版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆廣東省湛江市第二十二中學(xué)中考數(shù)學(xué)仿真試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.據(jù)國(guó)土資源部數(shù)據(jù)顯示,我國(guó)是全球“可燃冰”資源儲(chǔ)量最多的國(guó)家之一,海、陸總儲(chǔ)量約為39000000000噸油當(dāng)量,將39000000000用科學(xué)記數(shù)法表示為()A.3.9×1010 B.3.9×109 C.0.39×1011 D.39×1092.如圖,正方形ABCD和正方形CEFG中,點(diǎn)D在CG上,BC=1,CE=3,CH┴AF與點(diǎn)H,那么CH的長(zhǎng)是()A. B. C. D.3.二次函數(shù)y=ax2+bx﹣2(a≠0)的圖象的頂點(diǎn)在第三象限,且過點(diǎn)(1,0),設(shè)t=a﹣b﹣2,則t值的變化范圍是()A.﹣2<t<0 B.﹣3<t<0 C.﹣4<t<﹣2 D.﹣4<t<04.如圖,⊙O的半徑為6,直徑CD過弦EF的中點(diǎn)G,若∠EOD=60°,則弦CF的長(zhǎng)等于()A.6 B.6 C.3 D.95.一元二次方程3x2-6x+4=0根的情況是A.有兩個(gè)不相等的實(shí)數(shù)根 B.有兩個(gè)相等的實(shí)數(shù)根 C.有兩個(gè)實(shí)數(shù)根 D.沒有實(shí)數(shù)根6.下列實(shí)數(shù)中是無理數(shù)的是()A. B.π C. D.7.如圖,在△ABC中,AB=AC,點(diǎn)D是邊AC上一點(diǎn),BC=BD=AD,則∠A的大小是().A.36° B.54° C.72° D.30°8.若=1,則符合條件的m有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)9.如圖,若△ABC內(nèi)接于半徑為R的⊙O,且∠A=60°,連接OB、OC,則邊BC的長(zhǎng)為()A. B. C. D.10.下列計(jì)算正確的是()A.a(chǎn)2?a3=a6 B.(a2)3=a6 C.a(chǎn)6﹣a2=a4 D.a(chǎn)5+a5=a10二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如果等腰三角形的兩內(nèi)角度數(shù)相差45°,那么它的頂角度數(shù)為_____.12.二次函數(shù)的圖象如圖所示,給出下列說法:①;②方程的根為,;③;④當(dāng)時(shí),隨值的增大而增大;⑤當(dāng)時(shí),.其中,正確的說法有________(請(qǐng)寫出所有正確說法的序號(hào)).13.如圖,已知l1∥l2∥l3,相鄰兩條平行直線間的距離相等,若等腰直角三角形ABC的直角頂點(diǎn)C在l1上,另兩個(gè)頂點(diǎn)A,B分別在l3,l2上,則sinα的值是_____.14.計(jì)算()()的結(jié)果等于_____.15.已知關(guān)于x,y的二元一次方程組的解互為相反數(shù),則k的值是_________.16.如圖,直線交于點(diǎn),,與軸負(fù)半軸,軸正半軸分別交于點(diǎn),,,的延長(zhǎng)線相交于點(diǎn),則的值是_________.三、解答題(共8題,共72分)17.(8分)在Rt△ABC中,∠BAC=,D是BC的中點(diǎn),E是AD的中點(diǎn).過點(diǎn)A作AF∥BC交BE的延長(zhǎng)線于點(diǎn)F.(1)求證:△AEF≌△DEB;(2)證明四邊形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCFD的面積.18.(8分)如圖①,在Rt△ABC中,∠ABC=90o,AB是⊙O的直徑,⊙O交AC于點(diǎn)D,過點(diǎn)D的直線交BC于點(diǎn)E,交AB的延長(zhǎng)線于點(diǎn)P,∠A=∠PDB.(1)求證:PD是⊙O的切線;(2)若AB=4,DA=DP,試求弧BD的長(zhǎng);(3)如圖②,點(diǎn)M是弧AB的中點(diǎn),連結(jié)DM,交AB于點(diǎn)N.若tanA=12,求DN19.(8分)計(jì)算:﹣(﹣2016)0+|﹣3|﹣4cos45°.20.