2024屆牡丹江市重點中學數(shù)學高三上期末學業(yè)水平測試模擬試題含解析_第1頁
2024屆牡丹江市重點中學數(shù)學高三上期末學業(yè)水平測試模擬試題含解析_第2頁
2024屆牡丹江市重點中學數(shù)學高三上期末學業(yè)水平測試模擬試題含解析_第3頁
2024屆牡丹江市重點中學數(shù)學高三上期末學業(yè)水平測試模擬試題含解析_第4頁
2024屆牡丹江市重點中學數(shù)學高三上期末學業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2024屆牡丹江市重點中學數(shù)學高三上期末學業(yè)水平測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖是一個幾何體的三視圖,則該幾何體的體積為()A. B. C. D.2.設,滿足約束條件,則的最大值是()A. B. C. D.3.如圖所示,網(wǎng)絡紙上小正方形的邊長為1,粗線畫出的是某四棱錐的三視圖,則該幾何體的體積為()A.2 B. C.6 D.84.已知三棱錐P﹣ABC的頂點都在球O的球面上,PA,PB,AB=4,CA=CB,面PAB⊥面ABC,則球O的表面積為()A. B. C. D.5.已知函數(shù),,的零點分別為,,,則()A. B.C. D.6.已知集合,,若AB,則實數(shù)的取值范圍是()A. B. C. D.7.在明代程大位所著的《算法統(tǒng)宗》中有這樣一首歌謠,“放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛馬羊,要求賠償五斗糧,三畜戶主愿賠償,牛馬羊吃得異樣.馬吃了牛的一半,羊吃了馬的一半.”請問各畜賠多少?它的大意是放牧人放牧時粗心大意,牛、馬、羊偷吃青苗,青苗主人扣住牛、馬、羊向其主人要求賠償五斗糧食(1斗=10升),三畜的主人同意賠償,但牛、馬、羊吃的青苗量各不相同.馬吃的青苗是牛的一半,羊吃的青苗是馬的一半.問羊、馬、牛的主人應該分別向青苗主人賠償多少升糧食?()A. B. C. D.8.已知集合的所有三個元素的子集記為.記為集合中的最大元素,則()A. B. C. D.9.若命題p:從有2件正品和2件次品的產(chǎn)品中任選2件得到都是正品的概率為三分之一;命題q:在邊長為4的正方形ABCD內(nèi)任取一點M,則∠AMB>90°的概率為π8A.p∧qB.(?p)∧qC.p∧(?q)D.?q10.已知函數(shù),當時,恒成立,則的取值范圍為()A. B. C. D.11.設,則關于的方程所表示的曲線是()A.長軸在軸上的橢圓 B.長軸在軸上的橢圓C.實軸在軸上的雙曲線 D.實軸在軸上的雙曲線12.函數(shù)(其中是自然對數(shù)的底數(shù))的大致圖像為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某種產(chǎn)品的質(zhì)量指標值服從正態(tài)分布,且.某用戶購買了件這種產(chǎn)品,則這件產(chǎn)品中質(zhì)量指標值位于區(qū)間之外的產(chǎn)品件數(shù)為_________.14.以,為圓心的兩圓均過,與軸正半軸分別交于,,且滿足,則點的軌跡方程為_________.15.已知兩動點在橢圓上,動點在直線上,若恒為銳角,則橢圓的離心率的取值范圍為__________.16.設第一象限內(nèi)的點(x,y)滿足約束條件,若目標函數(shù)z=ax+by(a>0,b>0)的最大值為40,則+的最小值為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知,.(1)解;(2)若,證明:.18.(12分)已知,,設函數(shù),.(1)若,求不等式的解集;(2)若函數(shù)的最小值為1,證明:.19.(12分)已知函數(shù)的定義域為.(1)求實數(shù)的取值范圍;(2)設實數(shù)為的最小值,若實數(shù),,滿足,求的最小值.20.(12分)已知拋物線:()上橫坐標為3的點與拋物線焦點的距離為4.(1)求p的值;(2)設()為拋物線上的動點,過P作圓的兩條切線分別與y軸交于A、B兩點.求的取值范圍.21.(12分)[選修45:不等式選講]已知都是正實數(shù),且,求證:.22.(10分)在極坐標系中,曲線的極坐標方程為,直線的極坐標方程為,設與交于、兩點,中點為,的垂直平分線交于、.以為坐標原點,極軸為軸的正半軸建立直角坐標系.(1)求的直角坐標方程與點的直角坐標;(2)求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

根據(jù)三視圖可得幾何體為直三棱柱,根據(jù)三視圖中的數(shù)據(jù)直接利用公式可求體積.【詳解】由三視圖可知幾何體為直三棱柱,直觀圖如圖所示:其中,底面為直角三角形,,,高為.∴該幾何體的體積為故選:A.【點睛】本題考查三視圖及棱柱的體積,屬于基礎題.2、D【解析】

