中考數(shù)學(xué)專題復(fù)習(xí)課件第9講分式方程及應(yīng)用_第1頁
中考數(shù)學(xué)專題復(fù)習(xí)課件第9講分式方程及應(yīng)用_第2頁
中考數(shù)學(xué)專題復(fù)習(xí)課件第9講分式方程及應(yīng)用_第3頁
中考數(shù)學(xué)專題復(fù)習(xí)課件第9講分式方程及應(yīng)用_第4頁
中考數(shù)學(xué)專題復(fù)習(xí)課件第9講分式方程及應(yīng)用_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

第9講分式方程及應(yīng)用匯報(bào)人:2023-12-11CATALOGUE目錄分式方程的概念及解法分式方程的應(yīng)用分式方程的注意事項(xiàng)分式方程的拓展提高中考真題及解析01分式方程的概念及解法分式方程是一種含有未知數(shù)、分母中含有未知數(shù)或常數(shù)的方程。定義分式方程通常具有形式如“ax/b=c”,其中“a、b、c”是常數(shù),“x”是未知數(shù)。識別分式方程的定義及識別將方程兩邊同時乘以最簡公分母,將分式方程轉(zhuǎn)化為整式方程,從而求出未知數(shù)的值。去分母法換元法參數(shù)法通過引入新的未知數(shù),將分式方程轉(zhuǎn)化為整式方程,從而求出未知數(shù)的值。通過引入?yún)?shù),將分式方程轉(zhuǎn)化為參數(shù)方程,從而求出未知數(shù)的值。030201分式方程的解法(一)——基本解法通過觀察方程的形式和特點(diǎn),直接得出方程的解。觀察法通過嘗試不同的解,觀察解是否符合原方程,從而得出方程的解。實(shí)驗(yàn)法通過繪制函數(shù)的圖象,觀察函數(shù)的零點(diǎn),從而得出方程的解。圖象法分式方程的解法(二)——特殊解法02分式方程的應(yīng)用列分式方程解應(yīng)用題的基本思路和方法設(shè)未知數(shù)解方程根據(jù)題目中的未知數(shù),設(shè)出相應(yīng)的未知數(shù)。解所建立的方程,得出未知數(shù)的值。審題建立方程檢驗(yàn)認(rèn)真閱讀題目,了解題目中的數(shù)量關(guān)系和已知條件。根據(jù)題目中的等量關(guān)系,建立相應(yīng)的分式方程。檢驗(yàn)所求得的未知數(shù)的值是否符合題意。類型一:行程問題解決行程問題,需要明確路程、速度和時間之間的關(guān)系,通過列方程求解。在行程問題中,通常會有相遇、追及、順逆流等不同情況,需要根據(jù)具體情況建立方程。列分式方程解應(yīng)用題的常見類型及例題解析(一)甲、乙兩車分別從A、B兩地相向而行,兩車相遇后繼續(xù)行駛,問兩車何時再次相遇?甲、乙兩車分別從A、B兩地相向而行,甲車比乙車快,問甲車何時追上乙車?列分式方程解應(yīng)用題的常見類型及例題解析(一)例題2例題1類型二:工程問題解決工程問題,需要明確工作量、工作效率和工作時間之間的關(guān)系,通過列方程求解。在工程問題中,通常會有合作、交替、循環(huán)等不同情況,需要根據(jù)具體情況建立方程。列分式方程解應(yīng)用題的常見類型及例題解析(一)例題1甲、乙兩隊(duì)分別承擔(dān)A、B兩個項(xiàng)目的施工任務(wù),甲隊(duì)比乙隊(duì)快,問甲隊(duì)何時完成施工任務(wù)?例題2甲、乙兩隊(duì)合作承擔(dān)一個項(xiàng)目的施工任務(wù),問兩隊(duì)合作何時能完成施工任務(wù)?列分式方程解應(yīng)用題的常見類型及例題解析(一)解決利潤問題,需要明確成本、售價(jià)和利潤之間的關(guān)系,通過列方程求解。在利潤問題中,通常會有打折、提價(jià)等不同情況,需要根據(jù)具體情況建立方程。例題2:某商品原價(jià)為10元,現(xiàn)提價(jià)2元后出售,問提價(jià)后商品的售價(jià)為多少元?例題1:某商品原價(jià)為10元,現(xiàn)打折出售,利潤為2元,問該商品現(xiàn)售價(jià)為多少元?類型三:利潤問題列分式方程解應(yīng)用題的常見類型及例題解析(二)03分式方程的注意事項(xiàng)