(8分)定義:對(duì)于給定的二次函數(shù)y=a(x﹣h)2+k(a≠0),其伴生一次函數(shù)為y=a(x﹣h)+k,例如:二次函數(shù)y=2(x+1)2﹣3的伴生一次函數(shù)為y=2(x+1)﹣3,即y=2x﹣1.(1)已知二次函數(shù)y=(x﹣1)2﹣4,則其伴生一次函數(shù)的表達(dá)式為_____;(2)試說明二次函數(shù)y=(x﹣1)2﹣4的頂點(diǎn)在其伴生一次函數(shù)的圖象上;(3)如圖,二次函數(shù)y=m(x﹣1)2﹣4m(m≠0)的伴生一次函數(shù)的圖象與x軸、y軸分別交于點(diǎn)B、A,且兩函數(shù)圖象的交點(diǎn)的橫坐標(biāo)分別為1和2,在∠AOB內(nèi)部的二次函數(shù)y=m(x﹣1)2﹣4m的圖象上有一動(dòng)點(diǎn)P,過點(diǎn)P作x軸的平行線與其伴生一次函數(shù)的圖象交于點(diǎn)Q,設(shè)點(diǎn)P的橫坐標(biāo)為n,直接寫出線段PQ的長(zhǎng)為時(shí)n的值.21.(8分)如圖,在Rt△ABC中,∠C=90°,翻折∠C,使點(diǎn)C落在斜邊AB上某一點(diǎn)D處,折痕為EF(點(diǎn)E、F分別在邊AC、BC上)若△CEF與△ABC相似.①當(dāng)AC=BC=2時(shí),AD的長(zhǎng)為;②當(dāng)AC=3,BC=4時(shí),AD的長(zhǎng)為;當(dāng)點(diǎn)D是AB的中點(diǎn)時(shí),△CEF與△ABC相似嗎?請(qǐng)說明理由.22.(10分)某銷售商準(zhǔn)備在南充采購(gòu)一批絲綢,經(jīng)調(diào)查,用10000元采購(gòu)A型絲綢的件數(shù)與用8000元采購(gòu)B型絲綢的件數(shù)相等,一件A型絲綢進(jìn)價(jià)比一件B型絲綢進(jìn)價(jià)多100元.(1)求一件A型、B型絲綢的進(jìn)價(jià)分別為多少元?(2)若銷售商購(gòu)進(jìn)A型、B型絲綢共50件,其中A型的件數(shù)不大于B型的件數(shù),且不少于16件,設(shè)購(gòu)進(jìn)A型絲綢m件.①求m的取值范圍.②已知A型的售價(jià)是800元/件,銷售成本為2n元/件;B型的售價(jià)為600元/件,銷售成本為n元/件.如果50≤n≤150,求銷售這批絲綢的最大利潤(rùn)w(元)與n(元)的函數(shù)關(guān)系式.23.(12分)已知一次函數(shù)y=x+1與拋物線y=x2+bx+c交A(m,9),B(0,1)兩點(diǎn),點(diǎn)C在拋物線上且橫坐標(biāo)為1.(1)寫出拋物線的函數(shù)表達(dá)式;(2)判斷△ABC的形狀,并證明你的結(jié)論;(3)平面內(nèi)是否存在點(diǎn)Q在直線AB、BC、AC距離相等,如果存在,請(qǐng)直接寫出所有符合條件的Q的坐標(biāo),如果不存在,說說你的理由.24.如圖1,經(jīng)過原點(diǎn)O的拋物線y=ax2+bx(a≠0)與x軸交于另一點(diǎn)A(,0),在第一象限內(nèi)與直線y=x交于點(diǎn)B(2,t).(1)求這條拋物線的表達(dá)式;(2)在第四象限內(nèi)的拋物線上有一點(diǎn)C,滿足以B,O,C為頂點(diǎn)的三角形的面積為2,求點(diǎn)C的坐標(biāo);(3)如圖2,若點(diǎn)M在這條拋物線上,且∠MBO=∠ABO,在(2)的條件下,是否存在點(diǎn)P,使得△POC∽△MOB?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解題分析】
用科學(xué)記數(shù)法表示較大的數(shù)時(shí),一般形式為a×10n,其中1≤|a|<10,n為整數(shù),據(jù)此判斷即可.【題目詳解】39000000000=3.9×1.故選A.【題目點(diǎn)撥】科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>10時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).2、D【解題分析】
