




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
河南省洛陽市東方第二中學2024屆中考數(shù)學押題試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.根據(jù)《天津市北大港濕地自然保護總體規(guī)劃(2017﹣2025)》,2018年將建立養(yǎng)殖業(yè)退出補償機制,生態(tài)補水78000000m1.將78000000用科學記數(shù)法表示應(yīng)為()A.780×105B.78×106C.7.8×107D.0.78×1082.如圖,正方形ABCD的邊長為2cm,動點P從點A出發(fā),在正方形的邊上沿A→B→C的方向運動到點C停止,設(shè)點P的運動路程為x(cm),在下列圖象中,能表示△ADP的面積y(cm2)關(guān)于x(cm)的函數(shù)關(guān)系的圖象是()A. B. C. D.3.如圖,在△ABC中,過點B作PB⊥BC于B,交AC于P,過點C作CQ⊥AB,交AB延長線于Q,則△ABC的高是()A.線段PB B.線段BC C.線段CQ D.線段AQ4.下列運算錯誤的是()A.(m2)3=m6B.a(chǎn)10÷a9=aC.x3?x5=x8D.a(chǎn)4+a3=a75.下列美麗的圖案中,不是軸對稱圖形的是()A. B. C. D.6.如圖,每個小正方形的邊長為1,A、B、C是小正方形的頂點,則∠ABC的度數(shù)為()A.90° B.60° C.45° D.30°7.若是關(guān)于x的方程的一個根,則方程的另一個根是()A.9 B.4 C.4 D.38.如圖所示的幾何體是一個圓錐,下面有關(guān)它的三視圖的結(jié)論中,正確的是()A.主視圖是中心對稱圖形B.左視圖是中心對稱圖形C.主視圖既是中心對稱圖形又是軸對稱圖形D.俯視圖既是中心對稱圖形又是軸對稱圖形9.如圖,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分線,DE⊥AB,垂足為點E,DE=1,則BC=()A. B.2 C.3 D.+210.下列計算結(jié)果等于0的是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.的相反數(shù)是_____.12.分解因式:a3-a=13.用半徑為6cm,圓心角為120°的扇形圍成一個圓錐,則圓錐的底面圓半徑為_______cm.14.已知二次函數(shù)的部分圖象如圖所示,則______;當x______時,y隨x的增大而減?。?5.函數(shù)中自變量x的取值范圍是_____;函數(shù)中自變量x的取值范圍是______.16.如圖,數(shù)軸上點A表示的數(shù)為a,化簡:a_____.三、解答題(共8題,共72分)17.(8分)小明有兩雙不同的運動鞋放在一起,上學時間到了,他準備穿鞋上學.他隨手拿出一只,恰好是右腳鞋的概率為;他隨手拿出兩只,請用畫樹狀圖或列表法求恰好為一雙的概率.18.(8分)在平面直角坐標系中,二次函數(shù)y=ax2+bx+2的圖象與x軸交于A(﹣4,0),B(1,0)兩點,與y軸交于點C.(1)求這個二次函數(shù)的解析式;(2)連接AC、BC,判斷△ABC的形狀,并證明;(3)若點P為二次函數(shù)對稱軸上點,求出使△PBC周長最小時,點P的坐標.19.(8分)某商場同時購進甲、乙兩種商品共200件,其進價和售價如表,商品名稱甲乙進價(元/件)80100售價(元/件)160240設(shè)其中甲種商品購進x件,該商場售完這200件商品的總利潤為y元.(1)求y與x的函數(shù)關(guān)系式;(2)該商品計劃最多投入18000元用于購買這兩種商品,則至少要購進多少件甲商品?若售完這些商品,則商場可獲得的最大利潤是多少元?(3)在(2)的基礎(chǔ)上,實際進貨時,生產(chǎn)廠家對甲種商品的出廠價下調(diào)a元(50<a<70)出售,且限定商場最多購進120件,若商場保持同種商品的售價不變,請你根據(jù)以上信息及(2)中的條件,設(shè)計出使該商場獲得最大利潤的進貨方案.20.(8分)如圖,已知拋物線y=ax2+bx+1經(jīng)過A(﹣1,0),B(1,1)兩點.(1)求該拋物線的解析式;(2)閱讀理解:在同一平面直角坐標系中,直線l1:y=k1x+b1(k1,b1為常數(shù),且k1≠0),直線l2:y=k2x+b2(k2,b2為常數(shù),且k2≠0),若l1⊥l2,則k1?k2=﹣1.