




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年廣東省仲元中學(xué)數(shù)學(xué)高三上期末復(fù)習(xí)檢測試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知定義在上的偶函數(shù),當(dāng)時(shí),,設(shè),則()A. B. C. D.2.設(shè)橢圓:的右頂點(diǎn)為A,右焦點(diǎn)為F,B、C為橢圓上關(guān)于原點(diǎn)對稱的兩點(diǎn),直線BF交直線AC于M,且M為AC的中點(diǎn),則橢圓E的離心率是()A. B. C. D.3.已知是虛數(shù)單位,若,,則實(shí)數(shù)()A.或 B.-1或1 C.1 D.4.定義運(yùn)算,則函數(shù)的圖象是().A. B.C. D.5.給出個數(shù),,,,,,其規(guī)律是:第個數(shù)是,第個數(shù)比第個數(shù)大,第個數(shù)比第個數(shù)大,第個數(shù)比第個數(shù)大,以此類推,要計(jì)算這個數(shù)的和.現(xiàn)已給出了該問題算法的程序框圖如圖,請?jiān)趫D中判斷框中的①處和執(zhí)行框中的②處填上合適的語句,使之能完成該題算法功能()A.; B.;C.; D.;6.已知函數(shù)的定義域?yàn)?,則函數(shù)的定義域?yàn)椋ǎ〢. B.C. D.7.已知命題:是“直線和直線互相垂直”的充要條件;命題:函數(shù)的最小值為4.給出下列命題:①;②;③;④,其中真命題的個數(shù)為()A.1 B.2 C.3 D.48.甲乙丙丁四人中,甲說:我年紀(jì)最大,乙說:我年紀(jì)最大,丙說:乙年紀(jì)最大,丁說:我不是年紀(jì)最大的,若這四人中只有一個人說的是真話,則年紀(jì)最大的是()A.甲 B.乙 C.丙 D.丁9.過雙曲線的左焦點(diǎn)作直線交雙曲線的兩天漸近線于,兩點(diǎn),若為線段的中點(diǎn),且(為坐標(biāo)原點(diǎn)),則雙曲線的離心率為()A. B. C. D.10.小張家訂了一份報(bào)紙,送報(bào)人可能在早上之間把報(bào)送到小張家,小張離開家去工作的時(shí)間在早上之間.用表示事件:“小張?jiān)陔x開家前能得到報(bào)紙”,設(shè)送報(bào)人到達(dá)的時(shí)間為,小張離開家的時(shí)間為,看成平面中的點(diǎn),則用幾何概型的公式得到事件的概率等于()A. B. C. D.11.平行四邊形中,已知,,點(diǎn)、分別滿足,,且,則向量在上的投影為()A.2 B. C. D.12.若將函數(shù)的圖象上各點(diǎn)橫坐標(biāo)縮短到原來的(縱坐標(biāo)不變)得到函數(shù)的圖象,則下列說法正確的是()A.函數(shù)在上單調(diào)遞增 B.函數(shù)的周期是C.函數(shù)的圖象關(guān)于點(diǎn)對稱 D.函數(shù)在上最大值是1二、填空題:本題共4小題,每小題5分,共20分。13.在中,若,則的范圍為________.14.已知數(shù)列的前項(xiàng)和為,,,,則滿足的正整數(shù)的所有取值為__________.15.袋中有形狀、大小都相同的4只球,其中1只白球,1只紅球,2只黃球,從中一次隨機(jī)摸出2只球,則這2只球顏色不同的概率為__________.16.在中,,,則_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知,,,,證明:(1);(2).18.(12分)已知x,y,z均為正數(shù).(1)若xy<1,證明:|x+z|?|y+z|>4xyz;(2)若=,求2xy?2yz?2xz的最小值.19.(12分)追求人類與生存環(huán)境的和諧發(fā)展是中國特色社會主義生態(tài)文明的價(jià)值取向.