2024屆江蘇省鹽城市明達(dá)中學(xué)畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第1頁
2024屆江蘇省鹽城市明達(dá)中學(xué)畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第2頁
2024屆江蘇省鹽城市明達(dá)中學(xué)畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第3頁
2024屆江蘇省鹽城市明達(dá)中學(xué)畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第4頁
2024屆江蘇省鹽城市明達(dá)中學(xué)畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024學(xué)年江蘇省鹽城市明達(dá)中學(xué)畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.小紅上學(xué)要經(jīng)過兩個(gè)十字路口,每個(gè)路口遇到紅、綠燈的機(jī)會(huì)都相同,小紅希望上學(xué)時(shí)經(jīng)過每個(gè)路口都是綠燈,但實(shí)際這樣的機(jī)會(huì)是()A. B. C. D.2.若正六邊形的半徑長為4,則它的邊長等于()A.4 B.2 C. D.3.如圖的幾何體是由一個(gè)正方體切去一個(gè)小正方體形成的,它的主視圖是()A. B. C. D.4.如圖,正方形ABCD的對(duì)角線AC與BD相交于點(diǎn)O,∠ACB的角平分線分別交AB,BD于M,N兩點(diǎn).若AM=2,則線段ON的長為()A. B. C.1 D.5.如圖,△ABC中,∠B=55°,∠C=30°,分別以點(diǎn)A和點(diǎn)C為圓心,大于AC的長為半徑畫弧,兩弧相交于點(diǎn)M,N作直線MN,交BC于點(diǎn)D,連結(jié)AD,則∠BAD的度數(shù)為()A.65° B.60°C.55° D.45°6.如圖,把長方形紙片ABCD折疊,使頂點(diǎn)A與頂點(diǎn)C重合在一起,EF為折痕.若AB=9,BC=3,試求以折痕EF為邊長的正方形面積()A.11 B.10 C.9 D.167.由五個(gè)相同的立方體搭成的幾何體如圖所示,則它的左視圖是()A. B.C. D.8.若點(diǎn)(x1,y1),(x2,y2),(x3,y3)都是反比例函數(shù)y=﹣圖象上的點(diǎn),并且y1<0<y2<y3,則下列各式中正確的是()A.x1<x2<x3 B.x1<x3<x2 C.x2<x1<x3 D.x2<x3<x19.下列說法正確的是()A.對(duì)角線相等且互相垂直的四邊形是菱形B.對(duì)角線互相平分的四邊形是正方形C.對(duì)角線互相垂直的四邊形是平行四邊形D.對(duì)角線相等且互相平分的四邊形是矩形10.下列四個(gè)多項(xiàng)式,能因式分解的是()A.a(chǎn)-1 B.a(chǎn)2+1C.x2-4y D.x2-6x+9二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.不等式組的最大整數(shù)解是__________.12.如圖,在△ABC中,CA=CB,∠ACB=90°,AB=2,點(diǎn)D為AB的中點(diǎn),以點(diǎn)D為圓心作圓心角為90°的扇形DEF,點(diǎn)C恰在弧EF上,則圖中陰影部分的面積為__________.13.已知b是a,c的比例中項(xiàng),若a=4,c=16,則b=________.14.菱形ABCD中,∠A=60°,AB=9,點(diǎn)P是菱形ABCD內(nèi)一點(diǎn),PB=PD=3,則AP的長為_____.15.如圖是某商品的標(biāo)志圖案,AC與BD是⊙O的兩條直徑,首尾順次連接點(diǎn)A、B、C、D,得到四邊形ABCD,若AC=10cm,∠BAC=36°,則圖中陰影部分的面積為_____.16.如圖放置的正方形,正方形,正方形,…都是邊長為的正方形,點(diǎn)在軸上,點(diǎn),…,都在直線上,則的坐標(biāo)是__________,的坐標(biāo)是______.三、解答題(共8題,共72分)17.(8分)某商店銷售A型和B型兩種電腦,其中A型電腦每臺(tái)的利潤為400元,B型電腦每臺(tái)的利潤為500元.該商店計(jì)劃再一次性購進(jìn)兩種型號(hào)的電腦共100臺(tái),其中B型電腦的進(jìn)貨量不超過A型電腦的2倍,設(shè)購進(jìn)A型電腦x臺(tái),這100臺(tái)電腦的銷售總利潤為y元.求y關(guān)于x的函數(shù)關(guān)系式;該商店購進(jìn)A型、B型電腦各多少臺(tái),才能使銷售總利潤最大,最大利潤是多少?實(shí)際進(jìn)貨時(shí),廠家對(duì)A型電腦出廠價(jià)下調(diào)a(0<a<200)元,且限定商店最多購進(jìn)A型電腦60臺(tái),若商店保持同種電腦的售價(jià)不變,請(qǐng)你根據(jù)以上信息,設(shè)計(jì)出使這100臺(tái)電腦銷售總利潤最大的進(jìn)貨方案.18.