北京市燕山地區(qū)重點達標名校2024屆中考數(shù)學仿真試卷含解析_第1頁
北京市燕山地區(qū)重點達標名校2024屆中考數(shù)學仿真試卷含解析_第2頁
北京市燕山地區(qū)重點達標名校2024屆中考數(shù)學仿真試卷含解析_第3頁
北京市燕山地區(qū)重點達標名校2024屆中考數(shù)學仿真試卷含解析_第4頁
北京市燕山地區(qū)重點達標名校2024屆中考數(shù)學仿真試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

北京市燕山地區(qū)重點達標名校2024屆中考數(shù)學仿真試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.施工隊要鋪設1000米的管道,因在中考期間需停工2天,每天要比原計劃多施工30米才能按時完成任務.設原計劃每天施工x米,所列方程正確的是()A.=2 B.=2C.=2 D.=22.如圖,正方形ABCD的對角線AC與BD相交于點O,∠ACB的角平分線分別交AB,BD于M,N兩點.若AM=2,則線段ON的長為()A. B. C.1 D.3.一元二次方程的根是()A. B.C. D.4.中國古代在利用“計里畫方”(比例縮放和直角坐標網(wǎng)格體系)的方法制作地圖時,會利用測桿、水準儀和照板來測量距離.在如圖所示的測量距離AB的示意圖中,記照板“內芯”的高度為EF,觀測者的眼睛(圖中用點C表示)與BF在同一水平線上,則下列結論中,正確的是()A. B. C. D.5.1cm2的電子屏上約有細菌135000個,135000用科學記數(shù)法表示為()A.0.135×106 B.1.35×105 C.13.5×104 D.135×1036.在2014年5月崇左市教育局舉行的“經(jīng)典詩朗誦”演講比賽中,有11名學生參加決賽,他們決賽的成績各不相同,其中的一名學生想知道自己能否進入前6名,不僅要了解自己的成績,還要了解這11名學生成績的()A.眾數(shù) B.中位數(shù) C.平均數(shù) D.方差7.下列美麗的圖案中,不是軸對稱圖形的是()A. B. C. D.8.下列事件中是必然事件的是()A.早晨的太陽一定從東方升起B(yǎng).中秋節(jié)的晚上一定能看到月亮C.打開電視機,正在播少兒節(jié)目D.小紅今年14歲,她一定是初中學生9.如圖,已知的周長等于,則它的內接正六邊形ABCDEF的面積是()A. B. C. D.10.要整齊地栽一行樹,只要確定兩端的樹坑的位置,就能確定這一行樹坑所在的直線,這里用到的數(shù)學知識是()A.兩點之間的所有連線中,線段最短B.經(jīng)過兩點有一條直線,并且只有一條直線C.直線外一點與直線上各點連接的所有線段中,垂線段最短D.經(jīng)過一點有且只有一條直線與已知直線垂直11.-的絕對值是()A.-4 B. C.4 D.0.412.黃河是中華民族的象征,被譽為母親河,黃河壺口瀑布位于我省吉縣城西45千米處,是黃河上最具氣勢的自然景觀.其落差約30米,年平均流量1010立方米/秒.若以小時作時間單位,則其年平均流量可用科學記數(shù)法表示為()A.6.06×104立方米/時 B.3.136×106立方米/時C.3.636×106立方米/時 D.36.36×105立方米/時二、填空題:(本大題共6個小題,每小題4分,共24分.)13.現(xiàn)在網(wǎng)購越來越多地成為人們的一種消費方式,天貓和淘寶的支付交易額突破67000000000元,將67000000000元用科學記數(shù)法表示為_____.14.如圖,為了測量某棵樹的高度,小明用長為2m的竹竿做測量工具,移動竹竿,使竹竿、樹的頂端的影子恰好落在地面的同一點.此時,竹竿與這一點距離相距6m,與樹相距15m,則樹的高度為_________m.15.二十四節(jié)氣列入聯(lián)合國教科文組織人類非物質文化遺產代表作名錄.太陽運行的軌道是一個圓形,古人將之稱作“黃道”,并把黃道分為24份,每15度就是一個節(jié)氣,統(tǒng)稱“二十四節(jié)氣”.這一時間認知體系被譽為“中國的第五大發(fā)明”.如圖,指針落在驚蟄、春分、清明區(qū)域的概率是_____.16.若點(a,b)在一次函數(shù)y=2x-3的圖象上,則代數(shù)式4a-2b-3的值是__________17.如圖,在每個小正方形的邊長為1的網(wǎng)格中,點A,B,C均在格點上.(1)AB的長等于____;(2)在△ABC的內部有一點P,滿足S△PABS△PBCS△PCA=1:2:3,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出點P,并簡要說明點P的位置是如何找到的(不要求證明)_______18.如圖,一個直角三角形紙片,剪去直角后,得到一個四邊形,則∠1+∠2=_______度.