解決問題:①若直線y=2x﹣1與直線y=mx+2互相垂直,則m的值是____;②拋物線上是否存在點P,使得△PAB是以AB為直角邊的直角三角形?若存在,請求出點P的坐標;若不存在,請說明理由;(3)M是拋物線上一動點,且在直線AB的上方(不與A,B重合),求點M到直線AB的距離的最大值.21.(8分)如圖,,,,求證:。22.(10分)如圖,矩形ABCD中,E是AD的中點,延長CE,BA交于點F,連接AC,DF.求證:四邊形ACDF是平行四邊形;當CF平分∠BCD時,寫出BC與CD的數(shù)量關(guān)系,并說明理由.23.(12分)某新建成學校舉行美化綠化校園活動,九年級計劃購買A,B兩種花木共100棵綠化操場,其中A花木每棵50元,B花木每棵100元.(1)若購進A,B兩種花木剛好用去8000元,則購買了A,B兩種花木各多少棵?(2)如果購買B花木的數(shù)量不少于A花木的數(shù)量,請設(shè)計一種購買方案使所需總費用最低,并求出該購買方案所需總費用.24.小丁每天從某報社以每份0.5元買進報紙200分,然后以每份1元賣給讀者,報紙賣不完,當天可退回報社,但報社只按每份0.2元退給小丁,如果小丁平均每天賣出報紙x份,純收入為y元.(1)求y與x之間的函數(shù)關(guān)系式(要求寫出自變量x的取值范圍);(2)如果每月以30天計算,小丁每天至少要買多少份報紙才能保證每月收入不低于2000元?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解題分析】
科學記數(shù)法記數(shù)時,主要是準確把握標準形式a×10n即可.【題目詳解】解:78000000=7.8×107.故選C.【題目點撥】科學記數(shù)法的形式是a×10n,其中1≤|a|<10,n是整數(shù),若這個數(shù)是大于10的數(shù),則n比這個數(shù)的整數(shù)位數(shù)少1.2、B【解題分析】
△ADP的面積可分為兩部分討論,由A運動到B時,面積逐漸增大,由B運動到C時,面積不變,從而得出函數(shù)關(guān)系的圖象.【題目詳解】解:當P點由A運動到B點時,即0≤x≤2時,y=×2x=x,當P點由B運動到C點時,即2<x<4時,y=×2×2=2,符合題意的函數(shù)關(guān)系的圖象是B;故選B.【題目點撥】本題考查了動點函數(shù)圖象問題,用到的知識點是三角形的面積、一次函數(shù),在圖象中應(yīng)注意自變量的取值范圍.3、C【解題分析】
根據(jù)三角形高線的定義即可解題.【題目詳解】解:當AB為△ABC的底時,過點C向AB所在直線作垂線段即為高,故CQ是△ABC的高,故選C.【題目點撥】本題考查了三角形高線的定義,屬于簡單題,熟悉高線的作法是解題關(guān)鍵.4、D【解題分析】【分析】利用合并同類項法則,單項式乘以單項式法則,同底數(shù)冪的乘法、除法的運算法則逐項進行計算即可得.【題目詳解】A、(m2)3=m6,正確;B、a10÷a9=a,正確;C、x3?x5=x8,正確;D、a4+a3=a4+a3,錯誤,故選D.【題目點撥】本題考查了合并同類項、單項式乘以單項式、同底數(shù)冪的乘除法,熟練掌握各運算的運算法則是解題的關(guān)鍵.5、A【解題分析】
根據(jù)軸對稱圖形的概念對各選項分析判斷即可得解.【題目詳解】解:A、不是軸對稱圖形,故本選項正確;B、是軸對稱圖形,故本選項錯誤;C、是軸對稱圖形,故本選項錯誤;D、是軸對稱圖形,故本選項錯誤.故選A.【題目點撥】本題考查了軸對稱圖形的概念,軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合.6、C【解題分析】試題分析:根據(jù)勾股定理即可得到AB,BC,AC的長度,進行判斷即可.試題解析:連接AC,如圖:根據(jù)勾股定理可以得到:AC=BC=,AB=.∵()1+()1=()1.∴AC1+BC1=AB1.∴△ABC是等腰直角三角形.∴∠ABC=45°.故選C.考點:勾股定理.7、D【解題分析】
解:設(shè)方程的另一個根為a,由一元二次方程根與系數(shù)的故選可得,解得a=,故選D.8、D【解題分析】
先得到圓錐的三視圖,再根據(jù)中心對稱圖形和軸對稱圖形的定義求解即可.【題目詳解】解:A、主視圖不是中心對稱圖形,故A錯誤;
B、左視圖不是中心對稱圖形,故B錯誤;
C、主視圖不是中心對稱圖形,是軸對稱圖形,故C錯誤;
D、俯視圖既是中心對稱圖形又是軸對稱圖形,故D正確.
