![2023-2024學年海南省嘉積中學高三上數(shù)學期末調研試題含解析_第1頁](http://file4.renrendoc.com/view10/M00/3B/19/wKhkGWWEUzSAO3I3AAHzxE_9pMM570.jpg)
![2023-2024學年海南省嘉積中學高三上數(shù)學期末調研試題含解析_第2頁](http://file4.renrendoc.com/view10/M00/3B/19/wKhkGWWEUzSAO3I3AAHzxE_9pMM5702.jpg)
![2023-2024學年海南省嘉積中學高三上數(shù)學期末調研試題含解析_第3頁](http://file4.renrendoc.com/view10/M00/3B/19/wKhkGWWEUzSAO3I3AAHzxE_9pMM5703.jpg)
![2023-2024學年海南省嘉積中學高三上數(shù)學期末調研試題含解析_第4頁](http://file4.renrendoc.com/view10/M00/3B/19/wKhkGWWEUzSAO3I3AAHzxE_9pMM5704.jpg)
![2023-2024學年海南省嘉積中學高三上數(shù)學期末調研試題含解析_第5頁](http://file4.renrendoc.com/view10/M00/3B/19/wKhkGWWEUzSAO3I3AAHzxE_9pMM5705.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年海南省嘉積中學高三上數(shù)學期末調研試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知三棱錐的所有頂點都在球的球面上,平面,,若球的表面積為,則三棱錐的體積的最大值為()A. B. C. D.2.已知函數(shù),,若對任意,總存在,使得成立,則實數(shù)的取值范圍為()A. B.C. D.3.已知拋物線的焦點為,準線與軸的交點為,點為拋物線上任意一點的平分線與軸交于,則的最大值為A. B. C. D.4.已知復數(shù)滿足(其中為的共軛復數(shù)),則的值為()A.1 B.2 C. D.5.某幾何體的三視圖如圖所示(單位:),則該幾何體的體積(單位:)為()A. B.6 C. D.6.已知等差數(shù)列的前項和為,,,則()A.25 B.32 C.35 D.407.若函數(shù)f(x)=a|2x-4|(a>0,a≠1)滿足f(1)=,則f(x)的單調遞減區(qū)間是()A.(-∞,2] B.[2,+∞)C.[-2,+∞) D.(-∞,-2]8.公元263年左右,我國數(shù)學家劉徽發(fā)現(xiàn)當圓內接正多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術”,利用“割圓術”劉徽得到了圓周率精確到小數(shù)點后兩位的近似值,這就是著名的“徽率”。如圖是利用劉徽的“割圓術”思想設計的一個程序框圖,則輸出的值為()(參考數(shù)據(jù):)A.48 B.36 C.24 D.129.已知函數(shù),,且,則()A.3 B.3或7 C.5 D.5或810.設命題:,,則為A., B.,C., D.,11.某幾何體的三視圖如圖所示,其中正視圖是邊長為4的正三角形,俯視圖是由邊長為4的正三角形和一個半圓構成,則該幾何體的體積為()A. B. C. D.12.設分別為的三邊的中點,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.執(zhí)行右邊的程序框圖,輸出的的值為.14.若正三棱柱的所有棱長均為2,點為側棱上任意一點,則四棱錐的體積為__________.15.記等差數(shù)列和的前項和分別為和,若,則______.16.如圖是一個算法偽代碼,則輸出的的值為_______________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,,,.(1)證明:平面;(2)若,,為線段上一點,且,求直線與平面所成角的正弦值.18.(12分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).