版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
廣東省肇慶市高要區(qū)金利鎮(zhèn)朝陽教育集團達標名校2024屆中考數(shù)學適應性模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.下列圖形中,是軸對稱圖形的是()A. B. C. D.2.下列幾何體中三視圖完全相同的是()A. B. C. D.3.下列命題中真命題是()A.若a2=b2,則a=bB.4的平方根是±2C.兩個銳角之和一定是鈍角D.相等的兩個角是對頂角4.下列計算,正確的是()A.a(chǎn)2?a2=2a2 B.a(chǎn)2+a2=a4 C.(﹣a2)2=a4 D.(a+1)2=a2+15.計算6m6÷(-2m2)3的結(jié)果為()A. B. C. D.6.河堤橫斷面如圖所示,堤高BC=6米,迎水坡AB的坡比為1:,則AB的長為A.12米 B.4米 C.5米 D.6米7.下列計算結(jié)果等于0的是()A. B. C. D.8.提出“金山銀山,不如綠水青山”,國家環(huán)保部大力治理環(huán)境污染,空氣質(zhì)量明顯好轉(zhuǎn),將惠及13.75億中國人,這個數(shù)字用科學記數(shù)法表示為()A.13.75×106B.13.75×105C.1.375×108D.1.375×1099.下列圖形中,屬于中心對稱圖形的是()A. B.C. D.10.如圖,已知△ABC,△DCE,△FEG,△HGI是4個全等的等腰三角形,底邊BC,CE,EG,GI在同一直線上,且AB=2,BC=1.連接AI,交FG于點Q,則QI=()A.1 B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.將ΔABC繞點B逆時針旋轉(zhuǎn)到ΔA'BC'使A、B、C'在同一直線上,若∠BCA=90°,∠BAC=30°,AB=4cm,則圖中陰影部分面積為________cm12.如圖,等邊三角形AOB的頂點A的坐標為(﹣4,0),頂點B在反比例函數(shù)(x<0)的圖象上,則k=.13.如圖,在△ABC中,AB=AC,以點C為圓心,以CB長為半徑作圓弧,交AC的延長線于點D,連結(jié)BD,若∠A=32°,則∠CDB的大小為_____度.14.我國古代《易經(jīng)》一書中記載,遠古時期,人們通過在繩子上打結(jié)來記錄數(shù)量,即“結(jié)繩記數(shù)”.如圖,一位婦女在從右到左依次排列的繩子上打結(jié),滿六進一,用來記錄采集到的野果數(shù)量,由圖可知,她一共采集到的野果數(shù)量為_____個.15.如圖,在△ABC中,DE∥BC,,則=_____.16.已知:如圖,AB為⊙O的直徑,點C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45o.則圖中陰影部分的面積是____________.三、解答題(共8題,共72分)17.(8分)我市某學校在“行讀石鼓閣”研學活動中,參觀了我市中華石鼓園,石鼓閣是寶雞城市新地標.建筑面積7200平方米,為我國西北第一高閣.秦漢高臺門闕的建筑風格,追求穩(wěn)定之中的飛揚靈動,深厚之中的巧妙組合,使景觀功能和標志功能融為一體.小亮想知道石鼓閣的高是多少,他和同學李梅對石鼓閣進行測量.測量方案如下:如圖,李梅在小亮和“石鼓閣”之間的直線BM上平放一平面鏡,在鏡面上做了一個標記,這個標記在直線BM上的對應位置為點C,鏡子不動,李梅看著鏡面上的標記,她來回走動,走到點D時,看到“石鼓閣”頂端點A在鏡面中的像與鏡面上的標記重合,這時,測得李梅眼睛與地面的高度ED=1.6米,CD=2.2米,然后,在陽光下,小亮從D點沿DM方向走了29.4米,此時“石鼓閣”影子與小亮的影子頂端恰好重合,測得小亮身高1.7米,影長FH=3.4米.已知AB⊥BM,ED⊥BM,GF⊥BM,其中,測量時所使用的平面鏡的厚度忽略不計,請你根據(jù)題中提供的相關信息,求出“石鼓閣”的高AB的長度.18.