版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆山東省即墨一中高三上數(shù)學(xué)期末教學(xué)質(zhì)量檢測(cè)模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在中,,,,點(diǎn)滿足,則等于()A.10 B.9 C.8 D.72.中國(guó)的國(guó)旗和國(guó)徽上都有五角星,正五角星與黃金分割有著密切的聯(lián)系,在如圖所示的正五角星中,以、、、、為頂點(diǎn)的多邊形為正五邊形,且,則()A. B. C. D.3.已知定義在上的函數(shù)的周期為4,當(dāng)時(shí),,則()A. B. C. D.4.設(shè)復(fù)數(shù)滿足(為虛數(shù)單位),則復(fù)數(shù)的共軛復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.已知復(fù)數(shù)z滿足,則z的虛部為()A. B.i C.–1 D.16.函數(shù)的圖象如圖所示,為了得到的圖象,可將的圖象()A.向右平移個(gè)單位 B.向右平移個(gè)單位C.向左平移個(gè)單位 D.向左平移個(gè)單位7.已知m,n是兩條不同的直線,,是兩個(gè)不同的平面,給出四個(gè)命題:①若,,,則;②若,,則;③若,,,則;④若,,,則其中正確的是()A.①② B.③④ C.①④ D.②④8.以下兩個(gè)圖表是2019年初的4個(gè)月我國(guó)四大城市的居民消費(fèi)價(jià)格指數(shù)(上一年同月)變化圖表,則以下說(shuō)法錯(cuò)誤的是()(注:圖表一每個(gè)城市的條形圖從左到右依次是1、2、3、4月份;圖表二每個(gè)月份的條形圖從左到右四個(gè)城市依次是北京、天津、上海、重慶)A.3月份四個(gè)城市之間的居民消費(fèi)價(jià)格指數(shù)與其它月份相比增長(zhǎng)幅度較為平均B.4月份僅有三個(gè)城市居民消費(fèi)價(jià)格指數(shù)超過(guò)102C.四個(gè)月的數(shù)據(jù)顯示北京市的居民消費(fèi)價(jià)格指數(shù)增長(zhǎng)幅度波動(dòng)較小D.僅有天津市從年初開始居民消費(fèi)價(jià)格指數(shù)的增長(zhǎng)呈上升趨勢(shì)9.已知拋物線的焦點(diǎn)為,為拋物線上一點(diǎn),,當(dāng)周長(zhǎng)最小時(shí),所在直線的斜率為()A. B. C. D.10.如圖,在三棱錐中,平面,,,,,分別是棱,,的中點(diǎn),則異面直線與所成角的余弦值為A.0 B. C. D.111.在復(fù)平面內(nèi),復(fù)數(shù)(為虛數(shù)單位)的共軛復(fù)數(shù)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.已知集合,集合,則A. B.或C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標(biāo)系xOy中,已知雙曲線(a>0)的一條漸近線方程為,則a=_______.14.已知,則_____.15.如圖所示,在△ABC中,AB=AC=2,,,AE的延長(zhǎng)線交BC邊于點(diǎn)F,若,則____.16.在中,已知,則的最小值是________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)傳染病的流行必須具備的三個(gè)基本環(huán)節(jié)是:傳染源、傳播途徑和人群易感性.三個(gè)環(huán)節(jié)必須同時(shí)存在,方能構(gòu)成傳染病流行.呼吸道飛沫和密切接觸傳播是新冠狀病毒的主要傳播途徑,為了有效防控新冠狀病毒的流行,人們出行都應(yīng)該佩戴口罩.某地區(qū)已經(jīng)出現(xiàn)了新冠狀病毒的感染病人,為了掌握該地區(qū)居民的防控意識(shí)和防控情況,用分層抽樣的方法從全體居民中抽出一個(gè)容量為100的樣本,統(tǒng)計(jì)樣本中每個(gè)人出行是否會(huì)佩戴口罩的情況,得到下面列聯(lián)表:戴口罩不戴口罩青年人5010中老年人2020(1)能否有的把握認(rèn)為是否會(huì)佩戴口罩出行的行為與年齡有關(guān)?(2)用樣本估計(jì)總體,若從該地區(qū)出行不戴口罩的居民中隨機(jī)抽取5人,求恰好有2人是青年人的概率.附:0.1000.0500.0100.0012.7063.8416.63510.82818.