故選:D.【題目點撥】本題考查簡單幾何體的三視圖,中心對稱圖形和軸對稱圖形,熟練掌握各自的定義是解題關(guān)鍵.9、C【解題分析】試題分析:根據(jù)角平分線的性質(zhì)可得CD=DE=1,根據(jù)Rt△ADE可得AD=2DE=2,根據(jù)題意可得△ADB為等腰三角形,則DE為AB的中垂線,則BD=AD=2,則BC=CD+BD=1+2=1.考點:角平分線的性質(zhì)和中垂線的性質(zhì).10、A【解題分析】
各項計算得到結(jié)果,即可作出判斷.【題目詳解】解:A、原式=0,符合題意;
B、原式=-1+(-1)=-2,不符合題意;
C、原式=-1,不符合題意;
D、原式=-1,不符合題意,
故選:A.【題目點撥】本題考查了有理數(shù)的運算,熟練掌握運算法則是解本題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解題分析】
根據(jù)只有符號不同的兩個數(shù)互為相反數(shù),可得答案.【題目詳解】的相反數(shù)是?.故答案為?.【題目點撥】本題考查的知識點是相反數(shù),解題的關(guān)鍵是熟練的掌握相反數(shù).12、【解題分析】a3-a=a(a2-1)=13、1.【解題分析】
解:設(shè)圓錐的底面圓半徑為r,根據(jù)題意得1πr=,解得r=1,即圓錐的底面圓半徑為1cm.故答案為:1.【題目點撥】本題考查圓錐的計算,掌握公式正確計算是解題關(guān)鍵.14、3,>1【解題分析】
根據(jù)函數(shù)圖象與x軸的交點,可求出c的值,根據(jù)圖象可判斷函數(shù)的增減性.【題目詳解】解:因為二次函數(shù)的圖象過點.
所以,
解得.
由圖象可知:時,y隨x的增大而減?。?/p>
故答案為(1).3,(2).>1【題目點撥】此題考查二次函數(shù)圖象的性質(zhì),數(shù)形結(jié)合法是解決函數(shù)問題經(jīng)常采用的一種方法,關(guān)鍵是要找出圖象與函數(shù)解析式之間的聯(lián)系.15、x≠2x≥3【解題分析】
根據(jù)分式的意義和二次根式的意義,分別求解.【題目詳解】解:根據(jù)分式的意義得2-x≠0,解得x≠2;根據(jù)二次根式的意義得2x-6≥0,解得x≥3.故答案為:x≠2,x≥3.【題目點撥】數(shù)自變量的范圍一般從幾個方面考慮:(1)當函數(shù)表達式是整式時,自變量可取全體實數(shù);(2)當函數(shù)表達式是分式時,考慮分式的分母不能為0;(3)當函數(shù)表達式是二次根式時,被開方數(shù)為非負數(shù).16、1.【解題分析】
直接利用二次根式的性質(zhì)以及結(jié)合數(shù)軸得出a的取值范圍進而化簡即可.【題目詳解】由數(shù)軸可得:0<a<1,則a+=a+=a+(1﹣a)=1.故答案為1.【題目點撥】本題主要考查了二次根式的性質(zhì)與化簡,正確得出a的取值范圍是解題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)12;(2)1【解題分析】
(1)根據(jù)四只鞋子中右腳鞋有2只,即可得到隨手拿出一只恰好是右腳鞋的概率;(2)依據(jù)樹狀圖即可得到共有12種等可能的結(jié)果,其中兩只恰好為一雙的情況有4種,進而得出恰好為一雙的概率.【題目詳解】解:(1)∵四只鞋子中右腳鞋有2只,∴隨手拿出一只,恰好是右腳鞋的概率為24=1故答案為:12(2)畫樹狀圖如下:共有12種等可能的結(jié)果,其中兩只恰好為一雙的情況有4種,∴拿出兩只,恰好為一雙的概率為412=1【題目點撥】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.18、(1)拋物線解析式為y=﹣x2﹣x+2;(2)△ABC為直角三角形,理由見解析;(3)當P點坐標為(﹣,)時,△PBC周長最小【解題分析】
(1)設(shè)交點式y(tǒng)=a(x+4)(x-1),展開得到-4a=2,然后求出a即可得到拋物線解析式;
(2)先利用兩點間的距離公式計算出AC2=42+22,BC2=12+22,AB2=25,然后利用勾股定理的逆定理可判斷△ABC為直角三角形;