以為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為(),將曲線向左平移2個單位長度得到曲線.(1)求曲線的普通方程和極坐標方程;(2)設直線與曲線交于兩點,求的取值范圍.19.(12分)已知在ΔABC中,角A,B,C的對邊分別為a,b,c,且cosB(1)求b的值;(2)若cosB+3sin20.(12分)設為等差數(shù)列的前項和,且,.(1)求數(shù)列的通項公式;(2)若滿足不等式的正整數(shù)恰有個,求正實數(shù)的取值范圍.21.(12分)在中,內角所對的邊分別為,已知,且.(I)求角的大??;(Ⅱ)若,求面積的取值范圍.22.(10分)如圖,三棱柱中,側面為菱形,.(1)求證:平面;(2)若,求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
由題意畫出圖形,設球0得半徑為R,AB=x,AC=y,由球0的表面積為20π,可得R2=5,再求出三角形ABC外接圓的半徑,利用余弦定理及基本不等式求xy的最大值,代入棱錐體積公式得答案.【詳解】設球的半徑為,,,由,得.如圖:設三角形的外心為,連接,,,可得,則.在中,由正弦定理可得:,即,由余弦定理可得,,.則三棱錐的體積的最大值為.故選:.【點睛】本題考查三棱錐的外接球、三棱錐的側面積、體積,基本不等式等基礎知識,考查空間想象能力、邏輯思維能力、運算求解能力,考查數(shù)學轉化思想方法與數(shù)形結合的解題思想方法,是中檔題.2、C【解析】
將函數(shù)解析式化簡,并求得,根據(jù)當時可得的值域;由函數(shù)在上單調遞減可得的值域,結合存在性成立問題滿足的集合關系,即可求得的取值范圍.【詳解】依題意,則,當時,,故函數(shù)在上單調遞增,當時,;而函數(shù)在上單調遞減,故,則只需,故,解得,故實數(shù)的取值范圍為.故選:C.【點睛】本題考查了導數(shù)在判斷函數(shù)單調性中的應用,恒成立與存在性成立問題的綜合應用,屬于中檔題.3、A【解析】
求出拋物線的焦點坐標,利用拋物線的定義,轉化求出比值,,求出等式左邊式子的范圍,將等式右邊代入,從而求解.【詳解】解:由題意可得,焦點F(1,0),準線方程為x=?1,
過點P作PM垂直于準線,M為垂足,
由拋物線的定義可得|PF|=|PM|=x+1,
記∠KPF的平分線與軸交于
根據(jù)角平分線定理可得,,當時,,當時,,,綜上:.故選:A.【點睛】本題主要考查拋物線的定義、性質的簡單應用,直線的斜率公式、利用數(shù)形結合進行轉化是解決本題的關鍵.考查學生的計算能力,屬于中檔題.4、D【解析】
按照復數(shù)的運算法則先求出,再寫出,進而求出.【詳解】,,.故選:D【點睛】本題考查復數(shù)的四則運算、共軛復數(shù)及復數(shù)的模,考查基本運算能力,屬于基礎題.5、D【解析】
根據(jù)幾何體的三視圖,該幾何體是由正方體去掉三棱錐得到,根據(jù)正方體和三棱錐的體積公式可求解.【詳解】如圖,該幾何體為正方體去掉三棱錐,所以該幾何體的體積為:,故選:D【點睛】本題主要考查了空間幾何體的三視圖以及體積的求法,考查了空間想象力,屬于中檔題.6、C【解析】
設出等差數(shù)列的首項和公差,即可根據(jù)題意列出兩個方程,求出通項公式,從而求得.【詳解】設等差數(shù)列的首項為,公差為,則,解得,∴,即有.故選:C.【點睛】本題主要考查等差數(shù)列的通項公式的求法和應用,涉及等差數(shù)列的前項和公式的應用,屬于容易題.7、B【解析】由f(1)=得a2=,∴a=或a=-(舍),即f(x)=(.由于y=|2x-4|在(-∞,2]上單調遞減,在[2,+∞)上單調遞增,所以f(x)在(-∞,2]上單調遞增,在[2,+∞)上單調遞減,故選B.8、C【解析】
由開始,按照框圖,依次求出s,進行判斷?!驹斀狻?,故選C.【點睛】框圖問題,依據(jù)框圖結構,依次準確求出數(shù)值,進行判斷,是解題關鍵。9、B【解析】
根據(jù)函數(shù)的對稱軸以及函數(shù)值,可得結果.【詳解】函數(shù),若,則的圖象關于對稱,又,所以或,所以的值是7或3.故選:B.【點睛】本題考查的是三角函數(shù)的概念及性質和函數(shù)的對稱性問題,屬基礎題10、D【解析】