為了改善空氣質(zhì)量,某城市環(huán)保局隨機(jī)抽取了一年內(nèi)100天的空氣質(zhì)量指數(shù)()的檢測數(shù)據(jù),結(jié)果統(tǒng)計(jì)如下:空氣質(zhì)量優(yōu)良輕度污染中度污染重度污染嚴(yán)重污染天數(shù)61418272510(1)從空氣質(zhì)量指數(shù)屬于,的天數(shù)中任取3天,求這3天中空氣質(zhì)量至少有2天為優(yōu)的概率;(2)已知某企業(yè)每天的經(jīng)濟(jì)損失(單位:元)與空氣質(zhì)量指數(shù)的關(guān)系式為,試估計(jì)該企業(yè)一個月(按30天計(jì)算)的經(jīng)濟(jì)損失的數(shù)學(xué)期望.20.(12分)某大型單位舉行了一次全體員工都參加的考試,從中隨機(jī)抽取了20人的分?jǐn)?shù).以下莖葉圖記錄了他們的考試分?jǐn)?shù)(以十位數(shù)字為莖,個位數(shù)字為葉):若分?jǐn)?shù)不低于95分,則稱該員工的成績?yōu)椤皟?yōu)秀”.(1)從這20人中任取3人,求恰有1人成績“優(yōu)秀”的概率;(2)根據(jù)這20人的分?jǐn)?shù)補(bǔ)全下方的頻率分布表和頻率分布直方圖,并根據(jù)頻率分布直方圖解決下面的問題.組別分組頻數(shù)頻率1234①估計(jì)所有員工的平均分?jǐn)?shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);②若從所有員工中任選3人,記表示抽到的員工成績?yōu)椤皟?yōu)秀”的人數(shù),求的分布列和數(shù)學(xué)期望.21.(12分)已知函數(shù).(1)若是的極值點(diǎn),求的極大值;(2)求實(shí)數(shù)的范圍,使得恒成立.22.(10分)已知函數(shù)()的圖象在處的切線為(為自然對數(shù)的底數(shù))(1)求的值;(2)若,且對任意恒成立,求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
根據(jù)偶函數(shù)性質(zhì),可判斷關(guān)系;由時(shí),,求得導(dǎo)函數(shù),并構(gòu)造函數(shù),由進(jìn)而判斷函數(shù)在時(shí)的單調(diào)性,即可比較大小.【詳解】為定義在上的偶函數(shù),所以所以;當(dāng)時(shí),,則,令則,當(dāng)時(shí),,則在時(shí)單調(diào)遞增,因?yàn)椋?,即,則在時(shí)單調(diào)遞增,而,所以,綜上可知,即,故選:B.【點(diǎn)睛】本題考查了偶函數(shù)的性質(zhì)應(yīng)用,由導(dǎo)函數(shù)性質(zhì)判斷函數(shù)單調(diào)性的應(yīng)用,根據(jù)單調(diào)性比較大小,屬于中檔題.2、C【解析】
連接,為的中位線,從而,且,進(jìn)而,由此能求出橢圓的離心率.【詳解】如圖,連接,橢圓:的右頂點(diǎn)為A,右焦點(diǎn)為F,B、C為橢圓上關(guān)于原點(diǎn)對稱的兩點(diǎn),不妨設(shè)B在第二象限,直線BF交直線AC于M,且M為AC的中點(diǎn)為的中位線,,且,,解得橢圓的離心率.故選:C【點(diǎn)睛】本題考查了橢圓的幾何性質(zhì),考查了運(yùn)算求解能力,屬于基礎(chǔ)題.3、B【解析】
由題意得,,然后求解即可【詳解】∵,∴.又∵,∴,∴.【點(diǎn)睛】本題考查復(fù)數(shù)的運(yùn)算,屬于基礎(chǔ)題4、A【解析】
由已知新運(yùn)算的意義就是取得中的最小值,因此函數(shù),只有選項(xiàng)中的圖象符合要求,故選A.5、A【解析】
要計(jì)算這個數(shù)的和,這就需要循環(huán)50次,這樣可以確定判斷語句①,根據(jù)累加最的變化規(guī)律可以確定語句②.【詳解】因?yàn)橛?jì)算這個數(shù)的和,循環(huán)變量的初值為1,所以步長應(yīng)該為1,故判斷語句①應(yīng)為,第個數(shù)是,第個數(shù)比第個數(shù)大,第個數(shù)比第個數(shù)大,第個數(shù)比第個數(shù)大,這樣可以確定語句②為,故本題選A.【點(diǎn)睛】本題考查了補(bǔ)充循環(huán)結(jié)構(gòu),正確讀懂題意是解本題的關(guān)鍵.6、A【解析】試題分析:由題意,得,解得,故選A.考點(diǎn):函數(shù)的定義域.7、A【解析】