(8分)如圖,正方形OABC的面積為9,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A在x軸上,點(diǎn)C上y軸上,點(diǎn)B在反比例函數(shù)y=(k>0,x>0)的圖象上,點(diǎn)E從原點(diǎn)O出發(fā),以每秒1個(gè)單位長度的速度向x軸正方向運(yùn)動(dòng),過點(diǎn)E作x的垂線,交反比例函數(shù)y=(k>0,x>0)的圖象于點(diǎn)P,過點(diǎn)P作PF⊥y軸于點(diǎn)F;記矩形OEPF和正方形OABC不重合部分的面積為S,點(diǎn)E的運(yùn)動(dòng)時(shí)間為t秒.(1)求該反比例函數(shù)的解析式.(2)求S與t的函數(shù)關(guān)系式;并求當(dāng)S=時(shí),對(duì)應(yīng)的t值.(3)在點(diǎn)E的運(yùn)動(dòng)過程中,是否存在一個(gè)t值,使△FBO為等腰三角形?若有,有幾個(gè),寫出t值.19.(8分)為了解某中學(xué)學(xué)生課余生活情況,對(duì)喜愛看課外書、體育活動(dòng)、看電視、社會(huì)實(shí)踐四個(gè)方面的人數(shù)進(jìn)行調(diào)查統(tǒng)計(jì).現(xiàn)從該校隨機(jī)抽取名學(xué)生作為樣本,采用問卷調(diào)查的方法收集數(shù)據(jù)(參與問卷調(diào)查的每名學(xué)生只能選擇其中一項(xiàng)).并根據(jù)調(diào)查得到的數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計(jì)圖.由圖中提供的信息,解答下列問題:求n的值;若該校學(xué)生共有1200人,試估計(jì)該校喜愛看電視的學(xué)生人數(shù);若調(diào)查到喜愛體育活動(dòng)的4名學(xué)生中有3名男生和1名女生,現(xiàn)從這4名學(xué)生中任意抽取2名學(xué)生,求恰好抽到2名男生的概率.20.(8分)如圖,一盞路燈沿?zé)粽诌吘壣涑龅墓饩€與地面BC交于點(diǎn)B、C,測得∠ABC=45°,∠ACB=30°,且BC=20米.(1)請(qǐng)用圓規(guī)和直尺畫出路燈A到地面BC的距離AD;(不要求寫出畫法,但要保留作圖痕跡)(2)求出路燈A離地面的高度AD.(精確到0.1米)(參考數(shù)據(jù):≈1.414,≈1.732).21.(8分)列方程解應(yīng)用題八年級(jí)學(xué)生去距學(xué)校10km的博物館參觀,一部分學(xué)生騎自行車先走,過了20min后,其余學(xué)生乘汽車出發(fā),結(jié)果他們同時(shí)到達(dá).已知汽車的速度是騎車學(xué)生速度的2倍,求騎車學(xué)生的速度.22.(10分)如圖,在△ABC中,AB=AC,以AB為直徑作⊙O交BC于點(diǎn)D,過點(diǎn)D作⊙O的切線DE交AC于點(diǎn)E,交AB延長線于點(diǎn)F.(1)求證:BD=CD;(2)求證:DC2=CE?AC;(3)當(dāng)AC=5,BC=6時(shí),求DF的長.23.(12分)我市某學(xué)校在“行讀石鼓閣”研學(xué)活動(dòng)中,參觀了我市中華石鼓園,石鼓閣是寶雞城市新地標(biāo).建筑面積7200平方米,為我國西北第一高閣.秦漢高臺(tái)門闕的建筑風(fēng)格,追求穩(wěn)定之中的飛揚(yáng)靈動(dòng),深厚之中的巧妙組合,使景觀功能和標(biāo)志功能融為一體.小亮想知道石鼓閣的高是多少,他和同學(xué)李梅對(duì)石鼓閣進(jìn)行測量.測量方案如下:如圖,李梅在小亮和“石鼓閣”之間的直線BM上平放一平面鏡,在鏡面上做了一個(gè)標(biāo)記,這個(gè)標(biāo)記在直線BM上的對(duì)應(yīng)位置為點(diǎn)C,鏡子不動(dòng),李梅看著鏡面上的標(biāo)記,她來回走動(dòng),走到點(diǎn)D時(shí),看到“石鼓閣”頂端點(diǎn)A在鏡面中的像與鏡面上的標(biāo)記重合,這時(shí),測得李梅眼睛與地面的高度ED=1.6米,CD=2.2米,然后,在陽光下,小亮從D點(diǎn)沿DM方向走了29.4米,此時(shí)“石鼓閣”影子與小亮的影子頂端恰好重合,測得小亮身高1.7米,影長FH=3.4米.已知AB⊥BM,ED⊥BM,GF⊥BM,其中,測量時(shí)所使用的平面鏡的厚度忽略不計(jì),請(qǐng)你根據(jù)題中提供的相關(guān)信息,求出“石鼓閣”的高AB的長度.24.如圖,在△ABC中,∠ACB=90°,點(diǎn)D是AB上一點(diǎn),以BD為直徑的⊙O和AB相切于點(diǎn)P.(1)求證:BP平分∠ABC;(2)若PC=1,AP=3,求BC的長.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解題分析】