(12分)設(shè)函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)當(dāng)時(shí),求實(shí)數(shù)的取值范圍.19.(12分)已知數(shù)列滿足,,數(shù)列滿足.(Ⅰ)求證數(shù)列是等比數(shù)列;(Ⅱ)求數(shù)列的前項(xiàng)和.20.(12分)已知函數(shù)(,)滿足下列3個(gè)條件中的2個(gè)條件:①函數(shù)的周期為;②是函數(shù)的對(duì)稱軸;③且在區(qū)間上單調(diào).(Ⅰ)請(qǐng)指出這二個(gè)條件,并求出函數(shù)的解析式;(Ⅱ)若,求函數(shù)的值域.21.(12分)(1)已知數(shù)列滿足:,且(為非零常數(shù),),求數(shù)列的前項(xiàng)和;(2)已知數(shù)列滿足:(ⅰ)對(duì)任意的;(ⅱ)對(duì)任意的,,且.①若,求數(shù)列是等比數(shù)列的充要條件.②求證:數(shù)列是等比數(shù)列,其中.22.(10分)2019年6月,國(guó)內(nèi)的運(yùn)營(yíng)牌照開始發(fā)放.從到,我們國(guó)家的移動(dòng)通信業(yè)務(wù)用了不到20年的時(shí)間,完成了技術(shù)上的飛躍,躋身世界先進(jìn)水平.為了解高校學(xué)生對(duì)的消費(fèi)意愿,2019年8月,從某地在校大學(xué)生中隨機(jī)抽取了1000人進(jìn)行調(diào)查,樣本中各類用戶分布情況如下:用戶分類預(yù)計(jì)升級(jí)到的時(shí)段人數(shù)早期體驗(yàn)用戶2019年8月至2019年12月270人中期跟隨用戶2020年1月至2021年12月530人后期用戶2022年1月及以后200人我們將大學(xué)生升級(jí)時(shí)間的早晚與大學(xué)生愿意為套餐支付更多的費(fèi)用作比較,可得出下圖的關(guān)系(例如早期體驗(yàn)用戶中愿意為套餐多支付5元的人數(shù)占所有早期體驗(yàn)用戶的).(1)從該地高校大學(xué)生中隨機(jī)抽取1人,估計(jì)該學(xué)生愿意在2021年或2021年之前升級(jí)到的概率;(2)從樣本的早期體驗(yàn)用戶和中期跟隨用戶中各隨機(jī)抽取1人,以表示這2人中愿意為升級(jí)多支付10元或10元以上的人數(shù),求的分布列和數(shù)學(xué)期望;(3)2019年底,從這1000人的樣本中隨機(jī)抽取3人,這三位學(xué)生都已簽約套餐,能否認(rèn)為樣本中早期體驗(yàn)用戶的人數(shù)有變化?說(shuō)明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
利用已知條件,表示出向量,然后求解向量的數(shù)量積.【詳解】在中,,,,點(diǎn)滿足,可得則==【點(diǎn)睛】本題考查了向量的數(shù)量積運(yùn)算,關(guān)鍵是利用基向量表示所求向量.2、A【解析】
利用平面向量的概念、平面向量的加法、減法、數(shù)乘運(yùn)算的幾何意義,便可解決問(wèn)題.【詳解】解:.故選:A【點(diǎn)睛】本題以正五角星為載體,考查平面向量的概念及運(yùn)算法則等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,屬于基礎(chǔ)題.3、A【解析】
因?yàn)榻o出的解析式只適用于,所以利用周期性,將轉(zhuǎn)化為,再與一起代入解析式,利用對(duì)數(shù)恒等式和對(duì)數(shù)的運(yùn)算性質(zhì),即可求得結(jié)果.【詳解】定義在上的函數(shù)的周期為4,當(dāng)時(shí),,,,.故選:A.【點(diǎn)睛】本題考查了利用函數(shù)的周期性求函數(shù)值,對(duì)數(shù)的運(yùn)算性質(zhì),屬于中檔題.4、D【解析】
先把變形為,然后利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),求出,得到其坐標(biāo)可得答案.【詳解】解:由,得,所以,其在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為,在第四象限故選:D【點(diǎn)睛】此題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,屬于基礎(chǔ)題.5、C【解析】