(8分)如圖,在△ABC中,∠ACB=90°,AC=1.sin∠A=,點D是BC的中點,點P是AB上一動點(不與點B重合),延長PD至E,使DE=PD,連接EB、EC.(1)求證;四邊形PBEC是平行四邊形;(2)填空:①當AP的值為時,四邊形PBEC是矩形;②當AP的值為時,四邊形PBEC是菱形.19.(8分)如圖,AD是△ABC的中線,過點C作直線CF∥AD.(問題)如圖①,過點D作直線DG∥AB交直線CF于點E,連結(jié)AE,求證:AB=DE.(探究)如圖②,在線段AD上任取一點P,過點P作直線PG∥AB交直線CF于點E,連結(jié)AE、BP,探究四邊形ABPE是哪類特殊四邊形并加以證明.(應用)在探究的條件下,設PE交AC于點M.若點P是AD的中點,且△APM的面積為1,直接寫出四邊形ABPE的面積.20.(8分)解方程:1+21.(8分)在中,,BD為AC邊上的中線,過點C作于點E,過點A作BD的平行線,交CE的延長線于點F,在AF的延長線上截取,連接BG,DF.求證:;求證:四邊形BDFG為菱形;若,,求四邊形BDFG的周長.22.(10分)如圖,點A是直線AM與⊙O的交點,點B在⊙O上,BD⊥AM,垂足為D,BD與⊙O交于點C,OC平分∠AOB,∠B=60°.求證:AM是⊙O的切線;若⊙O的半徑為4,求圖中陰影部分的面積(結(jié)果保留π和根號).23.(12分)在□ABCD中,E為BC邊上一點,且AB=AE,求證:AC=DE。24.A糧倉和B糧倉分別庫存糧食12噸和6噸,現(xiàn)決定支援給C市10噸和D市8噸.已知從A糧倉調(diào)運一噸糧食到C市和D市的運費分別為400元和800元;從B糧倉調(diào)運一噸糧食到C市和D市的運費分別為300元和500元.設B糧倉運往C市糧食x噸,求總運費W(元)關于x的函數(shù)關系式.(寫出自變量的取值范圍)若要求總運費不超過9000元,問共有幾種調(diào)運方案?求出總運費最低的調(diào)運方案,最低運費是多少?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解題分析】分析:根據(jù)軸對稱圖形的概念求解.詳解:A、不是軸對稱圖形,故此選項不合題意;B、是軸對稱圖形,故此選項符合題意;C、不是軸對稱圖形,故此選項不合題意;D、不是軸對稱圖形,故此選項不合題意;故選B.點睛:本題考查了軸對稱圖形,軸對稱圖形的判斷方法:把某個圖象沿某條直線折疊,如果圖形的兩部分能夠重合,那么這個是軸對稱圖形.2、A【解題分析】
找到從物體正面、左面和上面看得到的圖形全等的幾何體即可.【題目詳解】解:A、球的三視圖完全相同,都是圓,正確;B、圓柱的俯視圖與主視圖和左視圖不同,錯誤;C、圓錐的俯視圖與主視圖和左視圖不同,錯誤;D、四棱錐的俯視圖與主視圖和左視圖不同,錯誤;故選A.【題目點撥】考查三視圖的有關知識,注意三視圖都相同的常見的幾何體有球和正方體.3、B【解題分析】
利用對頂角的性質(zhì)、平方根的性質(zhì)、銳角和鈍角的定義分別判斷后即可確定正確的選項.【題目詳解】A、若a2=b2,則a=±b,錯誤,是假命題;B、4的平方根是±2,正確,是真命題;C、兩個銳角的和不一定是鈍角,故錯誤,是假命題;D、相等的兩個角不一定是對頂角,故錯誤,是假命題.故選B.【題目點撥】考查了命題與定理的知識,解題的關鍵是了解對頂角的性質(zhì)、平方根的性質(zhì)、銳角和鈍角的定義,難度不大.4、C【解題分析】
解:A.故錯誤;B.故錯誤;C.正確;D.故選C.【題目點撥】本題考查合并同類項,同底數(shù)冪相乘;冪的乘方,以及完全平方公式的計算,掌握運算法則正確計算是解題關鍵.5、D【解題分析】分析:根據(jù)冪的乘方計算法則求出除數(shù),然后根據(jù)同底數(shù)冪的除法法則得出答案.詳解:原式=,故選D.點睛:本題主要考查的是冪的計算法則,屬于基礎題型.明白冪的計算法則是解決這個問題的關鍵.6、A【解題分析】
試題分析:在Rt△ABC中,BC=6米,,∴AC=BC×=6(米).∴(米).故選A.【題目詳解】請在此輸入詳解!7、A【解題分析】
各項計算得到結(jié)果,即可作出判斷.【題目詳解】解:A、原式=0,符合題意;
B、原式=-1+(-1)=-2,不符合題意;