列舉出所有情況,看每個(gè)路口都是綠燈的情況數(shù)占總情況數(shù)的多少即可得.【題目詳解】畫樹狀圖如下,共4種情況,有1種情況每個(gè)路口都是綠燈,所以概率為.故選C.2、A【解題分析】試題分析:正六邊形的中心角為360°÷6=60°,那么外接圓的半徑和正六邊形的邊長將組成一個(gè)等邊三角形,故正六邊形的半徑等于1,則正六邊形的邊長是1.故選A.考點(diǎn):正多邊形和圓.3、D【解題分析】試題分析:根據(jù)三視圖的法則可知B為俯視圖,D為主視圖,主視圖為一個(gè)正方形.4、C【解題分析】

作MH⊥AC于H,如圖,根據(jù)正方形的性質(zhì)得∠MAH=45°,則△AMH為等腰直角三角形,所以AH=MH=AM=,再根據(jù)角平分線性質(zhì)得BM=MH=,則AB=2+,于是利用正方形的性質(zhì)得到AC=AB=2+2,OC=AC=+1,所以CH=AC-AH=2+,然后證明△CON∽△CHM,再利用相似比可計(jì)算出ON的長.【題目詳解】試題分析:作MH⊥AC于H,如圖,∵四邊形ABCD為正方形,∴∠MAH=45°,∴△AMH為等腰直角三角形,∴AH=MH=AM=×2=,∵CM平分∠ACB,∴BM=MH=,∴AB=2+,∴AC=AB=(2+)=2+2,∴OC=AC=+1,CH=AC﹣AH=2+2﹣=2+,∵BD⊥AC,∴ON∥MH,∴△CON∽△CHM,∴,即,∴ON=1.故選C.【題目點(diǎn)撥】本題考查了相似三角形的判定與性質(zhì):在判定兩個(gè)三角形相似時(shí),應(yīng)注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構(gòu)造相似三角形.也考查了角平分線的性質(zhì)和正方形的性質(zhì).5、A【解題分析】

根據(jù)線段垂直平分線的性質(zhì)得到AD=DC,根據(jù)等腰三角形的性質(zhì)得到∠C=∠DAC,求得∠DAC=30°,根據(jù)三角形的內(nèi)角和得到∠BAC=95°,即可得到結(jié)論.【題目詳解】由題意可得:MN是AC的垂直平分線,則AD=DC,故∠C=∠DAC,∵∠C=30°,∴∠DAC=30°,∵∠B=55°,∴∠BAC=95°,∴∠BAD=∠BAC-∠CAD=65°,故選A.【題目點(diǎn)撥】此題主要考查了線段垂直平分線的性質(zhì),三角形的內(nèi)角和,正確掌握線段垂直平分線的性質(zhì)是解題關(guān)鍵.6、B【解題分析】