先由兩直線垂直的條件判斷出命題p的真假,由基本不等式判斷命題q的真假,從而得出p,q的非命題的真假,繼而判斷復(fù)合命題的真假,可得出選項(xiàng).【詳解】已知對于命題,由得,所以命題為假命題;關(guān)于命題,函數(shù),當(dāng)時(shí),,當(dāng)即時(shí),取等號,當(dāng)時(shí),函數(shù)沒有最小值,所以命題為假命題.所以和是真命題,所以為假命題,為假命題,為假命題,為真命題,所以真命題的個數(shù)為1個.故選:A.【點(diǎn)睛】本題考查直線的垂直的判定和基本不等式的應(yīng)用,以及復(fù)合命題的真假的判斷,注意運(yùn)用基本不等式時(shí),滿足所需的條件,屬于基礎(chǔ)題.8、C【解析】
分別假設(shè)甲乙丙丁說的是真話,結(jié)合其他人的說法,看是否只有一個說的是真話,即可求得年紀(jì)最大者,即可求得答案.【詳解】①假設(shè)甲說的是真話,則年紀(jì)最大的是甲,那么乙說謊,丙也說謊,而丁說的是真話,而已知只有一個人說的是真話,故甲說的不是真話,年紀(jì)最大的不是甲;②假設(shè)乙說的是真話,則年紀(jì)最大的是乙,那么甲說謊,丙說真話,丁也說真話,而已知只有一個人說的是真話,故乙說謊,年紀(jì)最大的也不是乙;③假設(shè)丙說的是真話,則年紀(jì)最大的是乙,所以乙說真話,甲說謊,丁說的是真話,而已知只有一個人說的是真話,故丙在說謊,年紀(jì)最大的也不是乙;④假設(shè)丁說的是真話,則年紀(jì)最大的不是丁,而已知只有一個人說的是真話,那么甲也說謊,說明甲也不是年紀(jì)最大的,同時(shí)乙也說謊,說明乙也不是年紀(jì)最大的,年紀(jì)最大的只有一人,所以只有丙才是年紀(jì)最大的,故假設(shè)成立,年紀(jì)最大的是丙.綜上所述,年紀(jì)最大的是丙故選:C.【點(diǎn)睛】本題考查合情推理,解題時(shí)可從一種情形出發(fā),推理出矛盾的結(jié)論,說明這種情形不會發(fā)生,考查了分析能力和推理能力,屬于中檔題.9、C【解析】由題意可得雙曲線的漸近線的方程為.∵為線段的中點(diǎn),∴,則為等腰三角形.∴由雙曲線的的漸近線的性質(zhì)可得∴∴,即.∴雙曲線的離心率為故選C.點(diǎn)睛:本題考查了橢圓和雙曲線的定義和性質(zhì),考查了離心率的求解,同時(shí)涉及到橢圓的定義和雙曲線的定義及三角形的三邊的關(guān)系應(yīng)用,對于求解曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個條件得到關(guān)于的齊次式,轉(zhuǎn)化為的齊次式,然后轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式),即可得(的取值范圍).10、D【解析】
這是幾何概型,畫出圖形,利用面積比即可求解.【詳解】解:事件發(fā)生,需滿足,即事件應(yīng)位于五邊形內(nèi),作圖如下:故選:D【點(diǎn)睛】考查幾何概型,是基礎(chǔ)題.11、C【解析】
將用向量和表示,代入可求出,再利用投影公式可得答案.【詳解】解:,得,則向量在上的投影為.故選:C.【點(diǎn)睛】本題考查向量的幾何意義,考查向量的線性運(yùn)算,將用向量和表示是關(guān)鍵,是基礎(chǔ)題.12、A【解析】
根據(jù)三角函數(shù)伸縮變換特點(diǎn)可得到解析式;利用整體對應(yīng)的方式可判斷出在上單調(diào)遞增,正確;關(guān)于點(diǎn)對稱,錯誤;根據(jù)正弦型函數(shù)最小正周期的求解可知錯誤;根據(jù)正弦型函數(shù)在區(qū)間內(nèi)值域的求解可判斷出最大值無法取得,錯誤.【詳解】將橫坐標(biāo)縮短到原來的得:當(dāng)時(shí),在上單調(diào)遞增在上單調(diào)遞增,正確;的最小正周期為:不是的周期,錯誤;當(dāng)時(shí),,關(guān)于點(diǎn)對稱,錯誤;當(dāng)時(shí),此時(shí)沒有最大值,錯誤.本題正確選項(xiàng):【點(diǎn)睛】本題考查正弦型函數(shù)的性質(zhì),涉及到三角函數(shù)的伸縮變換、正弦型函數(shù)周期性、單調(diào)性和對稱性、正弦型函數(shù)在一段區(qū)間內(nèi)的值域的求解;關(guān)鍵是能夠靈活應(yīng)用整體對應(yīng)的方式,通過正弦函數(shù)的圖象來判斷出所求函數(shù)的性質(zhì).二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