利用復(fù)數(shù)的四則運(yùn)算可得,即可得答案.【詳解】∵,∴,∴,∴復(fù)數(shù)的虛部為.故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算、虛部概念,考查運(yùn)算求解能力,屬于基礎(chǔ)題.6、C【解析】
根據(jù)正弦型函數(shù)的圖象得到,結(jié)合圖像變換知識(shí)得到答案.【詳解】由圖象知:,∴.又時(shí)函數(shù)值最大,所以.又,∴,從而,,只需將的圖象向左平移個(gè)單位即可得到的圖象,故選C.【點(diǎn)睛】已知函數(shù)的圖象求解析式(1).(2)由函數(shù)的周期求(3)利用“五點(diǎn)法”中相對(duì)應(yīng)的特殊點(diǎn)求,一般用最高點(diǎn)或最低點(diǎn)求.7、D【解析】
根據(jù)面面垂直的判定定理可判斷①;根據(jù)空間面面平行的判定定理可判斷②;根據(jù)線面平行的判定定理可判斷③;根據(jù)面面垂直的判定定理可判斷④.【詳解】對(duì)于①,若,,,,兩平面相交,但不一定垂直,故①錯(cuò)誤;對(duì)于②,若,,則,故②正確;對(duì)于③,若,,,當(dāng),則與不平行,故③錯(cuò)誤;對(duì)于④,若,,,則,故④正確;故選:D【點(diǎn)睛】本題考查了線面平行的判定定理、面面平行的判定定理以及面面垂直的判定定理,屬于基礎(chǔ)題.8、D【解析】
采用逐一驗(yàn)證法,根據(jù)圖表,可得結(jié)果.【詳解】A正確,從圖表二可知,3月份四個(gè)城市的居民消費(fèi)價(jià)格指數(shù)相差不大B正確,從圖表二可知,4月份只有北京市居民消費(fèi)價(jià)格指數(shù)低于102C正確,從圖表一中可知,只有北京市4個(gè)月的居民消費(fèi)價(jià)格指數(shù)相差不大D錯(cuò)誤,從圖表一可知上海市也是從年初開始居民消費(fèi)價(jià)格指數(shù)的增長(zhǎng)呈上升趨勢(shì)故選:D【點(diǎn)睛】本題考查圖表的認(rèn)識(shí),審清題意,細(xì)心觀察,屬基礎(chǔ)題.9、A【解析】
本道題繪圖發(fā)現(xiàn)三角形周長(zhǎng)最小時(shí)A,P位于同一水平線上,計(jì)算點(diǎn)P的坐標(biāo),計(jì)算斜率,即可.【詳解】結(jié)合題意,繪制圖像要計(jì)算三角形PAF周長(zhǎng)最小值,即計(jì)算PA+PF最小值,結(jié)合拋物線性質(zhì)可知,PF=PN,所以,故當(dāng)點(diǎn)P運(yùn)動(dòng)到M點(diǎn)處,三角形周長(zhǎng)最小,故此時(shí)M的坐標(biāo)為,所以斜率為,故選A.【點(diǎn)睛】本道題考查了拋物線的基本性質(zhì),難度中等.10、B【解析】
根據(jù)題意可得平面,,則即異面直線與所成的角,連接CG,在中,,易得,所以,所以,故選B.11、D【解析】
將復(fù)數(shù)化簡(jiǎn)得,,即可得到對(duì)應(yīng)的點(diǎn)為,即可得出結(jié)果.【詳解】,對(duì)應(yīng)的點(diǎn)位于第四象限.故選:.【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算,考查共軛復(fù)數(shù)和復(fù)數(shù)與平面內(nèi)點(diǎn)的對(duì)應(yīng),難度容易.12、C【解析】
由可得,解得或,所以或,又,所以,故選C.二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】
雙曲線的焦點(diǎn)在軸上,漸近線為,結(jié)合漸近線方程為可求.【詳解】因?yàn)殡p曲線(a>0)的漸近線為,且一條漸近線方程為,所以.故答案為:.【點(diǎn)睛】本題主要考查雙曲線的漸近線,明確雙曲線的焦點(diǎn)位置,寫出雙曲線的漸近線方程的對(duì)應(yīng)形式是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).14、【解析】
對(duì)原方程兩邊求導(dǎo),然后令求得表達(dá)式的值.【詳解】對(duì)等式兩邊求導(dǎo),得,令,則.【點(diǎn)睛】本小題主要考查二項(xiàng)式展開式,考查利用導(dǎo)數(shù)轉(zhuǎn)化已知條件,考查賦值法,屬于中檔題.15、【解析】