根據(jù)矩形和折疊性質(zhì)可得△EHC≌△FBC,從而可得BF=HE=DE,設(shè)BF=EH=DE=x,則AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得BF=DE=AG=4,據(jù)此得出GF=1,由EF2=EG2+GF2可得答案.【題目詳解】如圖,∵四邊形ABCD是矩形,∴AD=BC,∠D=∠B=90°,根據(jù)折疊的性質(zhì),有HC=AD,∠H=∠D,HE=DE,∴HC=BC,∠H=∠B,又∠HCE+∠ECF=90°,∠BCF+∠ECF=90°,∴∠HCE=∠BCF,在△EHC和△FBC中,∵,∴△EHC≌△FBC,∴BF=HE,∴BF=HE=DE,設(shè)BF=EH=DE=x,則AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得x2+32=(9﹣x)2,解得:x=4,即DE=EH=BF=4,則AG=DE=EH=BF=4,∴GF=AB﹣AG﹣BF=9﹣4﹣4=1,∴EF2=EG2+GF2=32+12=10,故選B.【題目點(diǎn)撥】本題考查了折疊的性質(zhì)、矩形的性質(zhì)、三角形全等的判定與性質(zhì)、勾股定理等,綜合性較強(qiáng),熟練掌握各相關(guān)的性質(zhì)定理與判定定理是解題的關(guān)鍵.7、D【解題分析】

找到從正面看所得到的圖形即可,注意所有看到的棱都應(yīng)表現(xiàn)在主視圖中.【題目詳解】解:從正面看第一層是二個(gè)正方形,第二層是左邊一個(gè)正方形.

故選A.【題目點(diǎn)撥】本題考查了簡單組合體的三視圖的知識(shí),解題的關(guān)鍵是了解主視圖是由主視方向看到的平面圖形,屬于基礎(chǔ)題,難度不大.8、D【解題分析】

先根據(jù)反比例函數(shù)的解析式判斷出函數(shù)圖象所在的象限及在每一象限內(nèi)函數(shù)的增減性,再根據(jù)y1<0<y2<y3判斷出三點(diǎn)所在的象限,故可得出結(jié)論.【題目詳解】解:∵反比例函數(shù)y=﹣中k=﹣1<0,∴此函數(shù)的圖象在二、四象限,且在每一象限內(nèi)y隨x的增大而增大,∵y1<0<y2<y3,∴點(diǎn)(x1,y1)在第四象限,(x2,y2)、(x3,y3)兩點(diǎn)均在第二象限,∴x2<x3<x1.故選:D.【題目點(diǎn)撥】本題考查的是反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特點(diǎn),先根據(jù)題意判斷出函數(shù)圖象所在的象限是解答此題的關(guān)鍵.9、D【解題分析】分析:根據(jù)菱形,正方形,平行四邊形,矩形的判定定理,進(jìn)行判定,即可解答.詳解:A、對(duì)角線互相平分且垂直的四邊形是菱形,故錯(cuò)誤;

B、四條邊相等的四邊形是菱形,故錯(cuò)誤;

C、對(duì)角線相互平分的四邊形是平行四邊形,故錯(cuò)誤;

D、對(duì)角線相等且相互平分的四邊形是矩形,正確;

故選D.點(diǎn)睛:本題考查了菱形,正方形,平行四邊形,矩形的判定定理,解決本題的關(guān)鍵是熟記四邊形的判定定理.10、D【解題分析】試題分析:利用平方差公式及完全平方公式的結(jié)構(gòu)特征判斷即可.試題解析:x2-6x+9=(x-3)2.故選D.考點(diǎn):2.因式分解-運(yùn)用公式法;2.因式分解-提公因式法.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、【解題分析】

先求出每個(gè)不等式的解集,再確定其公共解,得到不等式組的解集,然后求其整數(shù)解.【題目詳解】解:,由不等式①得x≤1,由不等式②得x>-1,其解集是-1<x≤1,所以整數(shù)解為0,1,1,則該不等式組的最大整數(shù)解是x=1.故答案為:1.【題目點(diǎn)撥】考查不等式組的解法及整數(shù)解的確定.求不等式組的解集,應(yīng)遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.12、.【解題分析】

連接CD,根據(jù)題意可得△DCE≌△BDF,陰影部分的面積等于扇形的面積減去△BCD的面積.【題目詳解】解:連接CD,

作DM⊥BC,DN⊥AC.