C、原式=-1,不符合題意;
D、原式=-1,不符合題意,
故選:A.【題目點撥】本題考查了有理數(shù)的運算,熟練掌握運算法則是解本題的關鍵.8、D【解題分析】
用科學記數(shù)法表示較大的數(shù)時,一般形式為a×10n,其中1≤|a|<10,n為整數(shù),據(jù)此判斷即可.【題目詳解】13.75億=1.375×109.故答案選D.【題目點撥】本題考查的知識點是科學記數(shù)法,解題的關鍵是熟練的掌握科學記數(shù)法.9、B【解題分析】
A、將此圖形繞任意點旋轉(zhuǎn)180度都不能與原圖重合,所以這個圖形不是中心對稱圖形.【題目詳解】A、將此圖形繞任意點旋轉(zhuǎn)180度都不能與原圖重合,所以這個圖形不是中心對稱圖形;B、將此圖形繞中心點旋轉(zhuǎn)180度與原圖重合,所以這個圖形是中心對稱圖形;C、將此圖形繞任意點旋轉(zhuǎn)180度都不能與原圖重合,所以這個圖形不是中心對稱圖形;D、將此圖形繞任意點旋轉(zhuǎn)180度都不能與原圖重合,所以這個圖形不是中心對稱圖形.故選B.【題目點撥】本題考查了軸對稱與中心對稱圖形的概念:中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.10、D【解題分析】解:∵△ABC、△DCE、△FEG是三個全等的等腰三角形,∴HI=AB=2,GI=BC=1,BI=2BC=2,∴===,∴=.∵∠ABI=∠ABC,∴△ABI∽△CBA,∴=.∵AB=AC,∴AI=BI=2.∵∠ACB=∠FGE,∴AC∥FG,∴==,∴QI=AI=.故選D.點睛:本題主要考查了平行線分線段定理,以及三角形相似的判定,正確理解AB∥CD∥EF,AC∥DE∥FG是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、4π【解題分析】分析:易得整理后陰影部分面積為圓心角為110°,兩個半徑分別為4和1的圓環(huán)的面積.詳解:由旋轉(zhuǎn)可得△ABC≌△A′BC′.∵∠BCA=90°,∠BAC=30°,AB=4cm,∴BC=1cm,AC=13cm,∠A′BA=110°,∠CBC′=110°,∴陰影部分面積=(S△A′BC′+S扇形BAA′)-S扇形BCC′-S△ABC=120π360×(41-11)=4πcm1故答案為4π.點睛:本題利用旋轉(zhuǎn)前后的圖形全等,直角三角形的性質(zhì),扇形的面積公式求解.12、-4.【解題分析】
過點B作BD⊥x軸于點D,因為△AOB是等邊三角形,點A的坐標為(-4,0)所∠AOB=60°,根據(jù)銳角三角函數(shù)的定義求出BD及OD的長,可得出B點坐標,進而得出反比例函數(shù)的解析式.【題目詳解】過點B作BD⊥x軸于點D,∵△AOB是等邊三角形,點A的坐標為(﹣4,0),∴∠AOB=60°,OB=OA=AB=4,∴OD=OB=2,BD=OB?sin60°=4×=2,∴B(﹣2,2),∴k=﹣2×2=﹣4.【題目點撥】本題考查了反比例函數(shù)圖象上點的坐標特點、等邊三角形的性質(zhì)、解直角三角函數(shù)等知識,難度適中.13、1【解題分析】
根據(jù)等腰三角形的性質(zhì)以及三角形內(nèi)角和定理在△ABC中可求得∠ACB=∠ABC=74°,根據(jù)等腰三角形的性質(zhì)以及三角形外角的性質(zhì)在△BCD中可求得∠CDB=∠CBD=∠ACB=1°.【題目詳解】∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°,又∵BC=DC,∴∠CDB=∠CBD=∠ACB=1°,故答案為1.【題目點撥】本題主要考查等腰三角形的性質(zhì),三角形外角的性質(zhì),掌握等邊對等角是解題的關鍵,注意三角形內(nèi)角和定理的應用.14、1【解題分析】分析:類比于現(xiàn)在我們的十進制“滿十進一”,可以表示滿六進一的數(shù)為:萬位上的數(shù)×64+千位上的數(shù)×63+百位上的數(shù)×62+十位上的數(shù)×6+個位上的數(shù),即1×64+2×63+3×62+0×6+2=1.詳解:2+0×6+3×6×6+2×6×6×6+1×6×6×6×6=1,故答案為:1.點睛:本題是以古代“結(jié)繩計數(shù)”為背景,按滿六進一計數(shù),運用了類比的方法,根據(jù)圖中的數(shù)學列式計算;本題題型新穎,一方面讓學生了解了古代的數(shù)學知識,另一方面也考查了學生的思維能力.15、【解題分析】