作出不等式對應的平面區(qū)域,由目標函數(shù)的幾何意義,通過平移即可求z的最大值.【詳解】作出不等式組的可行域,如圖陰影部分,作直線:在可行域內(nèi)平移當過點時,取得最大值.由得:,故選:D【點睛】本題主要考查線性規(guī)劃的應用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法,屬于基礎題.3、A【解析】

先由三視圖確定該四棱錐的底面形狀,以及四棱錐的高,再由體積公式即可求出結(jié)果.【詳解】由三視圖可知,該四棱錐為斜著放置的四棱錐,四棱錐的底面為直角梯形,上底為1,下底為2,高為2,四棱錐的高為2,所以該四棱錐的體積為.故選A【點睛】本題主要考查幾何的三視圖,由幾何體的三視圖先還原幾何體,再由體積公式即可求解,屬于??碱}型.4、D【解析】

由題意畫出圖形,找出△PAB外接圓的圓心及三棱錐P﹣BCD的外接球心O,通過求解三角形求出三棱錐P﹣BCD的外接球的半徑,則答案可求.【詳解】如圖;設AB的中點為D;∵PA,PB,AB=4,∴△PAB為直角三角形,且斜邊為AB,故其外接圓半徑為:rAB=AD=2;設外接球球心為O;∵CA=CB,面PAB⊥面ABC,∴CD⊥AB可得CD⊥面PAB;且DC.∴O在CD上;故有:AO2=OD2+AD2?R2=(R)2+r2?R;∴球O的表面積為:4πR2=4π.故選:D.【點睛】本題考查多面體外接球表面積的求法,考查數(shù)形結(jié)合的解題思想方法,考查思維能力與計算能力,屬于中檔題.5、C【解析】

轉(zhuǎn)化函數(shù),,的零點為與,,的交點,數(shù)形結(jié)合,即得解.【詳解】函數(shù),,的零點,即為與,,的交點,作出與,,的圖象,如圖所示,可知故選:C【點睛】本題考查了數(shù)形結(jié)合法研究函數(shù)的零點,考查了學生轉(zhuǎn)化劃歸,數(shù)形結(jié)合的能力,屬于中檔題.6、D【解析】

先化簡,再根據(jù),且AB求解.【詳解】因為,又因為,且AB,所以.故選:D【點睛】本題主要考查集合的基本運算,還考查了運算求解的能力,屬于基礎題.7、D【解析】

設羊戶賠糧升,馬戶賠糧升,牛戶賠糧升,易知成等比數(shù)列,,結(jié)合等比數(shù)列的性質(zhì)可求出答案.【詳解】設羊戶賠糧升,馬戶賠糧升,牛戶賠糧升,則成等比數(shù)列,且公比,則,故,,.故選:D.【點睛】本題考查數(shù)列與數(shù)學文化,考查了等比數(shù)列的性質(zhì),考查了學生的運算求解能力,屬于基礎題.8、B【解析】

分類討論,分別求出最大元素為3,4,5,6的三個元素子集的個數(shù),即可得解.【詳解】集合含有個元素的子集共有,所以.在集合中:最大元素為的集合有個;最大元素為的集合有;最大元素為的集合有;最大元素為的集合有;所以.故選:.【點睛】此題考查集合相關的新定義問題,其本質(zhì)在于弄清計數(shù)原理,分類討論,分別求解.9、B【解析】因為從有2件正品和2件次品的產(chǎn)品中任選2件得到都是正品的概率為P1=1C42=16,即命題p是錯誤,則?p是正確的;在邊長為4的正方形ABCD內(nèi)任取一點M點睛:本題將古典型概率公式、幾何型概率公式與命題的真假(含或、且、非等連接詞)的命題構(gòu)成的復合命題的真假的判定有機地整合在一起,旨在考查命題真假的判定及古典概型的特征與計算公式的運用、幾何概型的特征與計算公式的運用等知識與方法的綜合運用,以及分析問題解決問題的能力。10、A【解析】

分析可得,顯然在上恒成立,只需討論時的情況即可,,然后構(gòu)造函數(shù),結(jié)合的單調(diào)性,不等式等價于,進而求得的取值范圍即可.【詳解】由題意,若,顯然不是恒大于零,故.,則在上恒成立;當時,等價于,因為,所以.設,由,顯然在上單調(diào)遞增,因為,所以等價于,即,則.設,則.令,解得,易得在上單調(diào)遞增,在上單調(diào)遞減,從而,故.故選:A.【點睛】本題考查了不等式恒成立問題,利用函數(shù)單調(diào)性是解決本題的關鍵,考查了學生的推理能力,屬于基礎題.11、C【解析】