連接AC、CF,根據(jù)正方形性質(zhì)求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,最后由直角三角形面積的兩種表示法即可求得CH的長(zhǎng).【題目詳解】如圖,連接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=,CF=3,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,AF=,∵CH⊥AF,∴,即,∴CH=.故選D.【題目點(diǎn)撥】本題考查了正方形的性質(zhì)、勾股定理及直角三角形的面積,熟記各性質(zhì)并作輔助線構(gòu)造出直角三角形是解題的關(guān)鍵.3、D【解題分析】
由二次函數(shù)的解析式可知,當(dāng)x=1時(shí),所對(duì)應(yīng)的函數(shù)值y=a+b-2,把點(diǎn)(1,0)代入y=ax2+bx-2,a+b-2=0,然后根據(jù)頂點(diǎn)在第三象限,可以判斷出a與b的符號(hào),進(jìn)而求出t=a-b-2的變化范圍.【題目詳解】解:∵二次函數(shù)y=ax2+bx-2的頂點(diǎn)在第三象限,且經(jīng)過點(diǎn)(1,0)∴該函數(shù)是開口向上的,a>0
∵y=ax2+bx﹣2過點(diǎn)(1,0),∴a+b-2=0.∵a>0,∴2-b>0.∵頂點(diǎn)在第三象限,∴-<0.∴b>0.∴2-a>0.∴0<b<2.∴0<a<2.∴t=a-b-2.∴﹣4<t<0.【題目點(diǎn)撥】本題考查大小二次函數(shù)的圖像,熟練掌握?qǐng)D像的性質(zhì)是解題的關(guān)鍵.4、B【解題分析】
連接DF,根據(jù)垂徑定理得到,得到∠DCF=∠EOD=30°,根據(jù)圓周角定理、余弦的定義計(jì)算即可.【題目詳解】解:連接DF,∵直徑CD過弦EF的中點(diǎn)G,∴,∴∠DCF=∠EOD=30°,∵CD是⊙O的直徑,
∴∠CFD=90°,
∴CF=CD?cos∠DCF=12×=,故選B.【題目點(diǎn)撥】本題考查的是垂徑定理的推論、解直角三角形,掌握平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧是解題的關(guān)鍵.5、D【解題分析】
根據(jù)?=b2-4ac,求出?的值,然后根據(jù)?的值與一元二次方程根的關(guān)系判斷即可.【題目詳解】∵a=3,b=-6,c=4,∴?=b2-4ac=(-6)2-4×3×4=-12<0,∴方程3x2-6x+4=0沒有實(shí)數(shù)根.故選D.【題目點(diǎn)撥】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式?=b2﹣4ac:當(dāng)?>0時(shí),一元二次方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)?=0時(shí),一元二次方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)?<0時(shí),一元二次方程沒有實(shí)數(shù)根.6、B【解題分析】
無理數(shù)就是無限不循環(huán)小數(shù).理解無理數(shù)的概念,一定要同時(shí)理解有理數(shù)的概念,有理數(shù)是整數(shù)與分?jǐn)?shù)的統(tǒng)稱.即有限小數(shù)和無限循環(huán)小數(shù)是有理數(shù),而無限不循環(huán)小數(shù)是無理數(shù).由此即可判定選擇項(xiàng).【題目詳解】A、是分?jǐn)?shù),屬于有理數(shù);B、π是無理數(shù);C、=3,是整數(shù),屬于有理數(shù);D、-是分?jǐn)?shù),屬于有理數(shù);故選B.【題目點(diǎn)撥】此題主要考查了無理數(shù)的定義,其中初中范圍內(nèi)學(xué)習(xí)的無理數(shù)有:π,2π等;開方開不盡的數(shù);以及像0.1010010001…,等有這樣規(guī)律的數(shù).7、A【解題分析】
由BD=BC=AD可知,△ABD,△BCD為等腰三角形,設(shè)∠A=∠ABD=x,則∠C=∠CDB=2x,又由AB=AC可知,△ABC為等腰三角形,則∠ABC=∠C=2x.在△ABC中,用內(nèi)角和定理列方程求解.【題目詳解】解:∵BD=BC=AD,∴△ABD,△BCD為等腰三角形,設(shè)∠A=∠ABD=x,則∠C=∠CDB=2x.又∵AB=AC,∴△ABC為等腰三角形,∴∠ABC=∠C=2x.在△ABC中,∠A+∠ABC+∠C=180°,即x+2x+2x=180°,解得:x=36°,即∠A=36°.故選A.【題目點(diǎn)撥】本題考查了等腰三角形的性質(zhì).關(guān)鍵是利用等腰三角形的底角相等,外角的性質(zhì),內(nèi)角和定理,列方程求解.8、C【解題分析】