借助正切的和角公式可求得,即則通過降冪擴(kuò)角公式和輔助角公式可化簡,由,借助正弦型函數(shù)的圖象和性質(zhì)即可解得所求.【詳解】,所以,.因?yàn)?,所以,所?故答案為:.【點(diǎn)睛】本題考查了三角函數(shù)的化簡,重點(diǎn)考查學(xué)生的計(jì)算能力,難度一般.14、20,21【解析】
由題意知數(shù)列奇數(shù)項(xiàng)和偶數(shù)項(xiàng)分別為等差數(shù)列和等比數(shù)列,則根據(jù)為奇數(shù)和為偶數(shù)分別算出求和公式,代入數(shù)值檢驗(yàn)即可.【詳解】解:由題意知數(shù)列的奇數(shù)項(xiàng)構(gòu)成公差為的等差數(shù)列,偶數(shù)項(xiàng)構(gòu)成公比為的等比數(shù)列,則;.當(dāng)時(shí),,.當(dāng)時(shí),,.由此可知,滿足的正整數(shù)的所有取值為20,21.故答案為:20,21【點(diǎn)睛】本題考查等差數(shù)列與等比數(shù)列通項(xiàng)與求和公式,是綜合題,分清奇數(shù)項(xiàng)和偶數(shù)項(xiàng)是解題的關(guān)鍵.15、【解析】試題分析:根據(jù)題意,記白球?yàn)锳,紅球?yàn)锽,黃球?yàn)?,則一次取出2只球,基本事件為、、、、、共6種,其中2只球的顏色不同的是、、、、共5種;所以所求的概率是.考點(diǎn):古典概型概率16、【解析】
先由題意得:,再利用向量數(shù)量積的幾何意義得,可得結(jié)果.【詳解】由知:,則在方向的投影為,由向量數(shù)量積的幾何意義得:,∴故答案為【點(diǎn)睛】本題考查了投影的應(yīng)用,考查了數(shù)量積的幾何意義及向量的模的運(yùn)算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)證明見解析【解析】
(1)先由基本不等式可得,而,即得證;(2)首先推導(dǎo)出,再利用,展開即可得證.【詳解】證明:(1),,,(當(dāng)且僅當(dāng)時(shí)取等號).(2),,,,,,,.【點(diǎn)睛】本題考查不等式的證明,考查基本不等式的運(yùn)用,考查邏輯推理能力,屬于中檔題.18、(1)證明見解析;(2)最小值為1【解析】
(1)利用基本不等式可得,再根據(jù)0<xy<1時(shí),即可證明|x+z|?|y+z|>4xyz.(2)由=,得,然后利用基本不等式即可得到xy+yz+xz≥3,從而求出2xy?2yz?2xz的最小值.【詳解】(1)證明:∵x,y,z均為正數(shù),∴|x+z|?|y+z|=(x+z)(y+z)≥=,當(dāng)且僅當(dāng)x=y(tǒng)=z時(shí)取等號.又∵0<xy<1,∴,∴|x+z|?|y+z|>4xyz;(2)∵=,即.∵,,,當(dāng)且僅當(dāng)x=y(tǒng)=z=1時(shí)取等號,∴,∴xy+yz+xz≥3,∴2xy?2yz?2xz=2xy+yz+xz≥1,∴2xy?2yz?2xz的最小值為1.【點(diǎn)睛】本題考查了利用綜合法證明不等式和利用基本不等式求最值,考查了轉(zhuǎn)化思想和運(yùn)算能力,屬中檔題.19、(1)(2)9060元【解析】
(1)根據(jù)古典概型概率公式和組合數(shù)的計(jì)算可得所求概率;(2)任選一天,設(shè)該天的經(jīng)濟(jì)損失為元,分別求出,,,進(jìn)而求得數(shù)學(xué)期望,據(jù)此得出該企業(yè)一個月經(jīng)濟(jì)損失的數(shù)學(xué)期望.【詳解】解:(1)設(shè)為選取的3天中空氣質(zhì)量為優(yōu)的天數(shù),則.(2)任選一天,設(shè)該天的經(jīng)濟(jì)損失為元,則的可能取值為0,220,1480,,,,所以(元),故該企業(yè)一個月的經(jīng)濟(jì)損失的數(shù)學(xué)期望為(元).【點(diǎn)睛】本題考查古典概型概率公式和組合數(shù)的計(jì)算及數(shù)學(xué)期望,屬于基礎(chǔ)題.20、(1);(2)①82,②分布列見解析,【解析】