∵CA=CB,∠ACB=90°,點(diǎn)D為AB的中點(diǎn),

∴DC=AB=1,四邊形DMCN是正方形,DM=.

則扇形FDE的面積是:.

∵CA=CB,∠ACB=90°,點(diǎn)D為AB的中點(diǎn),

∴CD平分∠BCA,

又∵DM⊥BC,DN⊥AC,

∴DM=DN,

∵∠GDH=∠MDN=90°,

∴∠GDM=∠HDN,

則在△DMG和△DNH中,,

∴△DMG≌△DNH(AAS),

∴S四邊形DGCH=S四邊形DMCN=.

則陰影部分的面積是:.故答案為:.【題目點(diǎn)撥】本題考查了三角形的全等的判定與扇形的面積的計(jì)算的綜合題,正確證明△DMG≌△DNH,得到S四邊形DGCH=S四邊形DMCN是關(guān)鍵.13、±8【解題分析】

根據(jù)比例中項(xiàng)的定義即可求解.【題目詳解】∵b是a,c的比例中項(xiàng),若a=4,c=16,∴b2=ac=4×16=64,∴b=±8,故答案為±8【題目點(diǎn)撥】此題考查了比例中項(xiàng)的定義,如果作為比例線段的內(nèi)項(xiàng)是兩條相同的線段,即a∶b=b∶c或,那么線段b叫做線段a、c的比例中項(xiàng).14、3或6【解題分析】

分成P在OA上和P在OC上兩種情況進(jìn)行討論,根據(jù)△ABD是等邊三角形,即可求得OA的長度,在直角△OBP中利用勾股定理求得OP的長,則AP即可求得.【題目詳解】設(shè)AC和BE相交于點(diǎn)O.當(dāng)P在OA上時(shí),∵AB=AD,∠A=60°,∴△ABD是等邊三角形,∴BD=AB=9,OB=OD=BD=.則AO=.在直角△OBP中,OP=.則AP=OA-OP-;當(dāng)P在OC上時(shí),AP=OA+OP=.故答案是:3或6.【題目點(diǎn)撥】本題考查了菱形的性質(zhì),注意到P在AC上,應(yīng)分兩種情況進(jìn)行討論是解題的關(guān)鍵.15、10πcm1.【解題分析】

根據(jù)已知條件得到四邊形ABCD是矩形,求得圖中陰影部分的面積=S扇形AOD+S扇形BOC=1S扇形AOD,根據(jù)等腰三角形的性質(zhì)得到∠BAC=∠ABO=36°,由圓周角定理得到∠AOD=71°,于是得到結(jié)論.【題目詳解】解:∵AC與BD是⊙O的兩條直徑,∴∠ABC=∠ADC=∠DAB=∠BCD=90°,∴四邊形ABCD是矩形,∴S△ABO=S△CDO=S△AOD=S△BOD,∴圖中陰影部分的面積=S扇形AOD+S扇形BOC=1S扇形AOD,∵OA=OB,∴∠BAC=∠ABO=36°,∴∠AOD=71°,∴圖中陰影部分的面積=1×=10π,故答案為10πcm1.點(diǎn)睛:本題考查了扇形的面積,矩形的判定和性質(zhì),圓周角定理的推論,三角形外角的性質(zhì),熟練掌握扇形的面積公式是解題的關(guān)鍵.16、【解題分析】

