新高考數(shù)學(xué)二輪復(fù)習(xí)圓錐曲線專(zhuān)題突破提升練習(xí)第2講 圓錐曲線第二定義與焦半徑公式(解析版)_第1頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)圓錐曲線專(zhuān)題突破提升練習(xí)第2講 圓錐曲線第二定義與焦半徑公式(解析版)_第2頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)圓錐曲線專(zhuān)題突破提升練習(xí)第2講 圓錐曲線第二定義與焦半徑公式(解析版)_第3頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)圓錐曲線專(zhuān)題突破提升練習(xí)第2講 圓錐曲線第二定義與焦半徑公式(解析版)_第4頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)圓錐曲線專(zhuān)題突破提升練習(xí)第2講 圓錐曲線第二定義與焦半徑公式(解析版)_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第2講圓錐曲線第二定義與焦半徑公式參考答案與試題解析一.選擇題(共5小題)1.已知點(diǎn)SKIPIF1<0是雙曲線SKIPIF1<0上的動(dòng)點(diǎn),SKIPIF1<0,SKIPIF1<0為該雙曲線的左右焦點(diǎn),SKIPIF1<0為坐標(biāo)原點(diǎn),則SKIPIF1<0的最大值為SKIPIF1<0SKIPIF1<0A.SKIPIF1<0 B.2 C.SKIPIF1<0 D.SKIPIF1<0【解答】解:由題意,分子最大且分母最小時(shí),即SKIPIF1<0在頂點(diǎn)處取得最大值,不妨取頂點(diǎn)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最大值為SKIPIF1<0,故選:SKIPIF1<0.2.已知雙曲線SKIPIF1<0的右支上的點(diǎn)SKIPIF1<0,SKIPIF1<0滿(mǎn)足SKIPIF1<0,SKIPIF1<0分別是雙曲線的左右焦點(diǎn)),則SKIPIF1<0為雙曲線SKIPIF1<0的半焦距)的取值范圍是SKIPIF1<0SKIPIF1<0A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0 C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<0【解答】解:由雙曲線的第二定義可知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0右支上的點(diǎn)SKIPIF1<0,SKIPIF1<0滿(mǎn)足SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0在右支上,可得SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0而SKIPIF1<0在SKIPIF1<0,SKIPIF1<0遞減,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故選:SKIPIF1<0.3.已知點(diǎn)SKIPIF1<0是雙曲線SKIPIF1<0上的動(dòng)點(diǎn),SKIPIF1<0,SKIPIF1<0分別是其左、右焦點(diǎn),SKIPIF1<0為坐標(biāo)原點(diǎn),若SKIPIF1<0的最大值是SKIPIF1<0,則此雙曲線的離心率是SKIPIF1<0SKIPIF1<0A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.2【解答】解:不妨設(shè)SKIPIF1<0為右支上的一點(diǎn),SKIPIF1<0其中SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0當(dāng)SKIPIF1<0時(shí),取得最大值,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0故選:SKIPIF1<0.4.已知SKIPIF1<0為拋物線SKIPIF1<0的焦點(diǎn),過(guò)SKIPIF1<0作兩條互相垂直的直線SKIPIF1<0,SKIPIF1<0,直線SKIPIF1<0與SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),直線SKIPIF1<0與SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),則當(dāng)SKIPIF1<0取得最小值時(shí),四邊形SKIPIF1<0的面積為SKIPIF1<0SKIPIF1<0A.32 B.16 C.24 D.8【解答】解:因?yàn)镾KIPIF1<0,要使SKIPIF1<0最小,而SKIPIF1<0,由拋物線的對(duì)稱(chēng)性可得SKIPIF1<0與SKIPIF1<0,SKIPIF1<0與SKIPIF1<0關(guān)于SKIPIF1<0軸對(duì)稱(chēng),所以可得直線SKIPIF1<0的斜率為1,又過(guò)拋物線的焦點(diǎn)SKIPIF1<0,所以直線SKIPIF1<0的方程為:SKIPIF1<0,SKIPIF1<0,整理可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以可得SKIPIF1<0,所以SKIPIF1<0.故選:SKIPIF1<0.5.