根據(jù)有理數(shù)的乘方及解一元二次方程-直接開平方法得出兩個(gè)有關(guān)m的等式,即可得出.【題目詳解】=1m2-9=0或m-2=1即m=3或m=3,m=1m有3個(gè)值故答案選C.【題目點(diǎn)撥】本題考查的知識(shí)點(diǎn)是有理數(shù)的乘方及解一元二次方程-直接開平方法,解題的關(guān)鍵是熟練的掌握有理數(shù)的乘方及解一元二次方程-直接開平方法.9、D【解題分析】
延長(zhǎng)BO交圓于D,連接CD,則∠BCD=90°,∠D=∠A=60°;又BD=2R,根據(jù)銳角三角函數(shù)的定義得BC=R.【題目詳解】解:延長(zhǎng)BO交⊙O于D,連接CD,則∠BCD=90°,∠D=∠A=60°,∴∠CBD=30°,∵BD=2R,∴DC=R,∴BC=R,故選D.【題目點(diǎn)撥】此題綜合運(yùn)用了圓周角定理、直角三角形30°角的性質(zhì)、勾股定理,注意:作直徑構(gòu)造直角三角形是解決本題的關(guān)鍵.10、B【解題分析】
根據(jù)同底數(shù)冪乘法、冪的乘方的運(yùn)算性質(zhì)計(jì)算后利用排除法求解.【題目詳解】A、a2?a3=a5,錯(cuò)誤;B、(a2)3=a6,正確;C、不是同類項(xiàng),不能合并,錯(cuò)誤;D、a5+a5=2a5,錯(cuò)誤;故選B.【題目點(diǎn)撥】本題綜合考查了整式運(yùn)算的多個(gè)考點(diǎn),包括同底數(shù)冪的乘法、冪的乘方、合并同類項(xiàng),需熟練掌握且區(qū)分清楚,才不容易出錯(cuò).二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、90°或30°.【解題分析】
分兩種情況討論求解:頂角比底角大45°;頂角比底角小45°.【題目詳解】設(shè)頂角為x度,則當(dāng)?shù)捉菫閤°﹣45°時(shí),2(x°﹣45°)+x°=180°,解得x=90°,當(dāng)?shù)捉菫閤°+45°時(shí),2(x°+45°)+x°=180°,解得x=30°,∴頂角度數(shù)為90°或30°.故答案為:90°或30°.【題目點(diǎn)撥】本題考查了等腰三角形的兩個(gè)底角相等即分類討論的數(shù)學(xué)思想,解答本題的關(guān)鍵是分頂角比底角大45°或頂角比底角小45°兩種情況進(jìn)行計(jì)算.12、①②④【解題分析】
根據(jù)拋物線的對(duì)稱軸判斷①,根據(jù)拋物線與x軸的交點(diǎn)坐標(biāo)判斷②,根據(jù)函數(shù)圖象判斷③④⑤.【題目詳解】解:∵對(duì)稱軸是x=-=1,∴ab<0,①正確;∵二次函數(shù)y=ax2+bx+c的圖象與x軸的交點(diǎn)坐標(biāo)為(-1,0)、(3,0),∴方程x2+bx+c=0的根為x1=-1,x2=3,②正確;∵當(dāng)x=1時(shí),y<0,∴a+b+c<0,③錯(cuò)誤;由圖象可知,當(dāng)x>1時(shí),y隨x值的增大而增大,④正確;當(dāng)y>0時(shí),x<-1或x>3,⑤錯(cuò)誤,故答案為①②④.【題目點(diǎn)撥】本題考查的是二次函數(shù)圖象與系數(shù)之間的關(guān)系,二次函數(shù)y=ax2+bx+c系數(shù)符號(hào)由拋物線開口方向、對(duì)稱軸、拋物線與y軸的交點(diǎn)、拋物線與x軸交點(diǎn)的個(gè)數(shù)確定.13、【解題分析】
過點(diǎn)A作AD⊥l1于D,過點(diǎn)B作BE⊥l1于E,根據(jù)同角的余角相等求出∠CAD=∠BCE,然后利用“角角邊”證明△ACD和△CBE全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得CD=BE,然后利用勾股定理列式求出AC,然后利用銳角的正弦等于對(duì)邊比斜邊列式計(jì)算即可得解.【題目詳解】如圖,過點(diǎn)A作AD⊥l1于D,過點(diǎn)B作BE⊥l1于E,設(shè)l1,l2,l3間的距離為1,∵∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE,在等腰直角△ABC中,AC=BC,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE=1,∴AD=2,∴AC=,∴AB=AC=,∴sinα=,故答案為.【題目點(diǎn)撥】本題考查了全等三角形的判定與性質(zhì),等腰直角三角形的性質(zhì),銳角三角函數(shù)的定義,正確添加輔助線構(gòu)造出全等三角形是解題的關(guān)鍵.14、4【解題分析】