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)我們定義:如果一個三角形一條邊上的高等于這條邊,那么這個三角形叫做“等高底”三角形,這條邊叫做這個三角形的“等底”.(1)概念理解:如圖1,在△ABC中,AC=6,BC=3,∠ACB=30°,試判斷△ABC是否是”等高底”三角形,請說明理由.(1)問題探究:如圖1,△ABC是“等高底”三角形,BC是”等底”,作△ABC關于BC所在直線的對稱圖形得到△A'BC,連結AA′交直線BC于點D.若點B是△AA′C的重心,求的值.(3)應用拓展:如圖3,已知l1∥l1,l1與l1之間的距離為1.“等高底”△ABC的“等底”BC在直線l1上,點A在直線l1上,有一邊的長是BC的倍.將△ABC繞點C按順時針方向旋轉45°得到△A'B'C,A′C所在直線交l1于點D.求CD的值.20.(6分)八年級(1)班研究性學習小組為研究全校同學課外閱讀情況,在全校隨機邀請了部分同學參與問卷調查,統(tǒng)計同學們一個月閱讀課外書的數(shù)量,并繪制了以下統(tǒng)計圖.請根據(jù)圖中信息解決下列問題:(1)共有名同學參與問卷調查;(2)補全條形統(tǒng)計圖和扇形統(tǒng)計圖;(3)全校共有學生1500人,請估計該校學生一個月閱讀2本課外書的人數(shù)約為多少.21.(6分)灞橋區(qū)教育局為了了解七年級學生參加社會實踐活動情況,隨機抽取了鐵一中濱河學部分七年級學生2016﹣2017學年第一學期參加實踐活動的天數(shù),并用得到的數(shù)據(jù)繪制了兩幅統(tǒng)計圖,下面給出了兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,回答下列問題:(1)a=%,并補全條形圖.(2)在本次抽樣調查中,眾數(shù)和中位數(shù)分別是多少?(3)如果該區(qū)共有七年級學生約9000人,請你估計活動時間不少于6天的學生人數(shù)大約有多少?22.(8分)如圖,已知⊙O是以AB為直徑的△ABC的外接圓,過點A作⊙O的切線交OC的延長線于點D,交BC的延長線于點E.(1)求證:∠DAC=∠DCE;(2)若AB=2,sin∠D=,求AE的長.23.(8分)小明和小亮玩一個游戲:取三張大小、質地都相同的卡片,上面分別標有數(shù)字2、3、4(背面完全相同),現(xiàn)將標有數(shù)字的一面朝下.小明從中任意抽取一張,記下數(shù)字后放回洗勻,然后小亮從中任意抽取一張,計算小明和小亮抽得的兩個數(shù)字之和.請你用畫樹狀圖或列表的方法,求出這兩數(shù)和為6的概率.如果和為奇數(shù),則小明勝;若和為偶數(shù),則小亮勝.你認為這個游戲規(guī)則對雙方公平嗎?做出判斷,并說明理由.24.(10分)如圖1,在平面直角坐標系xOy中,拋物線C:y=ax2+bx+c與x軸相交于A,B兩點,頂點為D(0,4),AB=4,設點F(m,0)是x軸的正半軸上一點,將拋物線C繞點F旋轉180°,得到新的拋物線C′.(1)求拋物線C的函數(shù)表達式;(2)若拋物線C′與拋物線C在y軸的右側有兩個不同的公共點,求m的取值范圍.(3)如圖2,P是第一象限內拋物線C上一點,它到兩坐標軸的距離相等,點P在拋物線C′上的對應點P′,設M是C上的動點,N是C′上的動點,試探究四邊形PMP′N能否成為正方形?若能,求出m的值;若不能,請說明理由.25.(10分)小華想復習分式方程,由于印刷問題,有一個數(shù)“?”看不清楚:.她把這個數(shù)“?”猜成5,請你幫小華解這個分式方程;小華的媽媽說:“我看到標準答案是:方程的增根是,原分式方程無解”,請你求出原分式方程中“?”代表的數(shù)是多少?26.(12分)如圖所示,某小組同學為了測量對面樓AB的高度,分工合作,有的組員測得兩樓間距離為40米,有的組員在教室窗戶處測得樓頂端A的仰角為30°,底端B的俯角為10°,請你根據(jù)以上數(shù)據(jù),求出樓AB的高度.(精確到0.1米)(參考數(shù)據(jù):sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,≈1.41,≈1.73)27.(12分)如圖,在菱形ABCD中,E、F分別為AD和CD上的點,且AE=CF,連接AF、CE交于點G,求證:點G在BD上.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解題分析】分析:設原計劃每天施工x米,則實際每天施工(x+30)米,根據(jù):原計劃所用時間﹣實際所用時間=2,列出方程即可.詳解:設原計劃每天施工x米,則實際每天施工(x+30)米,根據(jù)題意,可列方程:=2,故選A.點睛:本題考查了由實際問題抽象出分式方程,關鍵是讀懂題意,找出合適的等量關系,列出方程.2、C【解題分析】

