為是反比例函數(shù)上一點,當時,m的取值范圍是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖的三角形紙片中,AB=8cm,BC=6cm,AC=5cm.沿過點B的直線折疊三角形,使點C落在AB邊的點E處,折痕為BD.則△AED的周長為____cm.12.如圖,矩形ABCD中,AB=2AD,點A(0,1),點C、D在反比例函數(shù)y=(k>0)的圖象上,AB與x軸的正半軸相交于點E,若E為AB的中點,則k的值為_____.13.因式分解:x3﹣4x=_____.14.若關(guān)于x的一元二次方程x2+2x﹣m=0有兩個相等的實數(shù)根,則m的值為______.15.如圖,△ABC∽△ADE,∠BAC=∠DAE=90°,AB=6,AC=8,F(xiàn)為DE中點,若點D在直線BC上運動,連接CF,則在點D運動過程中,線段CF的最小值是_____.16.如圖,小陽發(fā)現(xiàn)電線桿的影子落在土坡的坡面和地面上,量得,米,與地面成角,且此時測得米的影長為米,則電線桿的高度為__________米.三、解答題(共8題,共72分)17.(8分)解不等式組:,并把解集在數(shù)軸上表示出來.18.(8分)現(xiàn)有四張分別標有數(shù)字1、2、2、3的卡片,他們除數(shù)字外完全相同.把卡片背面朝上洗勻,從中隨機抽出一張后放回,再背朝上洗勻,從中隨機抽出一張,則兩次抽出的卡片所標數(shù)字不同的概率()A. B. C. D.19.(8分)如圖,在等腰△ABC中,AB=BC,以AB為直徑的⊙O與AC相交于點D,過點D作DE⊥BC交AB延長線于點E,垂足為點F.(1)證明:DE是⊙O的切線;(2)若BE=4,∠E=30°,求由、線段BE和線段DE所圍成圖形(陰影部分)的面積,(3)若⊙O的半徑r=5,sinA=,求線段EF的長.20.(8分)已知:如圖.D是的邊上一點,,交于點M,.(1)求證:;(2)若,試判斷四邊形的形狀,并說明理由.21.(8分)如圖,把△EFP按圖示方式放置在菱形ABCD中,使得頂點E、F、P分別在線段AB、AD、AC上,已知EP=FP=4,EF=4,∠BAD=60°,且AB>4.(1)求∠EPF的大小;(2)若AP=6,求AE+AF的值.22.(10分)對于平面直角坐標系xOy中的點P和直線m,給出如下定義:若存在一點P,使得點P到直線m的距離等于1,則稱P為直線m的平行點.(1)當直線m的表達式為y=x時,①在點,,中,直線m的平行點是______;②⊙O的半徑為,點Q在⊙O上,若點Q為直線m的平行點,求點Q的坐標.(2)點A的坐標為(n,0),⊙A半徑等于1,若⊙A上存在直線的平行點,直接寫出n的取值范圍.23.(12分)關(guān)于x的一元二次方程ax2+bx+1=1.(1)當b=a+2時,利用根的判別式判斷方程根的情況;(2)若方程有兩個相等的實數(shù)根,寫出一組滿足條件的a,b的值,并求此時方程的根.24.我市某中學舉辦“網(wǎng)絡(luò)安全知識答題競賽”,初、高中部根據(jù)初賽成績各選出5名選手組成初中代表隊和高中代表隊參加學校決賽,兩個隊各選出的5名選手的決賽成績?nèi)鐖D所示.平均分(分)中位數(shù)(分)眾數(shù)(分)方差(分2)初中部a85bs初中2高中部85c100160(1)根據(jù)圖示計算出a、b、c的值;結(jié)合兩隊成績的平均數(shù)和中位數(shù)進行分析,哪個隊的決賽成績較好?計算初中代表隊決賽成績的方差s初中2,并判斷哪一個代表隊選手成績較為穩(wěn)定.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解題分析】