利用平方差公式計(jì)算.【題目詳解】解:原式=()2-()2=7-3=4.故答案為:4.【題目點(diǎn)撥】本題考查了二次根式的混合運(yùn)算.15、-1【解題分析】
∵關(guān)于x,y的二元一次方程組的解互為相反數(shù),∴x=-y③,把③代入②得:-y+2y=-1,解得y=-1,所以x=1,把x=1,y=-1代入①得2-3=k,即k=-1.故答案為-116、【解題分析】
連接,根據(jù)可得,并且根據(jù)圓的半徑相等可得△OAD、△OBE都是等腰三角形,由三角形的內(nèi)角和,可得∠C=45°,則有是等腰直角三角形,可得即可求求解.【題目詳解】解:如圖示,連接,∵,∴,∵,,∴,,∴,∴,∵是直徑,∴,∴是等腰直角三角形,∴.【題目點(diǎn)撥】本題考查圓的性質(zhì)和直角三角形的性質(zhì),能夠根據(jù)圓性質(zhì)得出是等腰直角三角形是解題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)證明詳見解析;(2)證明詳見解析;(3)1.【解題分析】
(1)利用平行線的性質(zhì)及中點(diǎn)的定義,可利用AAS證得結(jié)論;
(2)由(1)可得AF=BD,結(jié)合條件可求得AF=DC,則可證明四邊形ADCF為平行四邊形,再利用直角三角形的性質(zhì)可證得AD=CD,可證得四邊形ADCF為菱形;
(3)連接DF,可證得四邊形ABDF為平行四邊形,則可求得DF的長(zhǎng),利用菱形的面積公式可求得答案.【題目詳解】(1)證明:∵AF∥BC,
∴∠AFE=∠DBE,
∵E是AD的中點(diǎn),
∴AE=DE,
在△AFE和△DBE中,
∴△AFE≌△DBE(AAS);
(2)證明:由(1)知,△AFE≌△DBE,則AF=DB.
∵AD為BC邊上的中線
∴DB=DC,
∴AF=CD.
∵AF∥BC,
∴四邊形ADCF是平行四邊形,
∵∠BAC=90°,D是BC的中點(diǎn),E是AD的中點(diǎn),
∴AD=DC=BC,
∴四邊形ADCF是菱形;
(3)連接DF,
∵AF∥BD,AF=BD,
∴四邊形ABDF是平行四邊形,
∴DF=AB=5,
∵四邊形ADCF是菱形,
∴S菱形ADCF=AC?DF=×4×5=1.【題目點(diǎn)撥】本題主要考查菱形的性質(zhì)及判定,利用全等三角形的性質(zhì)證得AF=CD是解題的關(guān)鍵,注意菱形面積公式的應(yīng)用.18、(1)見解析;(2)23π;(3)【解題分析】
(1)連結(jié)OD;由AB是⊙O的直徑,得到∠ADB=90°,根據(jù)等腰三角形的性質(zhì)得到∠ADO=∠A,∠BDO=∠ABD;得到∠PDO=90°,且D在圓上,于是得到結(jié)論;(2)設(shè)∠A=x,則∠A=∠P=x,∠DBA=2x,在△ABD中,根據(jù)∠A+∠ABD=90o列方程求出x的值,進(jìn)而可得到∠DOB=60o,然后根據(jù)弧長(zhǎng)公式計(jì)算即可;(3)連結(jié)OM,過D作DF⊥AB于點(diǎn)F,然后證明△OMN∽△FDN,根據(jù)相似三角形的性質(zhì)求解即可.【題目詳解】(1)連結(jié)OD,∵AB是⊙O的直徑,∴∠ADB=90o,∠A+∠ABD=90o,又∵OA=OB=OD,∴∠BDO=∠ABD,又∵∠A=∠PDB,∴∠PDB+∠BDO=90o,即∠PDO=90o,且D在圓上,∴PD是⊙O的切線.(2)設(shè)∠A=x,∵DA=DP,∴∠A=∠P=x,∴∠DBA=∠P+∠BDP=x+x=2x,在△ABD中,∠A+∠ABD=90o,x=2x=90o,即x=30o,∴∠DOB=60o,∴弧BD長(zhǎng)l=60·π·2(3)連結(jié)OM,過D作DF⊥AB于點(diǎn)F,∵點(diǎn)M是的中點(diǎn),∴OM⊥AB,設(shè)BD=x,則AD=2x,AB=5x=2OM,即OM=5在Rt△BDF中,DF=25由△OMN∽△FDN得DNMN【題目點(diǎn)撥】本題是圓的綜合題,考查了切線的判定,圓周角定理及其推論,三角形外角的性質(zhì),含30°角的直角三角形的性質(zhì),弧長(zhǎng)的計(jì)算,弧弦圓心角的關(guān)系,相似三角形的判定與性質(zhì).熟練掌握切線的判定方法是解(1)的關(guān)鍵,求出∠A=30o是解(2)的關(guān)鍵,證明△OMN∽△FDN是解(3)的關(guān)鍵.19、1.【解題分析】