先利用平行條件證明三角形的相似,再利用相似三角形面積比等于相似比的平方,即可解題.【題目詳解】解:∵DE∥BC,,∴,由平行條件易證△ADE△ABC,∴S△ADE:S△ABC=1:9,∴=.【題目點撥】本題考查了相似三角形的判定和性質(zhì),中等難度,熟記相似三角形的面積比等于相似比的平方是解題關鍵.16、(-)cm2【解題分析】S陰影=S扇形-S△OBD=52-×5×5=.故答案是:.三、解答題(共8題,共72分)17、“石鼓閣”的高AB的長度為56m.【解題分析】
根據(jù)題意得∠ABC=∠EDC=90°,∠ABM=∠GFH=90°,再根據(jù)反射定律可知:∠ACB=∠ECD,則△ABC∽△EDC,根據(jù)相似三角形的性質(zhì)可得=,再根據(jù)∠AHB=∠GHF,可證△ABH∽△GFH,同理得=,代入數(shù)值計算即可得出結(jié)論.【題目詳解】由題意可得:∠ABC=∠EDC=90°,∠ABM=∠GFH=90°,由反射定律可知:∠ACB=∠ECD,則△ABC∽△EDC,∴=,即=①,∵∠AHB=∠GHF,∴△ABH∽△GFH,∴=,即=②,聯(lián)立①②,解得:AB=56,答:“石鼓閣”的高AB的長度為56m.【題目點撥】本題考查了相似三角形的判定與性質(zhì),解題的關鍵是熟練的掌握相似三角形的判定與性質(zhì).18、證明見解析;(2)①9;②12.5.【解題分析】
(1)根據(jù)對角線互相平分的四邊形為平行四邊形證明即可;(2)①若四邊形PBEC是矩形,則∠APC=90°,求得AP即可;②若四邊形PBEC是菱形,則CP=PB,求得AP即可.【題目詳解】∵點D是BC的中點,∴BD=CD.∵DE=PD,∴四邊形PBEC是平行四邊形;(2)①當∠APC=90°時,四邊形PBEC是矩形.∵AC=1.sin∠A=,∴PC=12,由勾股定理得:AP=9,∴當AP的值為9時,四邊形PBEC是矩形;②在△ABC中,∵∠ACB=90°,AC=1.sin∠A=,所以設BC=4x,AB=5x,則(4x)2+12=(5x)2,解得:x=5,∴AB=5x=2.當PC=PB時,四邊形PBEC是菱形,此時點P為AB的中點,所以AP=12.5,∴當AP的值為12.5時,四邊形PBEC是菱形.【題目點撥】本題考查了菱形的判定、平行四邊形的判定和性質(zhì)、矩形的判定,解題的關鍵是掌握特殊圖形的判定以及重要的性質(zhì).19、【問題】:詳見解析;【探究】:四邊形ABPE是平行四邊形,理由詳見解析;【應用】:8.【解題分析】
(1)先根據(jù)平行線的性質(zhì)和等量代換得出∠1=∠3,再利用中線性質(zhì)得到BD=DC,證明△ABD≌△EDC,從而證明AB=DE(2)方法一:過點D作DN∥PE交直線CF于點N,由平行線性質(zhì)得出四邊形PDNE是平行四邊形,從而得到四邊形ABPE是平行四邊形.方法二:延長BP交直線CF于點N,根據(jù)平行線的性質(zhì)結(jié)合等量代換證明△ABP≌△EPN,從而證明四邊形ABPE是平行四邊形(3)延長BP交CF于H,根據(jù)平行四邊形的性質(zhì)結(jié)合三角形的面積公式求解即可.【題目詳解】證明:如圖①是的中線,(或證明四邊形ABDE是平行四邊形,從而得到)【探究】四邊形ABPE是平行四邊形.方法一:如圖②,證明:過點D作交直線于點,∴四邊形是平行四邊形,∵由問題結(jié)論可得∴四邊形是平行四邊形.方法二:如圖③,證明:延長BP交直線CF于點N,∵是的中線,∴四邊形是平行四邊形.【應用】如圖④,延長BP交CF于H.由上面可知,四邊形是平行四邊形,∴四邊形APHE是平行四邊形,,【題目點撥】此題重點考查學生對平行線性質(zhì),平行四邊形性質(zhì)的綜合應用能力,熟練掌握平行線的性質(zhì)是解題的關鍵.20、無解.【解題分析】