先分別表示出小進和小俊跑800米的時間,再根據(jù)小進比小俊少用了40秒列出方程即可.【題目詳解】小進跑800米用的時間為秒,小俊跑800米用的時間為秒,∵小進比小俊少用了40秒,方程是,故選C.【題目點撥】本題考查了列分式方程解應(yīng)用題,能找出題目中的相等關(guān)系式是解此題的關(guān)鍵.2、A【解題分析】

根據(jù)絕對值的概念計算即可.(絕對值是指一個數(shù)在坐標軸上所對應(yīng)點到原點的距離叫做這個數(shù)的絕對值.)【題目詳解】根據(jù)絕對值的概念可得-4的絕對值為4.【題目點撥】錯因分析:容易題.選錯的原因是對實數(shù)的相關(guān)概念沒有掌握,與倒數(shù)、相反數(shù)的概念混淆.3、A【解題分析】

根據(jù)題意可得等量關(guān)系:原計劃種植的畝數(shù)改良后種植的畝數(shù)畝,根據(jù)等量關(guān)系列出方程即可.【題目詳解】設(shè)原計劃每畝平均產(chǎn)量萬千克,則改良后平均每畝產(chǎn)量為萬千克,根據(jù)題意列方程為:.故選:.【題目點撥】本題考查了由實際問題抽象出分式方程,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系.4、C【解題分析】

根據(jù)二次函數(shù)的圖象與性質(zhì)即可求出答案.【題目詳解】解:①由圖象可知:a>0,c<0,∴ac<0,故①錯誤;②由于對稱軸可知:<1,∴2a+b>0,故②正確;③由于拋物線與x軸有兩個交點,∴△=b2﹣4ac>0,故③正確;④由圖象可知:x=1時,y=a+b+c<0,故④正確;⑤當x>時,y隨著x的增大而增大,故⑤錯誤;故選:C.【題目點撥】本題考查二次函數(shù),解題的關(guān)鍵是熟練運用二次函數(shù)的圖象與性質(zhì),本題屬于基礎(chǔ)題型.5、B【解題分析】試題分析:從上邊看是一個同心圓,外圓是實線,內(nèi)圓是虛線,故選B.點睛:本題考查了簡單組合體的三視圖,從上邊看得到的圖形是俯視圖.看得見部分的輪廓線要畫成實線,看不見部分的輪廓線要畫成虛線.6、A【解題分析】

由BD是∠ABC的角平分線,根據(jù)角平分線定義得到一對角∠ABD與∠CBD相等,然后由DC∥AB,根據(jù)兩直線平行,得到一對內(nèi)錯角∠ABD與∠CDB相等,利用等量代換得到∠DBC=∠CDB,再根據(jù)等角對等邊得到BC=CD,從而得到正確的選項.【題目詳解】∵BD是∠ABC的角平分線,∴∠ABD=∠CBD,又∵DC∥AB,∴∠ABD=∠CDB,∴∠CBD=∠CDB,∴BC=CD.故選A.【題目點撥】此題考查了等腰三角形的判定,以及平行線的性質(zhì).學生在做題時,若遇到兩直線平行,往往要想到用兩直線平行得同位角或內(nèi)錯角相等,借助轉(zhuǎn)化的數(shù)學思想解決問題.這是一道較易的證明題,鍛煉了學生的邏輯思維能力.7、D【解題分析】

由EF⊥BD,∠1=60°,結(jié)合三角形內(nèi)角和為180°即可求出∠D的度數(shù),再由“兩直線平行,同位角相等”即可得出結(jié)論.【題目詳解】解:在△DEF中,∠1=60°,∠DEF=90°,

∴∠D=180°-∠DEF-∠1=30°.

∵AB∥CD,

∴∠2=∠D=30°.