根據(jù)條件,方程.即,結(jié)合雙曲線的標準方程的特征判斷曲線的類型.【詳解】解:∵k>1,∴1+k>0,k2-1>0,

方程,即,表示實軸在y軸上的雙曲線,

故選C.【點睛】本題考查雙曲線的標準方程的特征,依據(jù)條件把已知的曲線方程化為是關鍵.12、D【解析】由題意得,函數(shù)點定義域為且,所以定義域關于原點對稱,且,所以函數(shù)為奇函數(shù),圖象關于原點對稱,故選D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

直接計算,可得結(jié)果.【詳解】由題可知:則質(zhì)量指標值位于區(qū)間之外的產(chǎn)品件數(shù):故答案為:【點睛】本題考查正太分布中原則,審清題意,簡單計算,屬基礎題.14、【解析】

根據(jù)圓的性質(zhì)可知在線段的垂直平分線上,由此得到,同理可得,由對數(shù)運算法則可知,從而化簡得到,由此確定軌跡方程.【詳解】,,和的中點坐標為,且在線段的垂直平分線上,,即,同理可得:,,,點的軌跡方程為.故答案為:.【點睛】本題考查動點軌跡方程的求解問題,關鍵是能夠利用圓的性質(zhì)和對數(shù)運算法則構(gòu)造出滿足的方程,由此得到結(jié)果.15、【解析】

根據(jù)題意可知圓上任意一點向橢圓所引的兩條切線互相垂直,恒為銳角,只需直線與圓相離,從而可得,解不等式,再利用離心率即可求解.【詳解】根據(jù)題意可得,圓上任意一點向橢圓所引的兩條切線互相垂直,因此當直線與圓相離時,恒為銳角,故,解得從而離心率.故答案為:【點睛】本題主要考查了橢圓的幾何性質(zhì),考查了邏輯分析能力,屬于中檔題.16、【解析】不等式表示的平面區(qū)域陰影部分,當直線ax+by=z(a>0,b>0)過直線x?y+2=0與直線2x?y?6=0的交點(8,10)時,目標函數(shù)z=ax+by(a>0,b>0)取得最大40,即8a+10b=40,即4a+5b=20,而當且僅當時取等號,則的最小值為.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析.【解析】

(1)在不等式兩邊平方化簡轉(zhuǎn)化為二次不等式,解此二次不等式即可得出結(jié)果;(2)利用絕對值三角不等式可證得成立.【詳解】(1),,由得,不等式兩邊平方得,即,解得或.因此,不等式的解集為;(2),,由絕對值三角不等式可得.因此,.【點睛】本題考查含絕對值不等式的求解,同時也考查了利用絕對值三角不等式證明不等式,考查推理能力與運算求解能力,屬于中等題.18、(1);(2)證明見解析【解析】

(1)利用零點分段法,求出各段的取值范圍然后取并集可得結(jié)果.(2)利用絕對值三角不等式可得,然后使用柯西不等式可得結(jié)果.【詳解】(1)由,所以由當時,則所以當時,則當時,則綜上所述:(2)由當且僅當時取等號所以由,所以所以令根據(jù)柯西不等式,則當且僅當,即取等號由故,又則【點睛】本題考查使用零點分段法求解絕對值不等式以及柯西不等式的應用,屬基礎題.19、(1);(2)【解析】

(1)首先通過對絕對值內(nèi)式子符號的討論,將不等式轉(zhuǎn)化為一元一次不等式組,再分別解各不等式組,最后求各不等式組解集的并集,得到所求不等式的解集;(2)首先確定m的值,然后利用柯西不等式即可證得題中的不等式.【詳解】(1)因為函數(shù)定義域為,即恒成立,所以恒成立由單調(diào)性可知當時,有最大值為4,即;(2)由(1)知,,由柯西不等式知所以,即的最小值為.當且僅當,,時,等號成立【點睛】本題主要考查絕對值不等式的解法,柯西不等式及其應用,意在考查學生的轉(zhuǎn)化能力和計算求解能力.20、(1);(2)【解析】

(1)根據(jù)橫坐標為3的點與拋物線焦點的距離為4,由拋物線的定義得到求解.(2)設過點的直線方程為,根據(jù)直線與圓相切,則有,整理得:,根據(jù)題意,建立,將韋達定理代入求解.【詳解】(1)因為橫坐標為3的點與拋物線焦點的距離為4,由拋物線的定義得:,解得:.(2)設過點的直線方程為,因為直線與圓相切,所以,整理得:,,由題意得:所以,,因為,所以,所以.【點睛】本題主要考查拋物線的定義及點與拋物線,直線與圓的位置關系,還考查了運算求解的能力,屬于中檔題.21、見解析【解析】試題分析:把不等式的左邊寫成形式,利用柯西不等式即證.試題解析:證明:∵,又,∴考點:柯西不等式22、(1),;(2)見解析.【解析】

(1)將曲線的極坐標方程變形為,再由可將曲線的極坐標方程化為直角坐標方程,將直線的方程與

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論