經(jīng)過翻譯到第六章word版_第1頁
經(jīng)過翻譯到第六章word版_第2頁
經(jīng)過翻譯到第六章word版_第3頁
經(jīng)過翻譯到第六章word版_第4頁
經(jīng)過翻譯到第六章word版_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

ChapterV

Residue

§1

isolatedsingularity

Functiondoesnotresolvethepointof

singularity.

Ifthefunction

f(z)

althoughnoresolution

in

z

0,

z

0

inacertainneighborhoodtothecenter

0

<|

z

z

0|

withintheanalytic

everywhere,

then

z

0

as

f(z)

ofthe

isolated

singularity.

Thefunction

f(z)

initsisolatedsingularity

z

0

totheheartoftheneighborhood

0

<|

z

z

0|

bestartedintoaLaurent

series.

Accordingtothedifferentexpansionconditionsforclassificationofisolated

singularities.

Removablesingularity

freeiftheLaurentseriesin

z

z

0

ofthenegativepowerkey,

thenisolated

Legislationknownasthesingularpoint

z

0

f(z)

oftheremovablesingularity.

Then,

f

(z)

=

c

0

+

c

1

(z

z

0)

+...+

c

n

(z

z

0)

n

+....

0

<|

z

z

0

|

Inthecirculardomain

|

z

z

0

|

inthere

f

(z)

=

c

0

+

c

1

(z

z

0

)+...+

c

n

(z

z

0)

n

+...,

Thusthefunction

f(z)

at

z

0

onaresolutionof

the.

So

z

0

iscalledremovable

singularity.

2.

Pole

intheLaurentseries,ifonlyalimitednumberof

z

z

0

ofthenegativepoweritems

Andoneonthe

(z

z

0)

1

themaximumpowerforthe

(z

z

0)

m,

thatis

f

(z)

=

c

m

(z

z

0)

m

+...+

c

2

(z

z

0)

2

+

c

1

(z

z

0)

1

+

c

0

+

c

1

(z

z

0

)+...

(M

1,

c

m

0),

thenisolatedsingularpoint

z

0

iscalledthefunction

f(z)

the

m-classpole.

Thiscanalsobewrittenas

Where

g(z)

=

c

-

m

+

c

-

m

+1

(z

-

z

0)

+

c

-

m

+2

(z

-

z

0)2

+...,

In

|

z

-

z

0

|

<d

areanalyticfunctions

within,

and

g(z

0)

0.

Conversely,

whenafunction

f(z)

canbeexpressedas

(*)form,

and

g(z

0)

0,

then

z

0

is

f(z)

the

m-class

pole.

If

z

0

is

f(z)

the

poles,

by

(*),

we

have

3.

Thenatureofsingularity

IftheLaurentseriescontainsaninfinitenumberof

z-

z

0

ofthenegativepower

key,

then

z

0

iscalledanisolatedsingularity

f(z)

thenatureof

singularity.

In

summary:

Wecanusethislimittodistinguishthedifferentsituationsofthetypeisolatedsingularity.

4.A

function

of

therelationshipbetweenthezeroandpole

Isnotidenticallyequaltozeroanalyticfunction

f(z)

canbeexpressedasif

f

(z)

=

(z

z

0)

m

(z),

where

(z)

analyticin

z

0

and

(z

0)

0,

m

isapositive

integer,

then

z

0

as

f(z)

of

m-level

zero.

Forexample,when

f

(z)

=

z(z

1)

3

時,

z

=0

and

z

=1

isitsoneandthree

zeros.

Accordingtothis

definition,

wecangetthefollowing

conclusions:

If

f(z)

analytic

in

z

0,

then

z

0

is

f(z)

of

m-level

isnecessaryandsufficientconditionzero

f

(n)(z

0)

=

0,

(n

=0,1,2,...,

m

1),

f

(m)(z

0)

0.

Thisis

because,

if

f(z)

at

z

0

resolution,

youwillbeabletostartaneighborhoodof

z

0

fortheTaylor

series:

f(z)

=

c

0

+

c

1

(z

z

0

)+...+

c

m

(z

z

0)

m

+...,

EasyCard

z

0

is

f(z)

of

m-level

necessaryandsufficientconditionzerocoefficientoftheformer

m

c

0

=

c

1

=...=

c

m

1

=

0,

c

m

0,

whichisequivalentto

f

(n)(z

0)

=

0,

(n

=0,1,2,...,

m

1),

f

(m)(z

0)

0.

Forexample,

z

=1

is

f(z)

=

z

3

-1

zero,

because

f

'(1)=

3

z

2

|

z

=1=3

0,

so

z

=1

isknown

f(z)

ofazero

.

Since

f(z)

=

(z

-

z

0)

m

j(z)

of

j(z)

analytic

in

z

0,

and

j(z

0)

0,

soit'sintheneighborhoodof

z0

isnot

zero.

Thisbecause

(z)

analyticin

z

0,

z

0

willbein

continuous,

sogiven

So

f

(z)

=

(z

z

0)

m

(z)z

0

intheneighborhoodtotheheartisnot

zero,

thatisnotidentically

Zerosofanalyticfunctionsofzerois

isolated.

