版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
ChapterV
Residue
§1
isolatedsingularity
Functiondoesnotresolvethepointof
singularity.
Ifthefunction
f(z)
althoughnoresolution
in
z
0,
z
0
inacertainneighborhoodtothecenter
0
<|
z
z
0|
withintheanalytic
everywhere,
then
z
0
as
f(z)
ofthe
isolated
singularity.
Thefunction
f(z)
initsisolatedsingularity
z
0
totheheartoftheneighborhood
0
<|
z
z
0|
bestartedintoaLaurent
series.
Accordingtothedifferentexpansionconditionsforclassificationofisolated
singularities.
Removablesingularity
freeiftheLaurentseriesin
z
z
0
ofthenegativepowerkey,
thenisolated
Legislationknownasthesingularpoint
z
0
f(z)
oftheremovablesingularity.
Then,
f
(z)
=
c
0
+
c
1
(z
z
0)
+...+
c
n
(z
z
0)
n
+....
0
<|
z
z
0
|
Inthecirculardomain
|
z
z
0
|
inthere
f
(z)
=
c
0
+
c
1
(z
z
0
)+...+
c
n
(z
z
0)
n
+...,
Thusthefunction
f(z)
at
z
0
onaresolutionof
the.
So
z
0
iscalledremovable
singularity.
2.
Pole
intheLaurentseries,ifonlyalimitednumberof
z
z
0
ofthenegativepoweritems
Andoneonthe
(z
z
0)
1
themaximumpowerforthe
(z
z
0)
m,
thatis
f
(z)
=
c
m
(z
z
0)
m
+...+
c
2
(z
z
0)
2
+
c
1
(z
z
0)
1
+
c
0
+
c
1
(z
z
0
)+...
(M
1,
c
m
0),
thenisolatedsingularpoint
z
0
iscalledthefunction
f(z)
the
m-classpole.
Thiscanalsobewrittenas
Where
g(z)
=
c
-
m
+
c
-
m
+1
(z
-
z
0)
+
c
-
m
+2
(z
-
z
0)2
+...,
In
|
z
-
z
0
|
<d
areanalyticfunctions
within,
and
g(z
0)
0.
Conversely,
whenafunction
f(z)
canbeexpressedas
(*)form,
and
g(z
0)
0,
then
z
0
is
f(z)
the
m-class
pole.
If
z
0
is
f(z)
the
poles,
by
(*),
we
have
3.
Thenatureofsingularity
IftheLaurentseriescontainsaninfinitenumberof
z-
z
0
ofthenegativepower
key,
then
z
0
iscalledanisolatedsingularity
f(z)
thenatureof
singularity.
In
summary:
Wecanusethislimittodistinguishthedifferentsituationsofthetypeisolatedsingularity.
4.A
function
of
therelationshipbetweenthezeroandpole
Isnotidenticallyequaltozeroanalyticfunction
f(z)
canbeexpressedasif
f
(z)
=
(z
z
0)
m
(z),
where
(z)
analyticin
z
0
and
(z
0)
0,
m
isapositive
integer,
then
z
0
as
f(z)
of
m-level
zero.
Forexample,when
f
(z)
=
z(z
1)
3
時,
z
=0
and
z
=1
isitsoneandthree
zeros.
Accordingtothis
definition,
wecangetthefollowing
conclusions:
If
f(z)
analytic
in
z
0,
then
z
0
is
f(z)
of
m-level
isnecessaryandsufficientconditionzero
f
(n)(z
0)
=
0,
(n
=0,1,2,...,
m
1),
f
(m)(z
0)
0.
Thisis
because,
if
f(z)
at
z
0
resolution,
youwillbeabletostartaneighborhoodof
z
0
fortheTaylor
series:
f(z)
=
c
0
+
c
1
(z
z
0
)+...+
c
m
(z
z
0)
m
+...,
EasyCard
z
0
is
f(z)
of
m-level
necessaryandsufficientconditionzerocoefficientoftheformer
m
c
0
=
c
1
=...=
c
m
1
=
0,
c
m
0,
whichisequivalentto
f
(n)(z
0)
=
0,
(n
=0,1,2,...,
m
1),
f
(m)(z
0)
0.