根據(jù)二次根式性質(zhì),零指數(shù)冪法則,絕對(duì)值的代數(shù)意義,以及特殊角的三角函數(shù)值依次計(jì)算后合并即可.【題目詳解】解:原式=1﹣1+3﹣4×=1.【題目點(diǎn)撥】本題考查實(shí)數(shù)的運(yùn)算及特殊角三角形函數(shù)值.20、y=x﹣5【解題分析】分析:(1)根據(jù)定義,直接變形得到伴生一次函數(shù)的解析式;(2)求出頂點(diǎn),代入伴生函數(shù)解析式即可求解;(3)根據(jù)題意得到伴生函數(shù)解析式,根據(jù)P點(diǎn)的坐標(biāo),坐標(biāo)表示出縱坐標(biāo),然后通過PQ與x軸的平行關(guān)系,求得Q點(diǎn)的坐標(biāo),由PQ的長(zhǎng)列方程求解即可.詳解:(1)∵二次函數(shù)y=(x﹣1)2﹣4,∴其伴生一次函數(shù)的表達(dá)式為y=(x﹣1)﹣4=x﹣5,故答案為y=x﹣5;(2)∵二次函數(shù)y=(x﹣1)2﹣4,∴頂點(diǎn)坐標(biāo)為(1,﹣4),∵二次函數(shù)y=(x﹣1)2﹣4,∴其伴生一次函數(shù)的表達(dá)式為y=x﹣5,∴當(dāng)x=1時(shí),y=1﹣5=﹣4,∴(1,﹣4)在直線y=x﹣5上,即:二次函數(shù)y=(x﹣1)2﹣4的頂點(diǎn)在其伴生一次函數(shù)的圖象上;(3)∵二次函數(shù)y=m(x﹣1)2﹣4m,∴其伴生一次函數(shù)為y=m(x﹣1)﹣4m=mx﹣5m,∵P點(diǎn)的橫坐標(biāo)為n,(n>2),∴P的縱坐標(biāo)為m(n﹣1)2﹣4m,即:P(n,m(n﹣1)2﹣4m),∵PQ∥x軸,∴Q((n﹣1)2+1,m(n﹣1)2﹣4m),∴PQ=(n﹣1)2+1﹣n,∵線段PQ的長(zhǎng)為,∴(n﹣1)2+1﹣n=,∴n=.點(diǎn)睛:此題主要考查了新定義下的函數(shù)關(guān)系式,關(guān)鍵是理解新定義的特點(diǎn)構(gòu)造伴生函數(shù)解析式.21、解:(1)①.②或.(2)當(dāng)點(diǎn)D是AB的中點(diǎn)時(shí),△CEF與△ABC相似.理由見解析.【解題分析】
(1)①當(dāng)AC=BC=2時(shí),△ABC為等腰直角三角形;
②若△CEF與△ABC相似,分兩種情況:①若CE:CF=3:4,如圖1所示,此時(shí)EF∥AB,CD為AB邊上的高;②若CF:CE=3:4,如圖2所示.由相似三角形角之間的關(guān)系,可以推出∠A=∠ECD與∠B=∠FCD,從而得到CD=AD=BD,即D點(diǎn)為AB的中點(diǎn);
(2)當(dāng)點(diǎn)D是AB的中點(diǎn)時(shí),△CEF與△ABC相似.可以推出∠CFE=∠A,∠C=∠C,從而可以證明兩個(gè)三角形相似.【題目詳解】(1)若△CEF與△ABC相似.①當(dāng)AC=BC=2時(shí),△ABC為等腰直角三角形,如答圖1所示,此時(shí)D為AB邊中點(diǎn),AD=AC=.②當(dāng)AC=3,BC=4時(shí),有兩種情況:(I)若CE:CF=3:4,如答圖2所示,∵CE:CF=AC:BC,∴EF∥BC.由折疊性質(zhì)可知,CD⊥EF,∴CD⊥AB,即此時(shí)CD為AB邊上的高.在Rt△ABC中,AC=3,BC=4,∴BC=1.∴cosA=.∴AD=AC?cosA=3×=.(II)若CF:CE=3:4,如答圖3所示.∵△CEF∽△CAB,∴∠CEF=∠B.由折疊性質(zhì)可知,∠CEF+∠ECD=90°.又∵∠A+∠B=90°,∴∠A=∠ECD,∴AD=CD.同理可得:∠B=∠FCD,CD=BD.∴AD=BD.∴此時(shí)AD=AB=×1=.綜上所述,當(dāng)AC=3,BC=4時(shí),AD的長(zhǎng)為或.(2)當(dāng)點(diǎn)D是AB的中點(diǎn)時(shí),△CEF與△CBA相似.理由如下:
如圖所示,連接CD,與EF交于點(diǎn)Q.