故選D.【題目點撥】本題考查平行線的性質(zhì)以及三角形內(nèi)角和為180°,解題關(guān)鍵是根據(jù)平行線的性質(zhì),找出相等、互余或互補的角.8、A【解題分析】

根據(jù)一元二次方程的系數(shù)結(jié)合根的判別式△>1,即可得出關(guān)于m的一元一次不等式,解之即可得出實數(shù)m的取值范圍.【題目詳解】∵關(guān)于x的一元二次方程x2﹣2x﹣(m﹣1)=1有兩個不相等的實數(shù)根,∴△=(﹣2)2﹣4×1×[﹣(m﹣1)]=4m>1,∴m>1.故選B.【題目點撥】本題考查了根的判別式,牢記“當△>1時,方程有兩個不相等的實數(shù)根”是解題的關(guān)鍵.9、D【解題分析】

相反數(shù)的定義是:如果兩個數(shù)只有符號不同,我們稱其中一個數(shù)為另一個數(shù)的相反數(shù),特別地,1的相反數(shù)還是1.【題目詳解】根據(jù)相反數(shù)的定義可得:-3的相反數(shù)是3.故選D.【題目點撥】本題考查相反數(shù),題目簡單,熟記定義是關(guān)鍵.10、A【解題分析】

直接把n的值代入求出m的取值范圍.【題目詳解】解:∵點P(m,n),為是反比例函數(shù)y=-圖象上一點,∴當-1≤n<-1時,∴n=-1時,m=1,n=-1時,m=1,則m的取值范圍是:1≤m<1.故選A.【題目點撥】此題主要考查了反比例函數(shù)圖象上點的坐標性質(zhì),正確把n的值代入是解題關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、7【解題分析】

根據(jù)翻折變換的性質(zhì)可得BE=BC,DE=CD,然后求出AE,再求出△ADE的周長=AC+AE.【題目詳解】∵折疊這個三角形點C落在AB邊上的點E處,折痕為BD,∴BE=BC,DE=CD,∴AE=AB-BE=AB-BC=8-6=2cm,∴△ADE的周長=AD+DE+AE,=AD+CD+AE,=AC+AE,=5+2,=7cm.故答案為:7.【題目點撥】本題考查了翻折變換的性質(zhì),翻折前后對應(yīng)邊相等,對應(yīng)角相等.12、【解題分析】解:如圖,作DF⊥y軸于F,過B點作x軸的平行線與過C點垂直與x軸的直線交于G,CG交x軸于K,作BH⊥x軸于H,∵四邊形ABCD是矩形,∴∠BAD=90°,∴∠DAF+∠OAE=90°,∵∠AEO+∠OAE=90°,∴∠DAF=∠AEO,∵AB=2AD,E為AB的中點,∴AD=AE,在△ADF和△EAO中,∵∠DAF=∠AEO,∠AFD=∠AOE=90°,AD=AE,∴△ADF≌△EAO(AAS),∴DF=OA=1,AF=OE,∴D(1,k),∴AF=k﹣1,同理;△AOE≌△BHE,△ADF≌△CBG,∴BH=BG=DF=OA=1,EH=CG=OE=AF=k﹣1,∴OK=2(k﹣1)+1=2k﹣1,CK=k﹣2,∴C(2k﹣1,k﹣2),∴(2k﹣1)(k﹣2)=1k,解得k1=,k2=,∵k﹣1>0,∴k=.故答案為.點睛:本題考查了矩形的性質(zhì)和反比例函數(shù)圖象上點的坐標特征.圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k.13、x(x+2)(x﹣2)【解題分析】試題分析:首先提取公因式x,進而利用平方差公式分解因式.即x3﹣4x=x(x2﹣4)=x(x+2)(x﹣2).故答案為x(x+2)(x﹣2).考點:提公因式法與公式法的綜合運用.14、-1【解題分析】

根據(jù)關(guān)于x的一元二次方程x2+2x﹣m=0有兩個相等的實數(shù)根可知△=0,求出m的取值即可.【題目詳解】解:由已知得△=0,即4+4m=0,解得m=-1.故答案為-1.【題目點撥】本題考查的是根的判別式,即一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關(guān)系:①當△>0時,方程有兩個不相等的兩個實數(shù)根;②當△=0時,方程有兩個相等的兩個實數(shù)根;③當△<0時,方程無實數(shù)根.15、1【解題分析】試題分析:當點A、點C和點F三點共線的時候,線段CF的長度最小,點F在AC的中點,則CF=1.16、(14+2)米【解題分析】