Forexample,
z
=1
is
f(z)
=
z
3
-1
zero,
because
f
'(1)=
3
z
2
|
z
=1=3
0,
so
z
=1
isknown
f(z)
ofazero
.
Since
f(z)
=
(z
-
z
0)
m
j(z)
of
j(z)
analytic
in
z
0,
and
j(z
0)
0,
soit'sintheneighborhoodof
z0
isnot
zero.
Thisbecause
(z)
analyticin
z
0,
z
0
willbein
continuous,
sogiven
So
f
(z)
=
(z
z
0)
m
(z)z
0
intheneighborhoodtotheheartisnot
zero,
thatisnotidentically
Zerosofanalyticfunctionsofzerois
isolated.
Theorem
If
z
0
is
f(z)
the
m-class
pole,
then
z
0
isthe
m-level
zero,
Inturnset
up.
Determinethefunctionofthistheoremprovidesasimplepole
method.
Example
2
Example
3
To
Discussthefunction
In
DepartmentofState.
5.
FunctionInfinitybehavior
ifthefunction
f(z)
atinfinity
z
Totheheartoftheneighborhood
R
<|
z
|
withinthe
resolution,
saidthepoint
as
f(z)
oftheisolated
singularity.
Totransform
Theexpansionofthe
z
planetotheheart
neighborhood
R
<|
z
|<+
mappedtoexpandthe
w
planetotheoriginofheartNeighborhood:
Another.
Inthis
way,
wecantakeheartintheneighborhoodto
R
<|
z
|
on
f(z)researchintothe
Within
(w)
for
research.
Clearly
(w)
in
Withintheresolution,
so
w
=0
isanisolated
singularity.
f(z)
atinfinity
z
Thetypeofsingularpoint
Equivalentto
(w)
at
w=0
thesingularitytype.
That
z
is
f(z)
ofremovable
singularities,
poles,orthenatureof
singularity,
totallylimit
Theexistenceof
(finitevalue),
forinfinityortheinfinitedoesnotexistarenot
determined.
Example
1
Example
2
Example
3
§2
residue
Definitionoftheresidueandtheresidue
theorem,
ifthefunction
f(z)
z
0
in
aneighborhoodof
D,
Resolution,
thentheCauchyintegraltheorem
However,
if
z
0
is
f(z)
ofanisolatedsingularity,
Thenalongthecenter
z
0
ofaneighborhoodto
0
<|
z
z
0|
<R
z
0
containsanyofabeingasimpleclosedcurve
C
oftheintegral
Generallynotequalto
zero.
Therefore
f
(z)
=...+
c
n
(z
z
0)
n
+...+
c
1
(z
z
0)
1
+
C
0
+
c
1
(z
z
0
)+...+
c
n
(z
z
0)
n
+...
0
<|
z
z
0
|
<R
Bothendsofthe
pointsonebyone
alongthe
C:
That
C
1
as
f(z)
z
0
inthe
residue,
denotedbyRes
[f(z),z
0],
ie
Theorem1
(ResidueTheorem)
Setfunction
f(z)
inregion
D,
exceptafinitenumberofisolatedsingularpoint
z
1,
z
2,
...,
z
n
analyticeverywhere
outside.
C
is
D,
allsurroundedbyapositivesingularsimpleclosed
curve,
then
D
z
1
z
2
z
3
z
n
C
1
C
2
C
3
C
n
C
[Evidence]
tothe
C
intheisolatedsingularpoint
z
k(k
=1,2,...,
n)
areincludedwitheachother
Tothesimpleclosedcurve
C
k
around
up
thereundercompositeclosed-circuittheorems
Notethattheconditionsofthetheoremtobesatisfied.
