版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023年浙江省湖州市高職單招數(shù)學(xué)自考預(yù)測試題庫(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(50題)1.過點P(1,-1)垂直于X軸的直線方程為()
A.x+1=0B.x-1=0C.y+1=0D.y-1=0
2.“θ是銳角”是“sinθ>0”的()
A.充分不必條件B.必要不充分條件C.充分必要條件D.既不充分也不必要條件
3.若某班有5名男生,從中選出2名分別擔(dān)任班長和體育委員則不同的選法種數(shù)為()
A.5B.10C.15D.20
4.過點A(-1,1)且與直線l:x-2y+6=0垂直的直線方程為()
A.2x-y-1=0B.x-2y-1=0C.x+2y+1=0D.2x+y+1=0
5.從標(biāo)有1,2,3,4,5的5張卡片中任取2張,那么這2張卡片數(shù)字之積為偶數(shù)的概率為()
A.7/20B.3/5C.7/10D.4/5
6.已知向量a=(1,1),b=(0,2),則下列結(jié)論正確的是()
A.a//bB.(2a-b)⊥bC.2a=bD.a*b=3
7.若直線x+y=0與直線ax-2y+1=0互相垂直,則a的值為()
A.-2B.2C.-1D.1
8.函數(shù)y=2x-1的反函數(shù)為g(x),則g(-3)=()
A.-1B.9C.1D.-9
9.參加一個比賽,需在4名老師,6名男學(xué)生和4名女學(xué)生中選一名老師和一名學(xué)生參加,不同的選派方案共有多少種?()
A.14B.30C.40D.60
10.同時擲兩枚骰子,所得點數(shù)之積為12的概率為()
A.1/12B.1/4C.1/9D.1/6
11.函數(shù)f(x)=x2-2x-3()
A.在(-∞,2)內(nèi)為增函數(shù)
B.在(-∞,1)內(nèi)為增函數(shù)
C.在(1,+∞)內(nèi)為減函數(shù)
D.在(1,+∞)內(nèi)為增函數(shù)
12.在空間中,直線與平面的位置關(guān)系是()
A.平行B.相交C.直線在平面內(nèi)D.平行、相交或直線在平面內(nèi)
13.設(shè)f(x)=2x+5,則f(2)=()
A.7B.8C.9D.10
14.經(jīng)過兩點A(4,0),B(0,-3)的直線方程是()
A.3x-4y-12=0
B.3x+4y-12=0
C.4x-3y+12=0
D.4x+3y+12=0
15.某射擊運動員的第一次打靶成績?yōu)?,8,9,8,7第二次打靶成績?yōu)?,8,9,9,7,則該名運動員打靶成績的穩(wěn)定性為()
A.一樣穩(wěn)定B.第一次穩(wěn)定C.第二次穩(wěn)定D.無法確定
16.下列函數(shù)中既是奇函數(shù)又是增函數(shù)的是()
A.y=2xB.y=2xC.y=x2/2D.y=-x/3
17.若不等式2x2+2ax+b<0的解集是{x|-1<x
A.-5B.1C.2D.3
18.以圓x2+2x+y2=0的圓心為圓心,半徑為2的圓的方程()
A.(x+1)2+y2=2B.(x+1)2+y2=4C.(x?1)2+y2=2D.(x?1)2+y2=4
19.圓x2+y2-4x+4y+6=0截直線x-y-5=0所得弦長等于()
A.√6B.1C.5D.5√2/2
20.若等差數(shù)列{an}的前n項和Sn=n2+a(a∈R),則a=()
A.-1B.2C.1D.0
21.已知兩個班,一個班35個人,另一個班30人,要從兩班中抽一名學(xué)生,則抽法共有()
A.1050種B.65種C.35種D.30種
22.已知α為第二象限角,點P(x,√5)為其終邊上的一點,且cosα=√2x/4,那么x=()
A.√3B.±√3C.-√2D.-√3
23.設(shè)向量a=(x,4),b=(2,-3),若a·b,則x=()
A.-5B.-2C.2D.7
24.不在3x+2y<6表示的平面區(qū)域內(nèi)的點是()
A.(0,0)B.(1,1)C.(0,2)D.(2,0)
25.已知集合A={0,1,2,3,4},B={0,2,4,8},那么A∩B子集的個數(shù)是()
A.6B.7C.8D.9
26.定義在R上的函數(shù)f(x)是奇函數(shù)又是以2為周期的周期函數(shù),則f(1)+f(4)+f(7)等于()
A.-1B.0C.1D.4
27.從2,3,5,7四個數(shù)中任取一個數(shù),取到奇數(shù)的概率為()
A.1/4B.1/2C.1/3D.3/4
28.若正實數(shù)x,y滿足2x+y=1,則1/x+1/y的最小值為()
A.1/2B.1C.3+2√2D.3-2√2
29.sin300°=()
A.1/2B.√2/2C.√3/2D.6/Π
30.10名工人某天生產(chǎn)同一零件,生產(chǎn)的件數(shù)是15,17,14,10,15,17,17,16,14,12.設(shè)其平均數(shù)為a,中位數(shù)為b,眾數(shù)為c,則有().