先求出OA的長度,然后利用含30°的直角三角形的性質(zhì)得到點(diǎn)D的坐標(biāo),探索規(guī)律,從而得到的坐標(biāo)即可.【題目詳解】分別過點(diǎn)作y軸的垂線交y軸于點(diǎn),∵點(diǎn)B在上設(shè)∴同理,都是含30°的直角三角形∵,∴同理,點(diǎn)的橫坐標(biāo)為縱坐標(biāo)為故點(diǎn)的坐標(biāo)為故答案為:;.【題目點(diǎn)撥】本題主要考查含30°的直角三角形的性質(zhì),找到點(diǎn)的坐標(biāo)規(guī)律是解題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)=﹣100x+50000;(2)該商店購進(jìn)A型34臺(tái)、B型電腦66臺(tái),才能使銷售總利潤最大,最大利潤是46600元;(3)見解析.【解題分析】【分析】(1)根據(jù)“總利潤=A型電腦每臺(tái)利潤×A電腦數(shù)量+B型電腦每臺(tái)利潤×B電腦數(shù)量”可得函數(shù)解析式;(2)根據(jù)“B型電腦的進(jìn)貨量不超過A型電腦的2倍且電腦數(shù)量為整數(shù)”求得x的范圍,再結(jié)合(1)所求函數(shù)解析式及一次函數(shù)的性質(zhì)求解可得;(3)據(jù)題意得y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,分三種情況討論,①當(dāng)0<a<100時(shí),y隨x的增大而減小,②a=100時(shí),y=50000,③當(dāng)100<m<200時(shí),a﹣100>0,y隨x的增大而增大,分別進(jìn)行求解.【題目詳解】(1)根據(jù)題意,y=400x+500(100﹣x)=﹣100x+50000;(2)∵100﹣x≤2x,∴x≥,∵y=﹣100x+50000中k=﹣100<0,∴y隨x的增大而減小,∵x為正數(shù),∴x=34時(shí),y取得最大值,最大值為46600,答:該商店購進(jìn)A型34臺(tái)、B型電腦66臺(tái),才能使銷售總利潤最大,最大利潤是46600元;(3)據(jù)題意得,y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,33≤x≤60,①當(dāng)0<a<100時(shí),y隨x的增大而減小,∴當(dāng)x=34時(shí),y取最大值,即商店購進(jìn)34臺(tái)A型電腦和66臺(tái)B型電腦的銷售利潤最大.②a=100時(shí),a﹣100=0,y=50000,即商店購進(jìn)A型電腦數(shù)量滿足33≤x≤60的整數(shù)時(shí),均獲得最大利潤;③當(dāng)100<a<200時(shí),a﹣100>0,y隨x的增大而增大,∴當(dāng)x=60時(shí),y取得最大值.即商店購進(jìn)60臺(tái)A型電腦和40臺(tái)B型電腦的銷售利潤最大.【題目點(diǎn)撥】本題考查了一次函數(shù)的應(yīng)用及一元一次不等式的應(yīng)用,弄清題意,找出題中的數(shù)量關(guān)系列出函數(shù)關(guān)系式、找出不等關(guān)系列出不等式是解題的關(guān)鍵.18、(1)y=(x>0);(2)S與t的函數(shù)關(guān)系式為:S=﹣3t+9(0≤t≤3);S=9﹣(t>3);當(dāng)S=時(shí),對(duì)應(yīng)的t值為或6;(3)當(dāng)t=或或3時(shí),使△FBO為等腰三角形.【解題分析】

(1)由正方形OABC的面積為9,可得點(diǎn)B的坐標(biāo)為:(3,3),繼而可求得該反比例函數(shù)的解析式.

(2)由題意得P(t,),然后分別從當(dāng)點(diǎn)P1在點(diǎn)B的左側(cè)時(shí),S=t?(-3)=-3t+9與當(dāng)點(diǎn)P2在點(diǎn)B的右側(cè)時(shí),則S=(t-3)?=9-去分析求解即可求得答案;

(3)分別從OB=BF,OB=OF,OF=BF去分析求解即可求得答案.【題目詳解】解:(1)∵正方形OABC的面積為9,∴點(diǎn)B的坐標(biāo)為:(3,3),∵點(diǎn)B在反比例函數(shù)y=(k>0,x>0)的圖象上,∴3=,即k=9,∴該反比例函數(shù)的解析式為:y=y=(x>0);(2)根據(jù)題意得:P(t,),分兩種情況:①當(dāng)點(diǎn)P1在點(diǎn)B的左側(cè)時(shí),S=t?(﹣3)=﹣3t+9(0≤t≤3);若S=,則﹣3t+9=,解得:t=;②當(dāng)點(diǎn)P2在點(diǎn)B的右側(cè)時(shí),則S=(t﹣3)?=9﹣;若S=,則9﹣=,解得:t=6;∴S與t的函數(shù)關(guān)系式為:S=﹣3t+9(0≤t≤3);S=9﹣(t>3);當(dāng)S=時(shí),對(duì)應(yīng)的t值為或6;(3)存在.若OB=BF=3,此時(shí)CF=BC=3,∴OF=6,∴6=,解得:t=;若OB=OF=3,則3=,解得:t=;若BF=OF,此時(shí)點(diǎn)F與C重合,t=3;∴當(dāng)t=或或3時(shí),使△FBO為等腰三角形.【題目點(diǎn)撥】此題考查反比例函數(shù)的性質(zhì)、待定系數(shù)法求函數(shù)的解析式以及等腰三角形的性質(zhì).此題難度較大,解題關(guān)鍵是注意掌握數(shù)形結(jié)合思想、分類討論思想與方程思想的應(yīng)用.19、(1)50;(2)240;(3).【解題分析】