過(guò)橢圓SKIPIF1<0的右焦點(diǎn)SKIPIF1<0作兩條相互垂直的直線分別交橢圓于SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0四點(diǎn),則SKIPIF1<0的值為SKIPIF1<0SKIPIF1<0A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.SKIPIF1<0【解答】解:由橢圓SKIPIF1<0,得橢圓的右焦點(diǎn)為SKIPIF1<0,當(dāng)直線SKIPIF1<0的斜率不存在時(shí),SKIPIF1<0,則SKIPIF1<0.此時(shí)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0;當(dāng)直線SKIPIF1<0的斜率存在時(shí),設(shè)SKIPIF1<0,則SKIPIF1<0.又設(shè)點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.聯(lián)立方程組SKIPIF1<0,消去SKIPIF1<0并化簡(jiǎn)得SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,由題知,直線SKIPIF1<0的斜率為SKIPIF1<0,同理可得SKIPIF1<0.SKIPIF1<0SKIPIF1<0為定值.故選:SKIPIF1<0.二.填空題(共3小題)6.已知SKIPIF1<0是橢圓SKIPIF1<0上的動(dòng)點(diǎn),SKIPIF1<0,SKIPIF1<0分別是其左右焦點(diǎn),SKIPIF1<0是坐標(biāo)原點(diǎn),則SKIPIF1<0的取值范圍是SKIPIF1<0,SKIPIF1<0.【解答】解:設(shè)SKIPIF1<0的坐標(biāo)為SKIPIF1<0SKIPIF1<0橢圓SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,得橢圓的準(zhǔn)線方程為SKIPIF1<0,即SKIPIF1<0作出橢圓的右準(zhǔn)線,設(shè)SKIPIF1<0在右準(zhǔn)線上的射影為SKIPIF1<0,連結(jié)SKIPIF1<0,根據(jù)圓錐曲線的統(tǒng)一定義,得SKIPIF1<0,SKIPIF1<0,同理可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0點(diǎn)SKIPIF1<0在橢圓SKIPIF1<0上,得SKIPIF1<0,SKIPIF1<0SKIPIF1<0,由此可得SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0即SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0.故答案為:SKIPIF1<0,SKIPIF1<07.已知SKIPIF1<0為拋物線SKIPIF1<0的焦點(diǎn),過(guò)SKIPIF1<0作兩條互相垂直的直線SKIPIF1<0,SKIPIF1<0,直線SKIPIF1<0與SKIPIF1<0交于SKIPIF1<0、SKIPIF1<0兩點(diǎn),直線SKIPIF1<0與SKIPIF1<0交于SKIPIF1<0、SKIPIF1<0兩點(diǎn),則SKIPIF1<0的值為SKIPIF1<0.【解答】解:根據(jù)題意可得,拋物線SKIPIF1<0的焦點(diǎn)坐標(biāo)為SKIPIF1<0,準(zhǔn)線方程為SKIPIF1<0,設(shè)直線SKIPIF1<0,SKIPIF1<0直線SKIPIF1<0,SKIPIF1<0互相垂直,SKIPIF1<0直線SKIPIF1<0的斜率為SKIPIF1<0,即得SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則分別將直線SKIPIF1<0,SKIPIF1<0的方程與拋物線方程聯(lián)立組成方程組可得,SKIPIF1<0;SKIPIF1<0SKIPIF1<0SKIPIF1<0由韋達(dá)定理可得,SKIPIF1<0,SKIPIF1<0,由拋物線性質(zhì)可知,拋物線上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0.故答案為:SKIPIF1<0.8.已知SKIPIF1<0為拋物線SKIPIF1<0的焦點(diǎn),過(guò)SKIPIF1<0作兩條互相垂直的直線SKIPIF1<0,SKIPIF1<0,直線SKIPIF1<0與SKIPIF1<0交于SKIPIF1<0、SKIPIF1<0兩點(diǎn),直線SKIPIF1<0與SKIPIF1<0交于SKIPIF1<0、SKIPIF1<0兩點(diǎn),則SKIPIF1<0的最小值為36.【解答】解:拋物線SKIPIF1<0的焦點(diǎn)SKIPIF1<0,準(zhǔn)線方程為SKIPIF1<0,設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,SKIPIF1<0,聯(lián)立方程組SKIPIF1<0,則SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,由拋物線的定義可得SKIPIF1<0,由SKIPIF1<0,可將上式中的SKIPIF1<0換為SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0.當(dāng)且僅當(dāng)SKIPIF1<0時(shí),上式取得等號(hào),則SKIPIF1<0的最小值為36.