(3)拋物線的對稱軸為直線x=-,連接AC交直線x=-于P點,如圖,利用兩點之間線段最短得到PB+PC的值最小,則△PBC周長最小,接著利用待定系數(shù)法求出直線AC的解析式為y=x+2,然后進行自變量為-所對應(yīng)的函數(shù)值即可得到P點坐標.【題目詳解】(1)拋物線的解析式為y=a(x+4)(x﹣1),即y=ax2+3ax﹣4a,∴﹣4a=2,解得a=﹣,∴拋物線解析式為y=﹣x2﹣x+2;(2)△ABC為直角三角形.理由如下:當x=0時,y=﹣x2﹣x+2=2,則C(0,2),∵A(﹣4,0),B(1,0),∴AC2=42+22,BC2=12+22,AB2=52=25,∴AC2+BC2=AB2,∴△ABC為直角三角形,∠ACB=90°;(3)拋物線的對稱軸為直線x=﹣,連接AC交直線x=﹣于P點,如圖,∵PA=PB,∴PB+PC=PA+PC=AC,∴此時PB+PC的值最小,△PBC周長最小,設(shè)直線AC的解析式為y=kx+m,把A(﹣4,0),C(0,2)代入得,解得,∴直線AC的解析式為y=x+2,當x=﹣時,y=x+2=,則P(﹣,)∴當P點坐標為(﹣,)時,△PBC周長最小.【題目點撥】本題考查了拋物線與x軸的交點:把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點坐標問題轉(zhuǎn)化解.關(guān)于x的一元二次方程即可求得交點橫坐標.也考查了待定系數(shù)法求二次函數(shù)解析式和最短路徑問題.19、(1)y=﹣60x+28000;(2)若售完這些商品,則商場可獲得的最大利潤是22000元;(3)商場應(yīng)購進甲商品120件,乙商品80件,獲利最大【解題分析】分析:(1)根據(jù)總利潤=(甲的售價-甲的進價)×購進甲的數(shù)量+(乙的售價-乙的進價)×購進乙的數(shù)量代入列關(guān)系式,并化簡即可;(2)根據(jù)總成本≤18000列不等式即可求出x的取值,再根據(jù)函數(shù)的增減性確定其最值問題;(3)把50<a<70分三種情況討論:一次項x的系數(shù)大于0、等于0、小于0,根據(jù)函數(shù)的增減性得出結(jié)論.詳解:(1)根據(jù)題意得:y=(160﹣80)x+(240﹣100)(200﹣x),=﹣60x+28000,則y與x的函數(shù)關(guān)系式為:y=﹣60x+28000;(2)80x+100(200﹣x)≤18000,解得:x≥100,∴至少要購進100件甲商品,y=﹣60x+28000,∵﹣60<0,∴y隨x的增大而減小,∴當x=100時,y有最大值,y大=﹣60×100+28000=22000,∴若售完這些商品,則商場可獲得的最大利潤是22000元;(3)y=(160﹣80+a)x+(240﹣100)(200﹣x)(100≤x≤120),y=(a﹣60)x+28000,①當50<a<60時,a﹣60<0,y隨x的增大而減小,∴當x=100時,y有最大利潤,即商場應(yīng)購進甲商品100件,乙商品100件,獲利最大,②當a=60時,a﹣60=0,y=28000,即商場應(yīng)購進甲商品的數(shù)量滿足100≤x≤120的整數(shù)件時,獲利最大,③當60<a<70時,a﹣60>0,y隨x的增大而增大,∴當x=120時,y有最大利潤,即商場應(yīng)購進甲商品120件,乙商品80件,獲利最大.點睛:本題是一次函數(shù)和一元一次不等式的綜合應(yīng)用,屬于銷售利潤問題,在此類題中,要明確售價、進價、利潤的關(guān)系式:單件利潤=售價-進價,總利潤=單個利潤×數(shù)量;認真讀題,弄清題中的每一個條件;對于最值問題,可利用一次函數(shù)的增減性來解決:形如y=kx+b中,當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減?。?0、(1)y=﹣x2+x+1;(2)①-;②點P的坐標(6,﹣14)(4,﹣5);(3).【解題分析】
(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式;
(2)根據(jù)垂線間的關(guān)系,可得PA,PB的解析式,根據(jù)解方程組,可得P點坐標;