(1)從20人中任取3人共有種結(jié)果,恰有1人成績“優(yōu)秀”共有種結(jié)果,利用古典概型的概率計(jì)算公式計(jì)算即可;(2)①平均數(shù)的估計(jì)值為各小矩形的組中值與其面積乘積的和;②要注意服從的是二項(xiàng)分布,不是超幾何分布,利用二項(xiàng)分布的分布列及期望公式求解即可.【詳解】(1)設(shè)從20人中任取3人恰有1人成績“優(yōu)秀”為事件,則,所以,恰有1人“優(yōu)秀”的概率為.(2)組別分組頻數(shù)頻率120.01260.03380.04440.02①,估計(jì)所有員工的平均分為82②的可能取值為0、1、2、3,隨機(jī)選取1人是“優(yōu)秀”的概率為,∴;;;;∴的分布列為0123∵,∴數(shù)學(xué)期望.【點(diǎn)睛】本題考查古典概型的概率計(jì)算以及二項(xiàng)分布期望的問題,涉及到頻率分布直方圖、平均數(shù)的估計(jì)值等知識,是一道容易題.21、(1).(2)【解析】
(1)先對函數(shù)求導(dǎo),結(jié)合極值存在的條件可求t,然后結(jié)合導(dǎo)數(shù)可研究函數(shù)的單調(diào)性,進(jìn)而可求極大值;(2)由已知代入可得,x2+(t﹣2)x﹣tlnx≥0在x>0時(shí)恒成立,構(gòu)造函數(shù)g(x)=x2+(t﹣2)x﹣tlnx,結(jié)合導(dǎo)數(shù)及函數(shù)的性質(zhì)可求.【詳解】(1),x>0,由題意可得,0,解可得t=﹣4,∴,易得,當(dāng)x>2,0<x<1時(shí),f′(x)>0,函數(shù)單調(diào)遞增,當(dāng)1<x<2時(shí),f′(x)<0,函數(shù)單調(diào)遞減,故當(dāng)x=1時(shí),函數(shù)取得極大值f(1)=﹣3;(2)由f(x)=x2+(t﹣2)x﹣tlnx+2≥2在x>0時(shí)恒成立可得,x2+(t﹣2)x﹣tlnx≥0在x>0時(shí)恒成立,令g(x)=x2+(t﹣2)x﹣tlnx,則,(i)當(dāng)t≥0時(shí)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 格列佛游記奇幻與現(xiàn)實(shí)交融的寫作風(fēng)格教案
- 閱讀童話灰姑娘的感悟讀后感5篇
- 《物體的浮力與浮沉條件:初二物理教學(xué)教案》
- 教師評價(jià)與專業(yè)發(fā)展相結(jié)合的有效途徑
- 人工智能深度學(xué)習(xí)知識梳理
- 精準(zhǔn)農(nóng)業(yè)與智能化種植技術(shù)的融合路徑
- 中華文化與道德修養(yǎng)的聯(lián)系:初中語文德育教育教案
- 培養(yǎng)跨領(lǐng)域復(fù)合型能源人才的路徑設(shè)計(jì)
- 與奶奶的歡樂時(shí)光記人作文4篇
- 2025年信用與風(fēng)險(xiǎn)管理職業(yè)資格考試題及答案
- (2025)入黨積極分子培訓(xùn)考試試題及答案
- 2025年計(jì)算機(jī)網(wǎng)絡(luò)技術(shù)考試試卷及答案
- 思想道德與法治(湖南師范大學(xué))智慧樹知到期末考試答案章節(jié)答案2024年湖南師范大學(xué)
- 新蘇教版牛津英語 英語四年級下冊期末試卷
- 生產(chǎn)異常停線管理規(guī)范標(biāo)準(zhǔn)
- DB32∕T 4064-2021 江蘇省城鎮(zhèn)燃?xì)獍踩珯z查標(biāo)準(zhǔn)
- 四川省瀘州市瀘縣2021-2022學(xué)年八年級下學(xué)期期末數(shù)學(xué)試題(word版只含選擇填空題答案)
- 國際匯款查詢查復(fù)業(yè)務(wù)培訓(xùn)3
- 高中信息技術(shù)會考試題(必修部分)附答案
- 設(shè)備保全點(diǎn)檢表(TPM推行必看)
- 市質(zhì)監(jiān)站工程竣工驗(yàn)收工作流程圖
評論
0/150
提交評論