故答案為:36.三.解答題(共6小題)9.已知斜率為SKIPIF1<0的直線SKIPIF1<0與橢圓SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),線段SKIPIF1<0的中點(diǎn)為SKIPIF1<0,SKIPIF1<0.(1)證明:SKIPIF1<0;(2)設(shè)SKIPIF1<0為SKIPIF1<0的右焦點(diǎn),SKIPIF1<0為SKIPIF1<0上一點(diǎn),且SKIPIF1<0.證明:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列,并求該數(shù)列的公差.【解答】解:(1)設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0線段SKIPIF1<0的中點(diǎn)為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0將SKIPIF1<0,SKIPIF1<0代入橢圓SKIPIF1<0中,可得SKIPIF1<0,兩式相減可得,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0點(diǎn)SKIPIF1<0在橢圓內(nèi),即SKIPIF1<0,解得SKIPIF1<0SKIPIF1<0SKIPIF1<0.①(2)由題意得SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,由(1)及題設(shè)得SKIPIF1<0,SKIPIF1<0.又點(diǎn)SKIPIF1<0在SKIPIF1<0上,所以SKIPIF1<0,從而SKIPIF1<0,SKIPIF1<0.于是SKIPIF1<0.同理SKIPIF1<0.所以SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列.設(shè)改數(shù)列的公差為SKIPIF1<0,則SKIPIF1<0②將SKIPIF1<0代入①得SKIPIF1<0.所以SKIPIF1<0的方程為SKIPIF1<0,代入SKIPIF1<0的方程,并整理得SKIPIF1<0.故SKIPIF1<0,SKIPIF1<0,代入②解得SKIPIF1<0.所以該數(shù)列的公差為SKIPIF1<0或SKIPIF1<0.10.已知斜率為SKIPIF1<0的直線SKIPIF1<0與橢圓SKIPIF1<0交于SKIPIF1<0、SKIPIF1<0兩點(diǎn),線段SKIPIF1<0的中點(diǎn)為SKIPIF1<0,SKIPIF1<0.(Ⅰ)證明:SKIPIF1<0;(Ⅱ)設(shè)SKIPIF1<0為SKIPIF1<0的右焦點(diǎn),SKIPIF1<0為SKIPIF1<0上的一點(diǎn),且SKIPIF1<0,證明:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列.【解答】(本小題滿(mǎn)分12分)證明:(Ⅰ)設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則有SKIPIF1<0(2分)(1)SKIPIF1<0(2)得SKIPIF1<0.SKIPIF1<0,SKIPIF1<0.SKIPIF1<0SKIPIF1<0.SKIPIF1<0(3分)SKIPIF1<0SKIPIF1<0.SKIPIF1<0(4分)由題設(shè)可知點(diǎn)SKIPIF1<0在橢圓內(nèi),SKIPIF1<0SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0SKIPIF1<0.SKIPIF1<0(5分)(Ⅱ)SKIPIF1<0SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0SKIPIF1<0,SKIPIF1<0(6分)SKIPIF1<0,SKIPIF1<0.SKIPIF1<0點(diǎn)SKIPIF1<0在橢圓上,SKIPIF1<0SKIPIF1<0.SKIPIF1<0(7分)又SKIPIF1<0.SKIPIF1<0(8分)由(Ⅰ)知SKIPIF1<0,所以SKIPIF1<0.SKIPIF1<0直線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0.SKIPIF1<0(9分)由直線SKIPIF1<0的方程與橢圓方程聯(lián)立,得SKIPIF1<0消SKIPIF1<0化簡(jiǎn)得SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0.SKIPIF1<0(10分)從而得SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0(11分)SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列.SKIPIF1<0(12分)11.已知SKIPIF1<0、SKIPIF1<0是橢圓SKIPIF1<0的左、右焦點(diǎn),且離心率SKIPIF1<0,點(diǎn)SKIPIF1<0為橢圓上的一個(gè)動(dòng)點(diǎn),△SKIPIF1<0的內(nèi)切圓面積的最大值為SKIPIF1<0.(1)求橢圓的方程;(2)若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是橢圓上不重合的四個(gè)點(diǎn),滿(mǎn)足向量SKIPIF1<0與SKIPIF1<0共線,SKIPIF1<0與SKIPIF1<0共線,且SKIPIF1<0,求SKIPIF1<0的取值范圍.