兩邊都乘以x(x-3),去分母,化為整式方程求解即可.【題目詳解】解:去分母得:x2﹣3x﹣x2=3x﹣18,解得:x=3,經(jīng)檢驗x=3是增根,分式方程無解.【題目點撥】題考查了分式方程的解法,其基本思路是把方程的兩邊都乘以各分母的最簡公分母,化為整式方程求解,求出x的值后不要忘記檢驗.21、(1)證明見解析(2)證明見解析(3)1【解題分析】
利用平行線的性質(zhì)得到,再利用直角三角形斜邊上的中線等于斜邊的一半即可得證,利用平行四邊形的判定定理判定四邊形BDFG為平行四邊形,再利用得結(jié)論即可得證,設,則,利用菱形的性質(zhì)和勾股定理得到CF、AF和AC之間的關系,解出x即可.【題目詳解】證明:,,,又為AC的中點,,又,,證明:,,四邊形BDFG為平行四邊形,又,四邊形BDFG為菱形,解:設,則,,在中,,解得:,舍去,,菱形BDFG的周長為1.【題目點撥】本題考查了菱形的判定與性質(zhì)直角三角形斜邊上的中線,勾股定理等知識,正確掌握這些定義性質(zhì)及判定并結(jié)合圖形作答是解決本題的關鍵.22、(1)見解析;(2)【解題分析】
(1)根據(jù)題意,可得△BOC的等邊三角形,進而可得∠BCO=∠BOC,根據(jù)角平分線的性質(zhì),可證得BD∥OA,根據(jù)∠BDM=90°,進而得到∠OAM=90°,即可得證;(2)連接AC,利用△AOC是等邊三角形,求得∠OAC=60°,可得∠CAD=30°,在直角三角形中,求出CD、AD的長,則S陰影=S梯形OADC﹣S扇形OAC即可得解.【題目詳解】(1)證明:∵∠B=60°,OB=OC,∴△BOC是等邊三角形,∴∠1=∠3=60°,∵OC平分∠AOB,∴∠1=∠2,∴∠2=∠3,∴OA∥BD,∵∠BDM=90°,∴∠OAM=90°,又OA為⊙O的半徑,∴AM是⊙O的切線(2)解:連接AC,∵∠3=60°,OA=OC,∴△AOC是等邊三角形,∴∠OAC=60°,∴∠CAD=30°,∵OC=AC=4,∴CD=2,∴AD=2,∴S陰影=S梯形OADC﹣S扇形OAC=×(4+2)×2﹣.【題目點撥】本題主要考查切線的性質(zhì)與判定、扇形的面積等,解題關鍵在于用整體減去部分的方法計算.23、見解析【解題分析】
在ABC和EAD中已經(jīng)有一條邊和一個角分別相等,根據(jù)平行的性質(zhì)和等邊對等角得出∠B=∠DAE證得ABC≌EAD,繼而證得AC=DE.【題目詳解】∵四邊形ABCD為平行四邊形,∴AD∥BC,AD=BC,∴∠DAE=∠AEB.∵AB=AE,∴∠AEB=∠B.∴∠B=∠DAE.∵在△ABC和△AED中,,∴△ABC≌△EAD(SAS),∴AC=DE.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版苗圃場技術員環(huán)保技術支持聘用合同4篇
- 2025年物業(yè)公司社區(qū)物業(yè)能耗管理承包合同3篇
- 2025年消防器材銷售與售后服務合同3篇
- 2025年度個人旅游度假租賃合同示范文本4篇
- 2025年度金融信息安全采購合同安全事件應急處理3篇
- 2025年度連鎖酒店服務員招聘標準合同范本3篇
- 2025年度醫(yī)療設備代理銷售合同8篇
- 2025年春季流行鞋款設計與生產(chǎn)合同2篇
- 2025年度出境游旅游咨詢服務與推廣合同3篇
- 二零二五年度面包磚生產(chǎn)線節(jié)能改造與運維服務合同4篇
- 腰椎間盤突出疑難病例討論
- 《光伏發(fā)電工程工程量清單計價規(guī)范》
- 2023-2024學年度人教版四年級語文上冊寒假作業(yè)
- (完整版)保證藥品信息來源合法、真實、安全的管理措施、情況說明及相關證明
- 營銷專員績效考核指標
- 陜西麟游風電吊裝方案專家論證版
- 供應商審核培訓教程
- 【盒馬鮮生生鮮類產(chǎn)品配送服務問題及優(yōu)化建議分析10000字(論文)】
- 肝硬化心衰患者的護理查房課件
- 2023年四川省樂山市中考數(shù)學試卷
- 【可行性報告】2023年電動自行車行業(yè)項目可行性分析報告
評論
0/150
提交評論