過D作DE⊥BC的延長線于E,連接AD并延長交BC的延長線于F,根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半求出DE,再根據(jù)勾股定理求出CE,然后根據(jù)同時同地物高與影長成正比列式求出EF,再求出BF,再次利用同時同地物高與影長成正比列式求解即可.【題目詳解】如圖,過D作DE⊥BC的延長線于E,連接AD并延長交BC的延長線于F.∵CD=8,CD與地面成30°角,∴DE=CD=×8=4,根據(jù)勾股定理得:CE===4.∵1m桿的影長為2m,∴=,∴EF=2DE=2×4=8,∴BF=BC+CE+EF=20+4+8=(28+4).∵=,∴AB=(28+4)=14+2.故答案為(14+2).【題目點撥】本題考查了相似三角形的應(yīng)用,主要利用了同時同地物高與影長成正比的性質(zhì),作輔助線求出AB的影長若全在水平地面上的長BF是解題的關(guān)鍵.三、解答題(共8題,共72分)17、x≥【解題分析】分析:分別求解兩個不等式,然后按照不等式的確定方法求解出不等式組的解集,然后表示在數(shù)軸上即可.詳解:,由①得,x>﹣2;由②得,x≥,故此不等式組的解集為:x≥.在數(shù)軸上表示為:.點睛:本題考查的是解一元一次不等式組,正確求出每一個不等式解集是基礎(chǔ),熟知“同大取大;同小取??;大小小大中間找;大大小小找不到”的原則是解答此題的關(guān)鍵.18、A【解題分析】分析:根據(jù)題意畫出樹狀圖,從而可以得到兩次兩次抽出的卡片所標數(shù)字不同的情況及所有等可能發(fā)生的情況,進而根據(jù)概率公式求出兩次抽出的卡片所標數(shù)字不同的概率.詳解:由題意可得,兩次抽出的卡片所標數(shù)字不同的概率是:,故選:A.點睛:本題考查了樹狀圖法或列表法求概率,解題的關(guān)鍵是正確畫出樹狀圖或表格,然后用符合條件的情況數(shù)m除以所有等可能發(fā)生的情況數(shù)n即可,即.19、(1)見解析(2)8(3)【解題分析】分析:(1)連接BD、OD,由AB=BC及∠ADB=90°知AD=CD,根據(jù)AO=OB知OD是△ABC的中位線,據(jù)此知OD∥BC,結(jié)合DE⊥BC即可得證;(2)設(shè)⊙O的半徑為x,則OB=OD=x,在Rt△ODE中由sinE=求得x的值,再根據(jù)S陰影=S△ODE-S扇形ODB計算可得答案.(3)先證Rt△DFB∽Rt△DCB得,據(jù)此求得BF的長,再證△EFB∽△EDO得,據(jù)此求得EB的長,繼而由勾股定理可得答案.詳解:(1)如圖,連接BD、OD,∵AB是⊙O的直徑,∴∠BDA=90°,∵BA=BC,∴AD=CD,又∵AO=OB,∴OD∥BC,∵DE⊥BC,∴OD⊥DE,∴DE是⊙O的切線;(2)設(shè)⊙O的半徑為x,則OB=OD=x,在Rt△ODE中,OE=4+x,∠E=30°,∴,解得:x=4,∴DE=4,S△ODE=×4×4=8,S扇形ODB=,則S陰影=S△ODE-S扇形ODB=8-;(3)在Rt△ABD中,BD=ABsinA=10×=2,∵DE⊥BC,∴Rt△DFB∽Rt△DCB,∴,即,∴BF=2,∵OD∥BC,∴△EFB∽△EDO,∴,即,∴EB=,∴EF=.點睛:本題主要考查圓的綜合問題,解題的關(guān)鍵是掌握圓的有關(guān)性質(zhì)、中位線定理、三角函數(shù)的應(yīng)用及相似三角形的判定與性質(zhì)等知識點.20、(1)證明見解析;(2)四邊形ADCN是矩形,理由見解析.【解題分析】