Suchas
Cannotapplytheresiduetheorem.
Demandfunctionintheisolatedsingularity
z
0
OfficeoftheresiduethatisseekingitsLaurentseriesin
(Z
z
0)
1
termcoefficient
c
1
can
be.
Butifyouknowthetypeofsingularpoint
of
Seekingtostayafewmaybemore
favorable.
If
z
0
is
f(z)
oftheremovablesingularity,
Then
Res
[f(z),z
0]
=
0.
If
z
0
isthenatureof
singularity,
thenhadtobestartedbyLaurent
series.
If
z
0
is
Pole,
therearesomerequirements
c
1
useful
rule.
2.
Residuecalculationrules
Rule
1
if
z
0
is
f
(z)
ofapole,
Then
Rule
2
If
z
0
is
f
(z)
the
m-class
pole,
then
In
fact,
f
(z)
=
c
m
(z
z
0)
m
+...+
c
2
(z
z
0)
2
+
c
1
(z
z
0)
1
+
c
0
+
c
1
(z
z
0
)+...,
(Z
z
0)
m
f(z)
=
c
m
+
c
m
+1
(z
z
0
)+...+
c
1
(z
z
0)
m
1
+
c
0
(z
z
0)
m
+...,
Sothatbothendsofthe
z
z
0,
therightendofthelimitis
(m
1)!
C
1,
bothendsofthedividedby
(m
1)!
That
Res
[f(z),z
0],
whichmayrule
2,
when
m
=
1,
istherule
1.
Thatwas
Rule
3.
Bytherule
1,
may
Wecanalsousetherulestoseektoremainthenumber
3:
Thisis
simpler
than
someof
therules
1.
Example
5
Solution:
So
Originalstyle
=
Example
4
Solution:
z=0
isapole.
3.
Infinityresidue
setfunction
f(z)
intheringdomain
R
z
|<
Analytic,
C
fortheringareaaroundtheoriginofanyofthesimpleclosed
curve,
thentheintegral
Thevalue
hasnothingtodo
with
C,
called
f(z)
pointsin
residue,
denoted
f(z)
intheringdomain
R
z
|<
Analytic:
Interpretedasaringaroundthearea
Asimpleclosedcurveofany.
That
is,
f(z)
tostay
in
pointisequaltoitsnumberofpointstothe
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年版的云計算服務合同
- 不可撤銷信用證范文(2024版)
- 2025年度草種市場調研與銷售合同3篇
- 《任教學科語》課件
- 2024高新技術產(chǎn)品進出口貿(mào)易合同
- 2024招投標與合同管理實務:國有企業(yè)合規(guī)管理細則3篇
- 2025年度草場租賃與草原畜牧業(yè)發(fā)展協(xié)議3篇
- 2024年網(wǎng)絡直播平臺技術服務與授權合同
- 2024房地產(chǎn)公司合同類別
- 2025年度航空航天發(fā)動機采購合同范本與性能測試要求3篇
- ISO 56001-2024《創(chuàng)新管理體系-要求》專業(yè)解讀與應用實踐指導材料之3:4組織環(huán)境-4.1理解組織及其環(huán)境(雷澤佳編制-2025B0)
- 2024-2030年中國管道檢測工程行業(yè)前景分析發(fā)展規(guī)劃研究報告
- 抗心律失常藥物臨床應用中國專家共識
- 考級代理合同范文大全
- 2024解析:第三章物態(tài)變化-講核心(原卷版)
- 新的護理交班模式
- 安全行車知識培訓
- 2024年安徽省高校分類對口招生考試數(shù)學試卷真題
- 第12講 語態(tài)一般現(xiàn)在時、一般過去時、一般將來時(原卷版)
- 2024年采購員年終總結
- 2024年新疆區(qū)公務員錄用考試《行測》試題及答案解析
評論
0/150
提交評論