∵CD是Rt△ABC的中線
∴CD=DB=AB,
∴∠DCB=∠B.
由折疊性質(zhì)可知,∠CQF=∠DQF=90°,
∴∠DCB+∠CFE=90°,
∵∠B+∠A=90°,
∴∠CFE=∠A,
又∵∠ACB=∠ACB,
∴△CEF∽△CBA.22、(1)一件A型、B型絲綢的進(jìn)價(jià)分別為500元,400元;(2)①,②.【解題分析】
(1)根據(jù)題意應(yīng)用分式方程即可;(2)①根據(jù)條件中可以列出關(guān)于m的不等式組,求m的取值范圍;②本問中,首先根據(jù)題意,可以先列出銷售利潤(rùn)y與m的函數(shù)關(guān)系,通過討論所含字母n的取值范圍,得到w與n的函數(shù)關(guān)系.【題目詳解】(1)設(shè)型絲綢的進(jìn)價(jià)為元,則型絲綢的進(jìn)價(jià)為元,根據(jù)題意得:,解得,經(jīng)檢驗(yàn),為原方程的解,,答:一件型、型絲綢的進(jìn)價(jià)分別為500元,400元.(2)①根據(jù)題意得:,的取值范圍為:,②設(shè)銷售這批絲綢的利潤(rùn)為,根據(jù)題意得:,,(Ⅰ)當(dāng)時(shí),,時(shí),銷售這批絲綢的最大利潤(rùn);(Ⅱ)當(dāng)時(shí),,銷售這批絲綢的最大利潤(rùn);(Ⅲ)當(dāng)時(shí),當(dāng)時(shí),銷售這批絲綢的最大利潤(rùn).綜上所述:.【題目點(diǎn)撥】本題綜合考察了分式方程、不等式組以及一次函數(shù)的相關(guān)知識(shí).在第(2)問②中,進(jìn)一步考查了,如何解決含有字母系數(shù)的一次函數(shù)最值問題.23、(1)y=x2﹣7x+1;(2)△ABC為直角三角形.理由見解析;(3)符合條件的Q的坐標(biāo)為(4,1),(24,1),(0,﹣7),(0,13).【解題分析】
(1)先利用一次函數(shù)解析式得到A(8,9),然后利用待定系數(shù)法求拋物線解析式;(2)先利用拋物線解析式確定C(1,﹣5),作AM⊥y軸于M,CN⊥y軸于N,如圖,證明△ABM和△BNC都是等腰直角三角形得到∠MBA=45°,∠NBC=45°,AB=8,BN=1,從而得到∠ABC=90°,所以△ABC為直角三角形;(3)利用勾股定理計(jì)算出AC=10,根據(jù)直角三角形內(nèi)切圓半徑的計(jì)算公式得到Rt△ABC的內(nèi)切圓的半徑=2,設(shè)△ABC的內(nèi)心為I,過A作AI的垂線交直線BI于P,交y軸于Q,AI交y軸于G,如圖,則AI、BI為角平分線,BI⊥y軸,PQ為△ABC的外角平分線,易得y軸為△ABC的外角平分線,根據(jù)角平分線的性質(zhì)可判斷點(diǎn)P、I、Q、G到直線AB、BC、AC距離相等,由于BI=×2=4,則I(4,1),接著利用待定系數(shù)法求出直線AI的解析式為y=2x﹣7,直線AP的解析式為y=﹣x+13,然后分別求出P、Q、G的坐標(biāo)即可.【題目詳解】解:(1)把A(m,9)代入y=x+1得m+1=9,解得m=8,則A(8,9),把A(8,9),B(0,1)代入y=x2+bx+c得,解得,∴拋物線解析式為y=x2﹣7x+1;故答案為y=x2﹣7x+1;(2)△ABC為直角三角形.