A.a>b>cB.b>c>aC.c>a>bD.c>b>a
31.已知點M(1,2)為拋物線y2=4x上的點,則點M到該拋物線焦點的距離為()
A.10B.8C.3D.2
32.傾斜角為135°,且在x軸上截距為3的直線方程是()
A.x+y+3=0B.x+y-3=0C.x-y+3=0D.x-y-3=0
33.從1、2、3、4、5五個數(shù)中任取一個數(shù),取到的數(shù)字是3或5的概率為()
A.1/5B.2/5C.3/5D.4/5
34.過點(-2,1)且平行于直線2x-y+1=0的直線方程為()
A.2x+y-1=0B.2x-y+5=0C.x-2y-3=0D.x-2y+5=0
35.若平面α//平面β,直線a?α,直線b?β那么直線a、b的位置關(guān)系是()
A.垂直B.平行C.異面D.不相交
36.“|x-1|<2成立”是“x(x-3)<0成立”的(
)
A.充分而不必要條件B.充分而不必要條件C.充分必要條件D.既不充分也不必要條件
37.為了解某地區(qū)的中小學(xué)生視力情況,擬從該地區(qū)的中小學(xué)生中抽取部分學(xué)生進(jìn)行調(diào)查,事先已了解到該地區(qū)小學(xué).初中.高中三個學(xué)段學(xué)生的視力情況有較大差異,而男女生視力情況差異不大,在下列抽樣方法中,最合理的抽樣方法是()
A.簡單隨機(jī)抽樣B.簡單隨機(jī)抽樣C.按學(xué)段分層抽樣D.系統(tǒng)抽樣
38.拋物線y2=4x的焦點為()
A.(1,0)B.(2,0)C.(3,0)D.(4,0)
39.與直線x-y-7=0垂直,且過點(3,5)的直線為()
A.x+y?8=0B.x-y+2=0C.2x-y+8=0D.x+2y+1=0
40.在等差數(shù)列(an)中,a1=-33,d=6,使前n項和Sn取得最小值的n=()
A.5B.6C.7D.8
41.不等式(x-1)(3x+2)解集為()
A.{x<-2/3或x>1}B.{-2/3<x<="x<=1}"d.{-1<x
42.不等式|x-5|≤3的整數(shù)解的個數(shù)有()個。
A.5B.6C.7D.8
43.已知集合A={2,4,6},B={6,a,2a},且A=B,則a的值為()
A.2B.4C.6D.8
44.過點P(2,-1)且與直線x+y-2=0平行的直線方程是()
A.x-y-1=0B.x+y+1=0C.x-y+1=0D.x+y-1=0
45.f(-1)是定義在R上是奇函數(shù),且對任意實數(shù)x,有f(x+4)=f(x),若f(-1)=3.則f(4)+f(5)=()
A.-3B.0C.3D.6
46.若直線l過點(-1,2)且與直線2x-3y+1=0平行,則l的方程是().