直接利用全稱命題的否定是特稱命題寫出結果即可.【詳解】因為全稱命題的否定是特稱命題,所以,命題:,,則為:,.故本題答案為D.【點睛】本題考查命題的否定,特稱命題與全稱命題的否定關系,是基礎題.11、A【解析】由題意得到該幾何體是一個組合體,前半部分是一個高為底面是邊長為4的等邊三角形的三棱錐,后半部分是一個底面半徑為2的半個圓錐,體積為故答案為A.點睛:思考三視圖還原空間幾何體首先應深刻理解三視圖之間的關系,遵循“長對正,高平齊,寬相等”的基本原則,其內涵為正視圖的高是幾何體的高,長是幾何體的長;俯視圖的長是幾何體的長,寬是幾何體的寬;側視圖的高是幾何體的高,寬是幾何體的寬.由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據(jù)俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據(jù)三視圖進行調整.12、B【解析】
根據(jù)題意,畫出幾何圖形,根據(jù)向量加法的線性運算即可求解.【詳解】根據(jù)題意,可得幾何關系如下圖所示:,故選:B【點睛】本題考查了向量加法的線性運算,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】初始條件成立方;運行第一次:成立;運行第二次:不成立;輸出的值:結束所以答案應填:考點:1、程序框圖;2、定積分.14、【解析】
依題意得,再求點到平面的距離為點到直線的距離,用公式所以即可得出答案.【詳解】解:正三棱柱的所有棱長均為2,則,點到平面的距離為點到直線的距離所以,所以.故答案為:【點睛】本題考查椎體的體積公式,考查運算能力,是基礎題.15、【解析】
結合等差數(shù)列的前項和公式,可得,求解即可.【詳解】由題意,,,因為,所以.故答案為:.【點睛】本題考查了等差數(shù)列的前項和公式及等差中項的應用,考查了學生的計算求解能力,屬于基礎題.16、5【解析】
執(zhí)行循環(huán)結構流程圖,即得結果.【詳解】執(zhí)行循環(huán)結構流程圖得,結束循環(huán),輸出.【點睛】本題考查循環(huán)結構流程圖,考查基本分析與運算能力,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】
(1)利用線段長度得到與間的垂直關系,再根據(jù)線面垂直的判定定理完成證明;(2)以、、為軸、軸、軸建立空間直角坐標系,利用直線的方向向量與平面的法向量夾角的余弦值的絕對值等于線面角的正弦值,計算出結果.【詳解】(1)∵,,∴,∴,∵,平面,∴平面(2)由(1)知,,又為坐標原點,分別以、、為軸、軸、軸建立空間直角坐標系,則,,,,,,,∵,∴,設是平面的一個法向量則,即,取得∴∴直線與平面所成的正弦值為【點睛】本題考查線面垂直的證明以及用向量法求解線面角的正弦,難度一般.用向量方法求解線面角的正弦值時,注意直線方向向量與平面法向量夾角的余弦值的絕對值等于線面角的正弦值.18、(1)的極坐標方程為,普通方程為;(2)【解析】
(1)根據(jù)三角函數(shù)恒等變換可得,,可得曲線的普通方程,再運用圖像的平移得依題意得曲線的普通方程為,利用極坐標與平面直角坐標互化的公式可得方程;(2)法一:將代入曲線的極坐標方程得,運用韋達定理可得,根據(jù),可求得的范圍;法二:設直線的參數(shù)方程為(為參數(shù),為直線的傾斜角),代入曲線的普通方程得,運用韋達定理可得,根據(jù),可求得的范圍;【詳解】(1),,即曲線的普通方程為,依題意得曲線的普通方程為,令,得曲線的極坐標方程為;(2)法一:將代入曲線的極坐標方程得,則,,,異號,,,;法二:設直線的參數(shù)方程為(為參數(shù),為直線的傾斜角),代入曲線的普通方程得,則,,,異號,,.【點睛】本題考查參數(shù)方程與普通方程,極坐標方程與平面直角坐標方程之間的轉化,求解幾何量的取值范圍,關鍵在于明確極坐標系中極徑和極角的幾何含義,直線的參數(shù)方程,參數(shù)的幾何意義,屬于中檔題.19、(1)b=32【解析】試題分析:(1)本問考查解三角形中的的“邊角互化”.