作MH⊥AC于H,如圖,根據(jù)正方形的性質得∠MAH=45°,則△AMH為等腰直角三角形,所以AH=MH=AM=,再根據(jù)角平分線性質得BM=MH=,則AB=2+,于是利用正方形的性質得到AC=AB=2+2,OC=AC=+1,所以CH=AC-AH=2+,然后證明△CON∽△CHM,再利用相似比可計算出ON的長.【題目詳解】試題分析:作MH⊥AC于H,如圖,∵四邊形ABCD為正方形,∴∠MAH=45°,∴△AMH為等腰直角三角形,∴AH=MH=AM=×2=,∵CM平分∠ACB,∴BM=MH=,∴AB=2+,∴AC=AB=(2+)=2+2,∴OC=AC=+1,CH=AC﹣AH=2+2﹣=2+,∵BD⊥AC,∴ON∥MH,∴△CON∽△CHM,∴,即,∴ON=1.故選C.【題目點撥】本題考查了相似三角形的判定與性質:在判定兩個三角形相似時,應注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構造相似三角形.也考查了角平分線的性質和正方形的性質.3、D【解題分析】試題分析:此題考察一元二次方程的解法,觀察發(fā)現(xiàn)可以采用提公因式法來解答此題.原方程可化為:,因此或,所以.故選D.考點:一元二次方程的解法——因式分解法——提公因式法.4、B【解題分析】分析:由平行得出相似,由相似得出比例,即可作出判斷.詳解:∵EF∥AB,∴△CEF∽△CAB,∴,故選B.點睛:本題考查了相似三角形的應用,熟練掌握相似三角形的判定與性質是解答本題的關鍵.5、B【解題分析】

根據(jù)科學記數(shù)法的表示形式(a×10n的形式,其中1≤|a|<10,n為整數(shù),確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同;當原數(shù)絕對值>10時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù)).【題目詳解】解:135000用科學記數(shù)法表示為:1.35×1.故選B.【題目點撥】科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.6、B【解題分析】

解:11人成績的中位數(shù)是第6名的成績.參賽選手要想知道自己是否能進入前6名,只需要了解自己的成績以及全部成績的中位數(shù),比較即可.故選B.【題目點撥】本題考查統(tǒng)計量的選擇,掌握中位數(shù)的意義是本題的解題關鍵.7、A【解題分析】

根據(jù)軸對稱圖形的概念對各選項分析判斷即可得解.【題目詳解】解:A、不是軸對稱圖形,故本選項正確;B、是軸對稱圖形,故本選項錯誤;C、是軸對稱圖形,故本選項錯誤;D、是軸對稱圖形,故本選項錯誤.故選A.【題目點撥】本題考查了軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.8、A【解題分析】