解分式方程時容易出現(xiàn)的錯誤分析忘記檢驗(yàn)根解分式方程時,首先需要檢驗(yàn)所求根是否為增根,若為增根則舍去,若不是增根則需進(jìn)一步檢驗(yàn)是否為原方程的根。忽略分母不為0分式方程中,分母不能等于0,否則無意義。因此,在解分式方程時需要注意分母是否為0。忽略驗(yàn)根由于解分式方程時可能出現(xiàn)增根,因此需要驗(yàn)根以確保所求根是原方程的根。驗(yàn)根是解分式方程中至關(guān)重要的一步,因?yàn)槿绻蟾皇窃匠痰母?,那么該解將會對后續(xù)計(jì)算產(chǎn)生錯誤影響。驗(yàn)根的重要性驗(yàn)根的方法包括:1)檢查是否為增根;2)代入原方程進(jìn)行檢驗(yàn)。驗(yàn)根方法解分式方程時驗(yàn)根的重要性及方法列分式方程步驟1)分析實(shí)際問題中的等量關(guān)系;2)根據(jù)等量關(guān)系列出方程;3)化簡方程得到分式方程;4)解分式方程并驗(yàn)根;5)整合答案。例題解析通過具體例題解析,展示如何根據(jù)實(shí)際問題列分式方程并求解。如何根據(jù)實(shí)際問題列分式方程及例題解析04分式方程的拓展提高分式方程的基本定義、解法及注意事項(xiàng)。基礎(chǔ)知識回顧復(fù)雜分式方程的轉(zhuǎn)化分式方程的根的判別式分式方程的解法的優(yōu)化介紹如何將復(fù)雜的分式方程轉(zhuǎn)化為簡單的整式方程或一元一次方程,通過移項(xiàng)、通分等方法簡化計(jì)算。介紹如何使用根的判別式來判斷分式方程是否有解,以及解的情況。針對特定的分式方程,介紹如何選擇合適的解法,如換元法、待定系數(shù)法等,提高解題效率。分式方程的拓展知識及例題解析03應(yīng)用拓展及例題解析通過具體的例題解析,展示如何將分式方程應(yīng)用到實(shí)際生活中,并解決這些問題。01實(shí)際生活中的分式方程應(yīng)用場景介紹分式方程在日常生活、工程、經(jīng)濟(jì)等多個領(lǐng)域的應(yīng)用,如溶液配比、成本計(jì)算、投資回報(bào)等。02實(shí)際問題建模針對具體的實(shí)際問題,建立相應(yīng)的分式方程模型,通過分析方程的解來解決實(shí)際問題。分式方程在實(shí)際生活中的應(yīng)用拓展及例題解析05中考真題及解析巧妙運(yùn)用分式方程解決實(shí)際問題,考查解題能力和思維能力。總結(jié)詞本題以工程問題為背景,要求考生通過列分式方程解決實(shí)際問題,著重考查了分式方程的運(yùn)用和解題能力。解題時,考生需要認(rèn)真審題,找出等量關(guān)系,列出方程并求解,注意檢驗(yàn)分式方程的解是否符合實(shí)際意義。詳細(xì)描述中考真題回顧及解析(一)總結(jié)詞考查分式方程的解法及實(shí)際應(yīng)用,解題關(guān)鍵在于熟練運(yùn)用分式方程的解法。要點(diǎn)一要點(diǎn)二詳細(xì)描述本題以購物問題為背景,要求考生通過列分式方程解決實(shí)際問題,著重考查了分式方程的解法和解題能力。解題時,考

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論