由于求b的值,所以可以考慮到根據(jù)余弦定理將cosB,cosC分別用邊表示,再根據(jù)正弦定理可以將sinAsinC轉化為ac,于是可以求出b的值;(2)首先根據(jù)sinB+3cosB=2求出角B的值,根據(jù)第(1)問得到的b值,可以運用正弦定理求出ΔABC外接圓半徑R,于是可以將a+c轉化為2RsinA+2R試題解析:(1)由cosB應用余弦定理,可得a2化簡得2b=3則b=(2)∵cos∴12cos∵B∈(0,π)∴B+π6=法一.∵2R=b則a+c==sin=3=3sin又∵0<A<2π3,法二因為b=32得34又因為ac≤(a+c2)2所以34=(a+c)∴a+c≤3又由三邊關系定理可知綜上a+c∈(考點:1.正、余弦定理;2.正弦型函數(shù)求值域;3.重要不等式的應用.20、(1);(2).【解析】
(1)設等差數(shù)列的公差為,根據(jù)題意得出關于和的方程組,解出這兩個量的值,然后利用等差數(shù)列的通項公式可得出數(shù)列的通項公式;(2)求出,可得出,可知當為奇數(shù)時不等式不成立,只考慮為偶數(shù)的情況,利用數(shù)列單調性的定義判斷數(shù)列中偶數(shù)項構成的數(shù)列的單調性,由此能求出正實數(shù)的取值范圍.【詳解】(1)設等差數(shù)列的公差為,則,整理得,解得,,因此,;(2),滿足不等式的正整數(shù)恰有個,得,由于,若為奇數(shù),則不等式不可能成立.只考慮為偶數(shù)的情況,令,則,..當時,,則;當時,,則;當時,,則.所以,,又,,,,.因此,實數(shù)的取值范圍是.【點睛】本題考查數(shù)列的通項公式的求法,考查正實數(shù)的取值范圍的求法,考查等差數(shù)列的性質等基礎知識,考查運算求解能力,是中檔題.21、(Ⅰ);(Ⅱ)【解析】
(I)根據(jù),利用二倍角公式得到,再由輔助角公式得到,然后根據(jù)正弦函數(shù)的性質求解.(Ⅱ)根據(jù)(I)由余弦定理得到,再利用重要不等式得到,然后由求解.【詳解】(I)因為,所以,,,或,或,因為,所以所以;(Ⅱ)由余弦定理得:,所以,所以,當且僅當取等號,又因為,所以,所以【點睛】本題主要考查二倍角公式,輔助角公式以及余弦定理,還考查了運算求解的能力,屬于中檔題.22、(1)見解析(2)【解析】
(1)根據(jù)菱形性質可知,結合可得,進而可證明,即,即可由線面垂直的判定定理證明平面;(2)結合(1)可證明兩兩互相垂直.即以為坐標原點,的方向為軸正方向,為單位長度,建立空間直角坐
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度跑步活動公共衛(wèi)生安全防控合同4篇
- 健康體檢與肺功能測試評估考核試卷
- 2025年度債務清償與資產保全合同范本
- D打印技術在建筑結構智能化設計的應用考核試卷
- 2025-2030年垃圾滲濾液深度處理設備行業(yè)跨境出海戰(zhàn)略研究報告
- 2025-2030年在線醫(yī)療投資與創(chuàng)業(yè)孵化器行業(yè)深度調研及發(fā)展戰(zhàn)略咨詢報告
- 聲學器件的音頻處理與多方通話考核試卷
- 2025-2030年新能源汽車出口市場拓展企業(yè)制定與實施新質生產力戰(zhàn)略研究報告
- 2025-2030年復古風格休閑服裝復興行業(yè)深度調研及發(fā)展戰(zhàn)略咨詢報告
- 2025-2030年可降解礦物餐具企業(yè)制定與實施新質生產力戰(zhàn)略研究報告
- 新員工入職通識考試(中軟國際)
- 四星級酒店工程樣板房裝修施工匯報
- 圓翳內障病(老年性白內障)中醫(yī)診療方案
- 博士后進站申請書博士后進站申請書八篇
- 華為攜手深圳國際會展中心創(chuàng)建世界一流展館
- 2023版思想道德與法治專題2 領悟人生真諦 把握人生方向 第3講 創(chuàng)造有意義的人生
- 全過程工程咨詢服務技術方案
- GB/T 41509-2022綠色制造干式切削工藝性能評價規(guī)范
- 土木工程畢業(yè)設計(論文)-五層宿舍樓建筑結構設計
- 青年卒中 幻燈
- 典型倒閘操作票
評論
0/150
提交評論