A.3x+2y+8=0B.2x-3y+8=0C.2x-3y-8=0D.3x+2y-8=0
47.不等式x2-x-2≤0的解集是()
A.(-1,2)B.(-2,1)C.(-2,2)D.[-1,2]
48.在(0,+∞)內(nèi),下列函數(shù)是增函數(shù)的是()
A.y=sinxB.y=1/xC.y=x2D.y=3-x
49.某工廠生產(chǎn)A、B、C三種不同型號的產(chǎn)品,產(chǎn)品的數(shù)量之比依次為7:3:5,現(xiàn)在用分層抽樣的方法抽出容量為n的樣本,樣本中A型產(chǎn)品有42件則本容量n為()
A.80B.90C.126D.210
50.函數(shù)y=sin22x-cos22x的最小正周期是()
A.Π/2B.ΠC.(3/2)ΠD.2Π
二、填空題(20題)51.在等差數(shù)列{an}中,a3+a5=26,則S7的值為____________;
52.4張卡片上分別寫有3,4,5,6,從這4張卡片中隨機(jī)取兩張,則取出的兩張卡片上數(shù)字之和為偶數(shù)的概率為______。
53.已知函數(shù)y=2x+t經(jīng)過點P(1,4),則t=_________。
54.不等式|1-3x|的解集是_________。
55.不等式x2-2x≤0的解集是________。
56.直線y=ax+1的傾斜角是Π/3,則a=________。
57.首項a?=2,公差d=3的等差數(shù)列前10項之和為__________。.
58.圓M:x2+4x+y2=0上的點到直l:y=2x-1的最短距離為________。
59.圓x2+2x+y2-4y-1=0的圓心到直線2x-y+1=0的距離是________。
60.從1到40這40個自然數(shù)中任取一個,是3的倍數(shù)的概率是()
61.若向量a=(1,-1),b=(2,-1),則|3a-b|=________。
62.已知數(shù)據(jù)x?,x?,x?,x?,x?,的平均數(shù)為80,則數(shù)據(jù)x?+1,x?+2,x?+3,x?+4,x?+5的平均數(shù)為________。
63.已知平面向量a=(1,2),b=(-2,m),且a⊥b,則a+b=_________。
64..已知數(shù)據(jù)x?,x?,……x??的平均數(shù)為18,則數(shù)據(jù)x?+2,,x?+2,x??+2的平均數(shù)是______。
65.已知平面向量a=(1,2),=(一2,1),則a與b的夾角是________。
66.已知等差數(shù)列{an}中,a?=25,則a?+a?+a?=________。
67.已知A(1,3),B(5,1),則線段AB的中點坐標(biāo)為_________;
68.以兩直線x+y=0和2x-y-3=0的交點為圓心,且與直線2x-y+2=0相切的圓的標(biāo)準(zhǔn)方程方程是________。
69.已知數(shù)列{an}的前n項和Sn=n(n+1),則a??=__________。
70.不等式3|x|<9的解集為________。
三、計算題(10題)71.某社區(qū)從4男3女選2人做核酸檢測志愿者,選中一男一女的概率是________。
72.求函數(shù)y=cos2x+sinxcosx-1/2的最大值。
73.解下列不等式x2>7x-6
74.已知sinα=1/3,則cos2α=________。
75.已知集合A={X|x2-ax+15=0},B={X|x2-5x+b=0},如果A∩B={3},求a,b及A∪B
76.圓(x-1)2+(x-2)2=4上的點到直線3x-4y+20=0的最遠(yuǎn)距離是________。
77.已知在等差數(shù)列{an}中,a1=2,a8=30,求該數(shù)列的通項公式和前5項的和S5;
78.我國是一個缺水的國家,節(jié)約用水,人人有責(zé);某市為了加強(qiáng)公民的節(jié)約用水意識,采用分段計費的方法A)月用水量不超過10m3的,按2元/m3計費;月用水量超過10m3的,其中10m3按2元/m3計費,超出部分按2.5元/m3計費。B)污水處理費一律按1元/m3計費。設(shè)用戶用水量為xm3,應(yīng)交水費為y元(1)求y與x的函數(shù)關(guān)系式(2)張大爺家10月份繳水費37元,問張大爺10月份用了多少水量?