必然事件就是一定發(fā)生的事件,即發(fā)生的概率是1的事件,依據(jù)定義即可求解.【題目詳解】解:B、C、D選項為不確定事件,即隨機事件.故錯誤;

一定發(fā)生的事件只有第一個答案,早晨的太陽一定從東方升起.故選A.【題目點撥】該題考查的是對必然事件的概念的理解;必然事件就是一定發(fā)生的事件.9、C【解題分析】

過點O作OH⊥AB于點H,連接OA,OB,由⊙O的周長等于6πcm,可得⊙O的半徑,又由圓的內接多邊形的性質可得∠AOB=60°,即可證明△AOB是等邊三角形,根據(jù)等邊三角形的性質可求出OH的長,根據(jù)S正六邊形ABCDEF=6S△OAB即可得出答案.【題目詳解】過點O作OH⊥AB于點H,連接OA,OB,設⊙O的半徑為r,∵⊙O的周長等于6πcm,∴2πr=6π,解得:r=3,∴⊙O的半徑為3cm,即OA=3cm,∵六邊形ABCDEF是正六邊形,∴∠AOB=×360°=60°,OA=OB,∴△OAB是等邊三角形,∴AB=OA=3cm,∵OH⊥AB,∴AH=AB,∴AB=OA=3cm,∴AH=cm,OH==cm,∴S正六邊形ABCDEF=6S△OAB=6××3×=(cm2).故選C.【題目點撥】此題考查了正多邊形與圓的性質.此題難度適中,注意掌握數(shù)形結合思想的應用.10、B【解題分析】

本題要根據(jù)過平面上的兩點有且只有一條直線的性質解答.【題目詳解】根據(jù)兩點確定一條直線.故選:B.【題目點撥】本題考查了“兩點確定一條直線”的公理,難度適中.11、B【解題分析】

直接用絕對值的意義求解.【題目詳解】?的絕對值是.故選B.【題目點撥】此題是絕對值題,掌握絕對值的意義是解本題的關鍵.12、C【解題分析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【題目詳解】1010×360×24=3.636×106立方米/時,故選C.【題目點撥】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解題分析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【題目詳解】67000000000的小數(shù)點向左移動10位得到6.7,所以67000000000用科學記數(shù)法表示為,故答案為:.【題目點撥】本題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.14、7【解題分析】設樹的高度為m,由相似可得,解得,所以樹的高度為7m15、【解題分析】

首先由圖可得此轉盤被平分成了24等份,其中驚蟄、春分、清明區(qū)域有3份,然后利用概率公式求解即可求得答案.【題目詳解】∵如圖,此轉盤被平分成了24等份,其中驚蟄、春分、清明有3份,∴指針落在驚蟄、春分、清明的概率是:.故答案為【題目點撥】此題考查了概率公式的應用.注意概率=所求情況數(shù)與總情況數(shù)之比.16、1【解題分析】

根據(jù)題意,將點(a,b)代入函數(shù)解析式即可求得2a-b的值,變形即可求得所求式子的值.【題目詳解】∵點(a,b)在一次函數(shù)y=2x-1的圖象上,∴b=2a-1,∴2a-b=1,∴4a-2b=6,∴4a-2b-1=6-1=1,故答案為:1.【題目點撥】本題考查一次函數(shù)圖象上點的坐標特征,解答本題的關鍵是明確題意,利用一次函數(shù)的性質解答.17、;答案見解析.【解題分析】

(1)AB==.故答案為.(2)如圖AC與網(wǎng)格相交,得到點D、E,取格點F,連接FB并且延長,與網(wǎng)格相交,得到M,N,G.連接DN,EM,DG,DN與EM相交于點P,點P即為所求.理由:平行四邊形ABME的面積:平行四邊形CDNB的面積:平行四邊形DEMG的面積=1:2:1,△PAB的面積=平行四邊形ABME的面積,△PBC的面積=平行四邊形CDNB的面積,△PAC的面積=△PNG的面積=△DGN的面積=平行四邊形DEMG的面積,∴S△PAB:S△PBC:S△PCA=1:2:1.18、270【解題分析】