【解答】解:(1)由幾何性質(zhì)可知,當(dāng),△SKIPIF1<0的內(nèi)切圓面積的最大值時(shí),即,SKIPIF1<0取最大值,且SKIPIF1<0,由SKIPIF1<0,解得SKIPIF1<0,又由△SKIPIF1<0的周長(zhǎng)為SKIPIF1<0定值,SKIPIF1<0SKIPIF1<0,又SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故橢圓方程為SKIPIF1<0,(2)①當(dāng)直線SKIPIF1<0和SKIPIF1<0中有一條垂直SKIPIF1<0軸時(shí),SKIPIF1<0,②當(dāng)直線SKIPIF1<0的斜率存在但不為0時(shí),設(shè)SKIPIF1<0的方程為:SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,代入弦長(zhǎng)公式得,SKIPIF1<0,同理由SKIPIF1<0,消去SKIPIF1<0,代入弦長(zhǎng)公式得SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,由①②可知SKIPIF1<0的取值范圍是SKIPIF1<0,SKIPIF1<0.12.已知橢圓SKIPIF1<0經(jīng)過(guò)點(diǎn)SKIPIF1<0,且橢圓的離心率SKIPIF1<0,過(guò)橢圓的右焦點(diǎn)SKIPIF1<0作兩條互相垂直的直線,分別交橢圓于點(diǎn)SKIPIF1<0、SKIPIF1<0及SKIPIF1<0、SKIPIF1<0.(Ⅰ)求橢圓的方程;(Ⅱ)求證:SKIPIF1<0為定值;(Ⅲ)求SKIPIF1<0的最小值.【解答】解:SKIPIF1<0由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1),SKIPIF1<0(1分)由橢圓過(guò)點(diǎn)SKIPIF1<0知,SKIPIF1<0.(2)SKIPIF1<0(2分)聯(lián)立(1)、(2)式解得SKIPIF1<0,SKIPIF1<0.SKIPIF1<0(3分)故橢圓的方程是SKIPIF1<0.SKIPIF1<0(4分)SKIPIF1<0為定值SKIPIF1<0(5分)證明:橢圓的右焦點(diǎn)為SKIPIF1<0,分兩種情況.SKIPIF1<0當(dāng)直線SKIPIF1<0的斜率不存在時(shí),SKIPIF1<0,則SKIPIF1<0.此時(shí)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;SKIPIF1<0(6分)SKIPIF1<0當(dāng)直線SKIPIF1<0的斜率存在時(shí),設(shè)SKIPIF1<0,則SKIPIF1<0.又設(shè)點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.聯(lián)立方程組SKIPIF1<0,消去SKIPIF1<0并化簡(jiǎn)得SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0(7分)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0(8分)由題知,直線SKIPIF1<0的斜率為SKIPIF1<0,同理可得SKIPIF1<0(9分)所以SKIPIF1<0為定值.SKIPIF1<0(10分)(Ⅲ)解:由SKIPIF1<0知SKIPIF1<0,SKIPIF1<0SKIPIF1<0(11分)SKIPIF1<0SKIPIF1<0,SKIPIF1<0(12分)當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時(shí)取等號(hào)SKIPIF1<0(13分)SKIPIF1<0SKIPIF1<0的最小值為SKIPIF1<0.SKIPIF1<0(14分)13.已知橢圓SKIPIF1<0的長(zhǎng)軸長(zhǎng)為4,離心率為SKIPIF1<0,一動(dòng)圓SKIPIF1<0過(guò)橢圓SKIPIF1<0右焦點(diǎn)SKIPIF1<0,且與直線SKIPIF1<0相切.(1)求橢圓SKIPIF1<0的方程及動(dòng)圓圓心軌跡SKIPIF1<0的方程;(2)過(guò)SKIPIF1<0作兩條互相垂直的直線,分別交橢圓SKIPIF1<0于SKIPIF1<0,SKIPIF1<0兩點(diǎn),交曲線SKIPIF1<0于SKIPIF1<0,SKIPIF1<0兩點(diǎn),求四邊形SKIPIF1<0面積的最小值.【解答】解:(1)由已知可得SKIPIF1<0,則所求橢圓方程SKIPIF1<0.由已知可得動(dòng)圓圓心軌跡為拋物線,且拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,準(zhǔn)線方程為SKIPIF1<0,則動(dòng)圓圓心軌跡方程為SKIPIF1<0.(2)當(dāng)直線SKIPIF1<0的斜率不存在時(shí),SKIPIF1<0,此時(shí)SKIPIF1<0的長(zhǎng)即為橢圓長(zhǎng)軸長(zhǎng),SKIPIF1<0,從而SKIPIF1<0.設(shè)直線SKIPIF1<0的斜率為SKIPIF1<0,則SKIPIF1<0,直線SKIPIF1<0的方程為:SKIPIF1<0,直線SKIPIF1<0的方程為SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,S

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論