79.在△ABC中,角A,B,C所對應(yīng)的邊分別是a,b,c,已知b=2√2,c=√5,cosB=√5/5。(1)求a的值;(2)求△ABC的面積
80.求證sin2α+sin2β?sin2αsin2β+cos2αcos22β=1;
參考答案
1.B
2.A由sinθ>0,知θ為第一,三象限角或y軸正半軸上的角,選A!
3.D
4.D
5.C
6.B
7.B
8.A
9.C
10.C
11.D
12.D
13.C[解析]講解:函數(shù)求值問題,將x=2帶入求得,f(2)=2×2+5=9,選C
14.A由直線方程的兩點式可得經(jīng)過兩點兩點A(4,0),B(0,-3)的直線方程為:(y-0)/(-3-0)=(x-0)/(0-4),既3x-4y-12=0故選A.考點:直線的兩點式方程.
15.B
16.Ay=2x既是增函數(shù)又是奇函數(shù);y=1/x既是減函數(shù)又是奇函數(shù);y=1/2x2是偶函數(shù),且在(-∞,0)上為減函數(shù),在[0,+∞)上為增函數(shù);y=-x/3既是減函數(shù)又是奇函數(shù),故選A.考點:函數(shù)的奇偶性.感悟提高:對常見的一次函數(shù)、二次函數(shù)、反比例函數(shù),可根據(jù)圖像的特點判斷其單調(diào)性;對于函數(shù)的奇偶性,則可依據(jù)其定義來判斷。首先看函數(shù)的定義域是否關(guān)于原點對稱,如果定義域不關(guān)于原點對稱,則函數(shù)不具有奇偶性;如果定義域關(guān)于原點對稱,再判斷f(-x)=f(x)(偶函數(shù));f(-x)=-f(x)(奇函數(shù))
17.A
18.B[解析]講解:圓的方程,重點是將方程化為標(biāo)準(zhǔn)方程,(x+1)2+y2=1,半徑為2的話方程為(x+1)2+y2=4
19.A由圓x2+y2-4x+4y+6=0,易得圓心為(2,-2),半徑為√2.圓心(2,-2)到直線x-y-5=0的距離為√2/2.利用幾何性質(zhì),則弦長為2√(√2)2-(√2/2)2=√6??键c:和圓有關(guān)的弦長問題.感悟提高:計算直線被圓截得弦長常用幾何法,利用圓心到直線的距離,弦長的一半,及半徑構(gòu)成直角三角形計算,即公式d2+(AB/2)2=r2,d是圓到直線的距離,r是圓半徑,AB是弦長.
20.D
21.B
22.D
23.D
24.D
25.C[解析]講解:集合子集的考察,首先求A∩B={0,2,4}有三個元素,則子集的個數(shù)為2^3=8,選C
26.B
27.D
28.C考點:均值不等式.
29.Asin300°=1/2考點:特殊角度的三角函數(shù)值.