根據(jù)三角形的內角和與平角定義可求解.【題目詳解】解析:如圖,根據(jù)題意可知∠5=90°,∴∠3+∠4=90°,∴∠1+∠2=180°+180°-(∠3+∠4)=360°-90°=270°,故答案為:270度.【題目點撥】本題主要考查了三角形的內角和定理和內角與外角之間的關系.要會熟練運用內角和定理求角的度數(shù).三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)△ABC是“等高底”三角形;(1);(3)CD的值為,1,1.【解題分析】

(1)過A作AD⊥BC于D,則△ADC是直角三角形,∠ADC=90°,根據(jù)30°所對的直角邊等于斜邊的一半可得:根據(jù)“等高底”三角形的概念即可判斷.(1)點B是的重心,得到設則根據(jù)勾股定理可得即可求出它們的比值.(3)分兩種情況進行討論:①當時和②當時.【題目詳解】(1)△ABC是“等高底”三角形;理由:如圖1,過A作AD⊥BC于D,則△ADC是直角三角形,∠ADC=90°,∵∠ACB=30°,AC=6,∴∴AD=BC=3,即△ABC是“等高底”三角形;(1)如圖1,∵△ABC是“等高底”三角形,BC是“等底”,∴∵△ABC關于BC所在直線的對稱圖形是,∴∠ADC=90°,∵點B是的重心,∴設則由勾股定理得∴(3)①當時,Ⅰ.如圖3,作AE⊥BC于E,DF⊥AC于F,∵“等高底”△ABC的“等底”為BC,l1∥l1,l1與l1之間的距離為1,.∴∴BE=1,即EC=4,∴∵△ABC繞點C按順時針方向旋轉45°得到△A'B'C,∴∠DCF=45°,設∵l1∥l1,∴∴即∴∴Ⅱ.如圖4,此時△ABC等腰直角三角形,∵△ABC繞點C按順時針方向旋轉45°得到,∴是等腰直角三角形,∴②當時,Ⅰ.如圖5,此時△ABC是等腰直角三角形,∵△ABC繞點C按順時針方向旋轉45°得到△A'B'C,∴∴Ⅱ.如圖6,作于E,則∴∴∴△ABC繞點C按順時針方向旋轉45°,得到時,點A'在直線l1上,∴∥l1,即直線與l1無交點,綜上所述,CD的值為【題目點撥】屬于新定義問題,考查對與等底高三角形概念的理解,勾股定理,等腰直角三角形的性質等,掌握等底高三角形的性質是解題的關鍵.20、(1)100;(2)補圖見解析;(3)570人.【解題分析】

(1)由讀書1本的人數(shù)及其所占百分比可得總人數(shù);(2)總人數(shù)乘以讀4本的百分比求得其人數(shù),減去男生人數(shù)即可得出女生人數(shù),用讀2本的人數(shù)除以總人數(shù)可得對應百分比;(3)總人數(shù)乘以樣本中讀2本人數(shù)所占比例.【題目詳解】(1)參與問卷調查的學生人數(shù)為(8+2)÷10%=100人,故答案為:100;(2)讀4本的女生人數(shù)為100×15%﹣10=5人,讀2本人數(shù)所占百分比為20+補全圖形如下:(3)估計該校學生一個月閱讀2本課外書的人數(shù)約為1500×38%=570人.【題目點撥】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?1、(1)10,補圖見解析;(2)眾數(shù)是5,中位數(shù)是1;(3)活動時間不少于1天的學生人數(shù)大約有5400人.【解題分析】