理由如下:當(dāng)x=1時(shí),y=x2﹣7x+1=31﹣42+1=﹣5,則C(1,﹣5),作AM⊥y軸于M,CN⊥y軸于N,如圖,∵B(0,1),A(8,9),C(1,﹣5),∴BM=AM=8,BN=CN=1,∴△ABM和△BNC都是等腰直角三角形,∴∠MBA=45°,∠NBC=45°,AB=8,BN=1,∴∠ABC=90°,∴△ABC為直角三角形;(3)∵AB=8,BN=1,∴AC=10,∴Rt△ABC的內(nèi)切圓的半徑=,設(shè)△ABC的內(nèi)心為I,過A作AI的垂線交直線BI于P,交y軸于Q,AI交y軸于G,如圖,∵I為△ABC的內(nèi)心,∴AI、BI為角平分線,∴BI⊥y軸,而AI⊥PQ,∴PQ為△ABC的外角平分線,易得y軸為△ABC的外角平分線,∴點(diǎn)I、P、Q、G為△ABC的內(nèi)角平分線或外角平分線的交點(diǎn),它們到直線AB、BC、AC距離相等,BI=×2=4,而BI⊥y軸,∴I(4,1),設(shè)直線AI的解析式為y=kx+n,則,解得,∴直線AI的解析式為y=2x﹣7,當(dāng)x=0時(shí),y=2x﹣7=﹣7,則G(0,﹣7);設(shè)直線AP的解析式為y=﹣x+p,把A(8,9)代入得﹣4+n=9,解得n=13,∴直線AP的解析式為y=﹣x+13,當(dāng)y=1時(shí),﹣x+13=1,則P(24,1)當(dāng)x=0時(shí),y=﹣x+13=13,則Q(0,13),綜上所述,符合條件的Q的坐標(biāo)為(4,1),(24,1),(0,﹣7),(0,13).【題目點(diǎn)撥】本題考查了二次函數(shù)的綜合題:熟練掌握二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、角平分線的性質(zhì)和三角形內(nèi)心的性質(zhì);會(huì)利用待定系數(shù)法求函數(shù)解析式;理解坐標(biāo)與圖形性質(zhì)是解題的關(guān)鍵.24、(1)y=2x2﹣3x;(2)C(1,﹣1);(3)(,)或(﹣,).【解題分析】
(1)由直線解析式可求得B點(diǎn)坐標(biāo),由A、B坐標(biāo),利用待定系數(shù)法可求得拋物線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 小班障礙爬行課程設(shè)計(jì)
- 城市污泥焚燒課程設(shè)計(jì)
- 瑜伽劈叉體式課程設(shè)計(jì)
- 瑜伽運(yùn)動(dòng)康復(fù)課程設(shè)計(jì)論文
- 焊接工藝工裝課程設(shè)計(jì)
- 比值控制系統(tǒng)的課程設(shè)計(jì)
- 物聯(lián)網(wǎng)家居課程設(shè)計(jì)
- 油畫蛋糕課程設(shè)計(jì)案例
- 電動(dòng)客車課程設(shè)計(jì)
- 電動(dòng)機(jī)課程設(shè)計(jì)
- 2024年新高考英語全國(guó)卷I分析教學(xué)設(shè)計(jì)
- 檢驗(yàn)科生物安全手冊(cè)
- 2024-2025學(xué)年高中英語學(xué)業(yè)水平合格性考試模擬測(cè)試卷五含解析
- 孤殘兒童護(hù)理員技能鑒定考試題庫(含答案)
- HG∕T 2374-2017 搪玻璃閉式貯存容器
- 求是文章《開創(chuàng)我國(guó)高質(zhì)量發(fā)展新局面》專題課件
- ISO∕TR 56004-2019創(chuàng)新管理評(píng)估-指南(雷澤佳譯-2024)
- 車禍私了賠償協(xié)議書范本
- DB5334-T 12.1-2024 地理標(biāo)志證明商標(biāo) 香格里拉藏香豬 第1部分:品種要求
- 光伏項(xiàng)目施工總進(jìn)度計(jì)劃表(含三級(jí))
- 2.1中國(guó)古代音樂(1)教學(xué)設(shè)計(jì)高中音樂必修音樂鑒賞
評(píng)論
0/150
提交評(píng)論