30.D[答案]D[解析]講解:重新排列10,12,14,14,15,15,16,17,17,17,算得,a=14.7.b=15,c=17答案選D
31.D
32.B[答案]B[解析]講解:考察直線方程的知識,斜率為傾斜角的正切值k=tan135°=-1,x軸截距為3則過定點(3,0),所以直線方程為y=-(x-3)即x+y-3=0,選B
33.B
34.B
35.D[解析]講解:兩面平行不會有交點,面內(nèi)的直線也不可能相交,選D
36.B[解析]講解:解不等式,由|x-1|<2得x?(-1,3),由x(x-3)<0得x?(0,3),后者能推出前者,前者推不出后者,所以是必要不充分條件。
37.C
38.A拋物線方程為y2=2px(p>0),焦點為(P/2,0),2p=4,p=2c,p/2=1??键c:拋物線焦點
39.D[答案]A[解析]講解:直線方程的考查,兩直線垂直則斜率乘積為-1,選A,經(jīng)驗證直線過點(3,5)。
40.B
41.B[解析]講解:一元二次不等式的考察,不等式小于0,解集取兩根之間無等號,答案選B
42.C[解析]講解:絕對值不等式的化簡,-3≤x-5≤3,解得2≤x≤8,整數(shù)解有7個
43.A[解析]講解:考察集合相等,集合里的元素也必須相同,a,2a,要分別等于2,4,則只能有a=2,選A
44.D可利用直線平行的關(guān)系求解,與直線Ax+By+C=0平行的直線方程可表示為:Ax+By+D=0.設(shè)所求直線方程為x+y+D=0,代入P(2,1)解得D=-1,所以所求的直線方程為:x+y-1=0,故選D.考點:直線方程求解.
45.A
46.B[解析]講解:考察直線方程,平行直線方程除了常數(shù),其余系數(shù)成比例,排除A,D,直線過點(-1,2),則B
47.D
48.C
49.B
50.A
51.91
52.1/3
53.2
54.(-1/3,1)
55.[0,2]
56.√3
57.155
58.√5-2
59.8
60.13/40
61.√5
62.83
63.(-1,3)
64.20
65.90°
66.75
67.(3,2)
68.(x-1)2+(y+1)2=5
69.20
70.(-3,3)
71.4/7
72.解:y=(1+cos2x)/2+1/2sin2x=√2/2sin(2x+Π/4)所以sin(2x+Π/4)∈[-1,1],所以原函數(shù)的最大值為√2/2。
7
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度離婚案件中涉及2024年購置車輛分割協(xié)議書3篇
- 2024年遠(yuǎn)程醫(yī)療服務(wù)系統(tǒng)搭建合同
- 2025年度裝載機(jī)租賃與售后服務(wù)合同3篇
- 2025年度智慧城市安防監(jiān)控系統(tǒng)工程合同書3篇
- 2024年物業(yè)綠化維護(hù)合同(適用于物業(yè)綠化養(yǎng)護(hù))3篇
- 求一個數(shù)比另一個數(shù)多幾(少幾)教學(xué)反思
- 高級財務(wù)會計歷年核算題(分類)
- 人民日報青春摘抄(高中作文素材)
- 華南農(nóng)業(yè)大學(xué)珠江學(xué)院《數(shù)據(jù)庫技術(shù)基礎(chǔ)(ACCESS)》2023-2024學(xué)年第一學(xué)期期末試卷
- 培黎職業(yè)學(xué)院《Java語言程序設(shè)計A》2023-2024學(xué)年第一學(xué)期期末試卷
- 勘察工作質(zhì)量及保證措施
- 體外膜肺氧合(ECMO)并發(fā)癥及護(hù)理
- 墊江縣中醫(yī)院2018年11月份臨床技能中心教學(xué)設(shè)備招標(biāo)項目招標(biāo)文件
- 排放源統(tǒng)計(環(huán)統(tǒng))年報填報指南
- 反射療法師理論考試復(fù)習(xí)題及答案
- 房地產(chǎn)銷售主管崗位招聘筆試題及解答(某大型國企)2025年
- 心電圖并發(fā)癥預(yù)防及處理
- 重慶市七中學(xué)2023-2024學(xué)年數(shù)學(xué)八上期末統(tǒng)考模擬試題【含解析】
- 檢驗科lis系統(tǒng)需求
- 中東及非洲空氣制水機(jī)行業(yè)現(xiàn)狀及發(fā)展機(jī)遇分析2024-2030
- DL∕T 1631-2016 并網(wǎng)風(fēng)電場繼電保護(hù)配置及整定技術(shù)規(guī)范
評論
0/150
提交評論