(3)根據(jù)垂直于x的直線上兩點間的距離是較大的縱坐標減較小的縱坐標,可得MQ,根據(jù)三角形的面積,可得二次函數(shù),根據(jù)二次函數(shù)的性質(zhì),可得面積的最大值,根據(jù)三角形的底一定時面積與高成正比,可得三角形高的最大值【題目詳解】解:(1)將A,B點坐標代入,得,解得,拋物線的解析式為y=;(2)①由直線y=2x﹣1與直線y=mx+2互相垂直,得2m=﹣1,即m=﹣;故答案為﹣;②AB的解析式為當PA⊥AB時,PA的解析式為y=﹣2x﹣2,聯(lián)立PA與拋物線,得,解得(舍),,即P(6,﹣14);當PB⊥AB時,PB的解析式為y=﹣2x+3,聯(lián)立PB與拋物線,得,解得(舍),即P(4,﹣5),綜上所述:△PAB是以AB為直角邊的直角三角形,點P的坐標(6,﹣14)(4,﹣5);(3)如圖:,∵M(t,﹣t2+t+1),Q(t,t+),∴MQ=﹣t2+S△MAB=MQ|xB﹣xA|=(﹣t2+)×2=﹣t2+,當t=0時,S取最大值,即M(0,1).由勾股定理,得AB==,設(shè)M到AB的距離為h,由三角形的面積,得h==.點M到直線AB的距離的最大值是.【題目點撥】本題考查了二次函數(shù)綜合題,涉及到拋物線的解析式求法,兩直線垂直,解一元二次方程組,及點到直線的最大距離,需要注意的是必要的輔助線法是解題的關(guān)鍵21、見解析【解題分析】
據(jù)∠1=∠2可得∠BAC=∠EAD,再加上條件AB=AE,∠C=∠D可證明△ABC≌△AED.【題目詳解】證明:∵∠1=∠2,∴∠1+∠EAC=∠2+∠EAC,即∠BAC=∠EAD.∵在△ABC和△AED中,∴△ABC≌△AED(AAS).【題目點撥】此題主要考查了三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角22、(1)證明見解析;(2)BC=2CD,理由見解析.【解題分析】分析:(1)利用矩形的性質(zhì),即可判定△FAE≌△CDE,即可得到CD=FA,再根據(jù)CD∥AF,即可得出四邊形ACDF是平行四邊形;(2)先判定△CDE是等腰直角三角形,可得CD=DE,再根據(jù)E是AD的中點,可得AD=2CD,依據(jù)AD=BC,即可得到BC=2CD.詳解:(1)∵四邊形ABCD是矩形,∴AB∥CD,∴∠FAE=∠CDE,∵E是AD的中點,∴AE=DE,又∵∠FEA=∠CED,∴△FAE≌△CDE,∴CD=FA,又∵CD∥AF,∴四邊形ACDF是平行四邊形;(2)BC=2CD.證明:∵CF平分∠BCD,∴∠DCE=45°,∵∠CDE=90°,∴△CDE是等腰直角三角形,∴CD=DE,∵E是AD的中點,∴AD=2CD,∵AD=BC,∴BC=2CD.點睛:本題主要考查了矩形的性質(zhì)以及平行四邊形的判定與性質(zhì),要證明兩直線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中級會計實務(wù)考試常用工具試題及答案
- 2025年免疫治療在自身免疫性皮膚病免疫治療靶點發(fā)現(xiàn)與應(yīng)用突破報告
- 財務(wù)管理考試成功秘訣與試題及答案
- 虛擬世界與社會認同試題及答案
- 行政管理經(jīng)濟法專業(yè)知識試題及答案
- 2025年會計實務(wù)知識寶典試題及答案
- 市政工程考試突發(fā)情況應(yīng)對策略及試題及答案
- 項目反思與改進機制分析試題及答案
- 醫(yī)藥流通企業(yè)2025年供應(yīng)鏈信息化建設(shè)與成本控制研究報告
- 高級會計考試難點試題及答案分析
- GB/T 35544-2017車用壓縮氫氣鋁內(nèi)膽碳纖維全纏繞氣瓶
- 2022中國流動人口發(fā)展報告
- 《無人機結(jié)構(gòu)與系統(tǒng)》第1章 無人機結(jié)構(gòu)與飛行原理
- 中國交通文化
- 腸道病毒(共33張PPT)
- DB33T 2540-2022 生物安全實驗室管理評價規(guī)范
- 2023屆高三語文模擬試卷及參考答案2023年全國高考(北京卷)語文及試題解析
- 清華大學抬頭信紙
- 設(shè)備一級保養(yǎng)表(行吊)
- 《教育心理學電子書》word版
- 工業(yè)園區(qū)智慧環(huán)保安全應(yīng)急管理平臺方案
評論
0/150
提交評論