用喜愛社會(huì)實(shí)踐的人數(shù)除以它所占的百分比得到n的值;先計(jì)算出樣本中喜愛看電視的人數(shù),然后用1200乘以樣本中喜愛看電視人數(shù)所占的百分比,即可估計(jì)該校喜愛看電視的學(xué)生人數(shù);畫樹狀圖展示12種等可能的結(jié)果數(shù),再找出恰好抽到2名男生的結(jié)果數(shù),然后根據(jù)概率公式求解.【題目詳解】解:(1);(2)樣本中喜愛看電視的人數(shù)為(人,,所以估計(jì)該校喜愛看電視的學(xué)生人數(shù)為240人;(3)畫樹狀圖為:共有12種等可能的結(jié)果數(shù),其中恰好抽到2名男生的結(jié)果數(shù)為6,所以恰好抽到2名男生的概率.【題目點(diǎn)撥】本題考查了列表法與樹狀圖法;利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計(jì)算事件A或事件B的概率,也考查了統(tǒng)計(jì)圖.20、(1)見解析;(2)是7.3米【解題分析】

(1)圖1,先以A為圓心,大于A到BC的距離為半徑畫弧交BC與EF兩點(diǎn),然后分別以E、F為圓心畫弧,交點(diǎn)為G,連接AG,與BC交點(diǎn)點(diǎn)D,則AD⊥BC;圖2,分別以B、C為圓心,BA為半徑畫弧,交于點(diǎn)G,連接AG,與BC交點(diǎn)點(diǎn)D,則AD⊥BC;(2)在△ABD中,DB=AD;在△ACD中,CD=AD,BC=BD+CD,由此可以建立關(guān)于AD的方程,解方程求解.【題目詳解】解:(1)如下圖,圖1,先以A為圓心,大于A到BC的距離為半徑畫弧交BC與EF兩點(diǎn),然后分別以E、F為圓心畫弧,交點(diǎn)為G,連接AG,與BC交點(diǎn)點(diǎn)D,則AD⊥BC;圖2,分別以B、C為圓心,BA為半徑畫弧,交于點(diǎn)G,連接AG,與BC交點(diǎn)點(diǎn)D,則AD⊥BC;(2)設(shè)AD=x,在Rt△ABD中,∠ABD=45°,∴BD=AD=x,∴CD=20﹣x.∵tan∠ACD=,即tan30°=,∴x==10(﹣1)≈7.3(米).答:路燈A離地面的高度AD約是7.3米.【題目點(diǎn)撥】解此題關(guān)鍵是把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,把實(shí)際問題抽象到解直角三角形中,利用三角函數(shù)解答即可.21、15【解題分析】試題分析:設(shè)騎車學(xué)生的速度為,利用時(shí)間關(guān)系列方程解應(yīng)用題,一定要檢驗(yàn).試題解析:解:設(shè)騎車學(xué)生的速度為,由題意得,解得.經(jīng)檢驗(yàn)是原方程的解.答:騎車學(xué)生的速度為15.22、(1)詳見解析;(2)詳見解析;(3)DF=.【解題分析】

(1)先判斷出AD⊥BC,即可得出結(jié)論;(2)先判斷出OD∥AC,進(jìn)而判斷出∠CED=∠ODE,判斷出△CDE∽△CAD,即可得出結(jié)論;(3)先求出OD,再求出CD=3,進(jìn)而求出CE,AE,DE,再判斷出,即可得出結(jié)論.【題目詳解】(1)連接AD,∵AB是⊙O的直徑,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴BD=CD;(2)連接OD,∵DE是⊙O的切線,∴∠ODE=90°,由(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論