(1)用1減去其他天數(shù)所占的百分比即可得到a的值,用310°乘以它所占的百分比,即可求出該扇形所對圓心角的度數(shù);根據(jù)1天的人數(shù)和所占的百分比求出總人數(shù),再乘以8天的人數(shù)所占的百分比,即可補全統(tǒng)計圖;(2)根據(jù)眾數(shù)和中位數(shù)的定義即可求出答案;(3)用總人數(shù)乘以活動時間不少于1天的人數(shù)所占的百分比即可求出答案.【題目詳解】解:(1)扇形統(tǒng)計圖中a=1﹣5%﹣40%﹣20%﹣25%=10%,該扇形所對圓心角的度數(shù)為310°×10%=31°,參加社會實踐活動的天數(shù)為8天的人數(shù)是:×10%=10(人),補圖如下:故答案為10;(2)抽樣調查中總人數(shù)為100人,結合條形統(tǒng)計圖可得:眾數(shù)是5,中位數(shù)是1.(3)根據(jù)題意得:9000×(25%+10%+5%+20%)=5400(人),活動時間不少于1天的學生人數(shù)大約有5400人.【題目點撥】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大小.22、(1)證明見解析;(2).【解題分析】

(1)由切線的性質可知∠DAB=90°,由直角所對的圓周為90°可知∠ACB=90°,根據(jù)同角的余角相等可知∠DAC=∠B,然后由等腰三角形的性質可知∠B=∠OCB,由對頂角的性質可知∠DCE=∠OCB,故此可知∠DAC=∠DCE;(2)題意可知AO=1,OD=3,DC=2,由勾股定理可知AD=,由∠DAC=∠DCE,∠D=∠D可知△DEC∽△DCA,故此可得到DC2=DE?AD,故此可求得DE=,于是可求得AE=.【題目詳解】解:(1)∵AD是圓O的切線,∴∠DAB=90°.∵AB是圓O的直徑,∴∠ACB=90°.∵∠DAC+∠CAB=90°,∠CAB+∠ABC=90°,∴∠DAC=∠B.∵OC=OB,∴∠B=∠OCB.又∵∠DCE=∠OCB,∴∠DAC=∠DCE.(2)∵AB=2,∴AO=1.∵sin∠D=,∴OD=3,DC=2.在Rt△DAO中,由勾股定理得AD==.∵∠DAC=∠DCE,∠D=∠D,∴△DEC∽△DCA,∴,即.解得:DE=,∴AE=AD﹣DE=.23、(1)列表見解析;(2)這個游戲規(guī)則對雙方不公平.【解題分析】

(1)首先根據(jù)題意列表,然后根據(jù)表求得所有等可能的結果與兩數(shù)和為6的情況,再利用概率公式求解即可;(2)分別求出和為奇數(shù)、和為偶數(shù)的概率,即可得出游戲的公平性.【題目詳解】(1)列表如下:由表可知,總共有9種結果,其中和為6的有3種,則這兩數(shù)和為6的概率;(2)這個游戲規(guī)則對雙方不公平.理由如下:因為P(和為奇數(shù)),P(和為偶數(shù)),而,所以這個游戲規(guī)則對雙方是不公平的.【題目點撥】本題考查了列表法求概率.注意樹狀圖與列表法可以不重不漏的表示出所有等可能的情況.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.24、(1);(2)2<m<;(1)m=6或m=﹣1.【解題分析】

(1)由題意拋物線的頂點C(0,4),A(,0),設拋物線的解析式為,把A(,0)代入可得a=,由此即可解決問題;(2)由題意拋物線C′的頂點坐標為(2m,﹣4),設拋物線C′的解析式為,由,消去y得到,由題意,拋物線C′與拋物線C在y軸的右側有兩個不同的公共點,則有,解不等式組即可解決問題;(1)情形1,四邊形PMP′N能成為正方形.作PE⊥x軸于E,MH⊥x軸于H.由題意易知P(2,2),當△PFM是等腰直角三角形時,四邊形PMP′N是正方形,推出PF=FM,∠PFM=90°,易證△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,可得M(m+2,m﹣2),理由待定系數(shù)法即可解決問題;情形2,如圖,四邊形PMP′N是正方形,同法可得M(m﹣2,2﹣m),利用待定系數(shù)法即可解決問題.【題目詳解】(1)由題意拋物線的頂點C(0,4),A(,0),設拋物線的解析式為,把A(,0)代入可得a=,∴拋物線C的函數(shù)表達式為.(2)由題意拋物線C′的頂點坐標為(2m,﹣4),設拋物線C′的解析式為,由,消去y得到,由題意,拋物線C′與拋物線C在y軸的右側有兩個不同的公共點,則有

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論