Theorem

If

z

0

is

f(z)

the

m-class

pole,

then

z

0

isthe

m-level

zero,

Inturnset

up.

Determinethefunctionofthistheoremprovidesasimplepole

method.

Example

2

Example

3

To

Discussthefunction

In

DepartmentofState.

5.

FunctionInfinitybehavior

ifthefunction

f(z)

atinfinity

z

Totheheartoftheneighborhood

R

<|

z

|

withinthe

resolution,

saidthepoint

as

f(z)

oftheisolated

singularity.

Totransform

Theexpansionofthe

z

planetotheheart

neighborhood

R

<|

z

|<+

mappedtoexpandthe

w

planetotheoriginofheartNeighborhood:

Another.

Inthis

way,

wecantakeheartintheneighborhoodto

R

<|

z

|

on

f(z)researchintothe

Within

(w)

for

research.

Clearly

(w)

in

Withintheresolution,

so

w

=0

isanisolated

singularity.

f(z)

atinfinity

z

Thetypeofsingularpoint

Equivalentto

(w)

at

w=0

thesingularitytype.

That

z

is

f(z)

ofremovable

singularities,

poles,orthenatureof

singularity,

totallylimit

Theexistenceof

(finitevalue),

forinfinityortheinfinitedoesnotexistarenot

determined.

Example

1

Example

2

Example

3

§2

residue

Definitionoftheresidueandtheresidue

theorem,

ifthefunction

f(z)

z

0

in

aneighborhoodof

D,

Resolution,

thentheCauchyintegraltheorem

However,

if

z

0

is

f(z)

ofanisolatedsingularity,

Thenalongthecenter

z

0

ofaneighborhoodto

0

<|

z

z

0|

<R

z

0

containsanyofabeingasimpleclosedcurve

C

oftheintegral

Generallynotequalto

zero.

Therefore

f

(z)

=...+

c

n

(z

z

0)

n

+...+

c

1

(z

z

0)

1

+

C

0

+

c

1

(z

z

0

)+...+

c

n

(z

z

0)

n

+...

0

<|

z

z

0

|

<R

Bothendsofthe

pointsonebyone

alongthe

C:

That

C

1

as

f(z)

z

0

inthe

residue,

denotedbyRes

[f(z),z

0],

ie

Theorem1

(ResidueTheorem)

Setfunction

f(z)

inregion

D,

exceptafinitenumberofisolatedsingularpoint

z

1,

z

2,

...,

z

n

analyticeverywhere

outside.

C

is

D,

allsurroundedbyapositivesingularsimpleclosed

curve,

then

D

z

1

z

2

z

3

z

n

C

1

C

2

C

3

C

n

C

[Evidence]

tothe

C

intheisolatedsingularpoint

z

k(k

=1,2,...,

n)

areincludedwitheachother

Tothesimpleclosedcurve

C

k

around

up

thereundercompositeclosed-circuittheorems

Notethattheconditionsofthetheoremtobesatisfied.

Suchas

Cannotapplytheresiduetheorem.

Demandfunctionintheisolatedsingularity

z

0

OfficeoftheresiduethatisseekingitsLaurentseriesin

(Z

z

0)

1

termcoefficient

c

1

can

be.

Butifyouknowthetypeofsingularpoint

of

Seekingtostayafewmaybemore

favorable.

If

z

0

is

f(z)

oftheremovablesingularity,

Then

Res

[f(z),z

0]

=

0.

If

z

0

isthenatureof

singularity,

thenhadtobestartedbyLaurent

series.

If

z

0

is

Pole,

therearesomerequirements

c

1

useful

rule.

2.

Residuecalculationrules

Rule

1

if

z

0

is

f

(z)

ofapole,

Then

Rule

2

If

z

0

is

f

(z)

the

m-class

pole,

then

In

fact,

f

(z)

=

c

m

(z

z

0)

m

+...+

c

2

(z

z

0)

2

+

c

1

(z

z

0)

1

+

c

0

+

c

1

(z

z

0

)+...,

(Z

z

0)

m

f(z)

=

c

m

+

c

m

+1

(z

z

0

)+...+

c

1

(z

z

0)

m

1

+

c

0

(z

z

0)

m

+...,

Sothatbothendsofthe

z

z

0,

therightendofthelimitis

(m

1)!

C

1,

bothendsofthedividedby

(m

1)!

That

Res

[f(z),z

0],

whichmayrule

2,

when

m

=

1,

istherule

1.

Thatwas

Rule

3.

Bytherule

1,

may

Wecanalsousetherulestoseektoremainthenumber

3:

Thisis

simpler

than

someof

therules

1.

Example

5

Solution:

So

Originalstyle

=

Example

4

Solution:

z=0

isapole.

3.

Infinityresidue

setfunction

f(z)

intheringdomain

R

z

|<

Analytic,

C

fortheringareaaroundtheoriginofanyofthesimpleclosed

curve,

thentheintegral

Thevalue

hasnothingtodo

with

C,

called

f(z)

pointsin

residue,

denoted

f(z)

intheringdomain

R

z

|<

Analytic:

Interpretedasaringaroundthearea

Asimpleclosedcurveofany.

That

is,

f(z)

tostay

in

pointisequaltoitsnumberofpointstothe

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論