(1)根據(jù)平行得出∠DAM=∠NCM,根據(jù)ASA推出△AMD≌△CMN,得出AD=CN,推出四邊形ADCN是平行四邊形即可;(2)根據(jù)∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC求出∠MCD=∠MDC,推出MD=MC,求出MD=MN=MA=MC,推出AC=DN,根據(jù)矩形的判定得出即可.【題目詳解】證明:(1)∵CN∥AB,∴∠DAM=∠NCM,∵在△AMD和△CMN中,∠DAM=∠NCMMA=MC∠DMA=∠NMC,∴△AMD≌△CMN(ASA),∴AD=CN,又∵AD∥CN,∴四邊形ADCN是平行四邊形,∴CD=AN;(2)解:四邊形ADCN是矩形,理由如下:∵∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC,∴∠MCD=∠MDC,∴MD=MC,由(1)知四邊形ADCN是平行四邊形,∴MD=MN=MA=MC,∴AC=DN,∴四邊形ADCN是矩形.【題目點撥】本題考查了全等三角形的性質(zhì)和判定,平行四邊形的判定和性質(zhì),矩形的判定的應(yīng)用,能綜合運用性質(zhì)進行推理是解此題的關(guān)鍵,綜合性比較強,難度適中.21、(1)∠EPF=120°;(2)AE+AF=6.【解題分析】試題分析:(1)過點P作PG⊥EF于G,解直角三角形即可得到結(jié)論;

(2)如圖2,過點P作PM⊥AB于M,PN⊥AD于N,證明△ABC≌△ADC,Rt△PME≌Rt△PNF,問題即可得證.試題解析:(1)如圖1,過點P作PG⊥EF于G,

∵PE=PF,

∴FG=EG=EF=2,∠FPG=∠EPG=∠EPF,

在△FPG中,sin∠FPG=,

∴∠FPG=60°,

∴∠EPF=2∠FPG=120°;

(2)如圖2,過點P作PM⊥AB于M,PN⊥AD于N,

∵四邊形ABCD是菱形,

∴AD=AB,DC=BC,

∴∠DAC=∠BAC,

∴PM=PN,

在Rt△PME于Rt△PNF中,,

∴Rt△PME≌Rt△PNF,

∴FN=EM,在Rt△PMA中,∠PMA=90°,∠PAM=∠DAB=30°,

∴AM=AP?cos30°=3,同理AN=3,

∴AE+AF=(AM-EM)+(AN+NF)=6.【題目點撥】運用了菱形的性質(zhì),解直角三角形,全等三角形的判定和性質(zhì),最值問題,等腰三角形的性質(zhì),作輔助線構(gòu)造直角三角形是解題的關(guān)鍵.22、(1)①,;②,,,;(2).【解題分析】

(1)①根據(jù)平行點的定義即可判斷;②分兩種情形:如圖1,當點B在原點上方時,作OH⊥AB于點H,可知OH=1.如圖2,當點B在原點下方時,同法可求;(2)如圖,直線OE的解析式為,設(shè)直線BC//OE交x軸于C,作CD⊥OE于D.設(shè)⊙A與直線BC相切于點F,想辦法求出點A的坐標,再根據(jù)對稱性求出左側(cè)點A的坐標即可解決問題;【題目詳解】解:(1)①因為P2、P3到直線y=x的距離為1,所以根據(jù)平行點的定義可知,直線m的平行點是,,故答案為,.②解:由題意可知,直線m的所有平行點組成平行于直線m,且到直線m的距離為1的直線.設(shè)該直線與x軸交于點A,與y軸交于點B.如圖1,當點B在原點上方時,作OH⊥AB于點H,可知OH=1.由直線m的表達式為y=x,可知∠OAB=∠OBA=45°.所以.直線AB與⊙O的交點即為滿足條件的點Q.連接,作軸于點N,可知.在中,可求.所以.在中,可求.所以.所以點的坐標為.同理可求點的坐標

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論