過(guò)點(diǎn)做,可得,,由可得,可得,代入可得答案.【詳解】解:如圖,過(guò)點(diǎn)做,易得:,,,故,可得:,同理:,,可得,,由,可得,可得:,可得:,,故答案為:.【點(diǎn)睛】本題主要考查平面向量的線性運(yùn)算和平面向量的數(shù)量積,由題意作出是解題的關(guān)鍵.16、【解析】分析:可先用向量的數(shù)量積公式將原式變形為:,然后再結(jié)合余弦定理整理為,再由cosC的余弦定理得到a,b的關(guān)系式,最后利用基本不等式求解即可.詳解:已知,可得,將角A,B,C的余弦定理代入得,由,當(dāng)a=b時(shí)取到等號(hào),故cosC的最小值為.點(diǎn)睛:考查向量的數(shù)量積、余弦定理、基本不等式的綜合運(yùn)用,能正確轉(zhuǎn)化是解題關(guān)鍵.屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)有的把握認(rèn)為是否戴口罩出行的行為與年齡有關(guān).(2)【解析】
(1)根據(jù)列聯(lián)表和獨(dú)立性檢驗(yàn)的公式計(jì)算出觀測(cè)值,從而由參考數(shù)據(jù)作出判斷.(2)因?yàn)闃颖局谐鲂胁淮骺谡值木用裼?0人,其中年輕人有10人,用樣本估計(jì)總體,則出行不戴口罩的年輕人的概率為,是老年人的概率為.根據(jù)獨(dú)立重復(fù)事件的概率公式即可求得結(jié)果.【詳解】(1)由題意可知,有的把握認(rèn)為是否戴口罩出行的行為與年齡有關(guān).(2)由樣本估計(jì)總體,出行不戴口罩的年輕人的概率為,是老年人的概率為.人未戴口罩,恰有2人是青年人的概率.【點(diǎn)睛】本題主要考查獨(dú)立性檢驗(yàn)及獨(dú)立重復(fù)事件的概率求法,難度一般.18、(1)(2)當(dāng)時(shí),的取值范圍為;當(dāng)時(shí),的取值范圍為.【解析】
(1)當(dāng)時(shí),分類討論把不等式化為等價(jià)不等式組,即可求解.(2)由絕對(duì)值的三角不等式,可得,當(dāng)且僅當(dāng)時(shí),取“”,分類討論,即可求解.【詳解】(1)當(dāng)時(shí),,不等式可化為或或,解得不等式的解集為.(2)由絕對(duì)值的三角不等式,可得,當(dāng)且僅當(dāng)時(shí),取“”,所以當(dāng)時(shí),的取值范圍為;當(dāng)時(shí),的取值范圍為.【點(diǎn)睛】本題主要考查了含絕對(duì)值的不等式的求解,以及絕對(duì)值三角不等式的應(yīng)用,其中解答中熟記含絕對(duì)值不等式的解法,以及合理應(yīng)用絕對(duì)值的三角不等式是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.19、(Ⅰ)見證明;(Ⅱ)【解析】
(Ⅰ)利用等比數(shù)列的定義結(jié)合得出數(shù)列是等比數(shù)列(Ⅱ)數(shù)列是“等比-等差”的類型,利用分組求和即可得出前項(xiàng)和.【詳解】解:(Ⅰ)當(dāng)時(shí),,故.當(dāng)時(shí),,則,,數(shù)列是首項(xiàng)為,公比為的等比數(shù)列.(Ⅱ)由(Ⅰ)得,,,.【點(diǎn)睛】(Ⅰ)證明數(shù)列是等比數(shù)列可利用定義法得出(Ⅱ)采用分組求和:把一個(gè)數(shù)列分成幾個(gè)可以直接求和的數(shù)列.20、(Ⅰ)只有①②成立,;(Ⅱ).【解析】
(Ⅰ)依次討論①②成立,①③成立,②③成立,計(jì)算得到只有①②成立,得到答案.(Ⅱ)得到,得到函數(shù)值域.【詳解】(Ⅰ)由①可得,;由②得:,;由③得,,,;若①②成立,則,,,若①③成立,則,,不合題意,若②③成立,則,,與③中的矛盾,所以②③不成立,所以只有①②成立,.(Ⅱ)由題意得,,所以函數(shù)的值域?yàn)?【點(diǎn)睛】本題考查了三角函數(shù)的周期,對(duì)稱軸,單調(diào)性,值域,表達(dá)式,意在考查學(xué)生對(duì)于三角函數(shù)知識(shí)的綜合應(yīng)用.21、(1);(2)①;②證明見解析.【解析】
(1)由條件可得,結(jié)合等差數(shù)列的定義和通項(xiàng)公式、求和公式,即可得到所求;(2)①若,可令,運(yùn)用已知條件和等比數(shù)列的性質(zhì),即可得到所求充要條件;②當(dāng),,,由等比數(shù)列的定義和不等式的性質(zhì),化簡(jiǎn)變形,即可得到所求結(jié)論.【詳解】解:(1),,且為非零常數(shù),,,可得,可得數(shù)列的首項(xiàng)為,公差為的等差數(shù)列,可得,前項(xiàng)和為;(2)①若,可令,,且,即,,,,對(duì)任意的,,可得,可得,,數(shù)列是等比數(shù)列,則,,可得,,即,又,即有,即,數(shù)列是等比數(shù)列的充要條件為;②證明:對(duì)任意的,,,,,當(dāng),,,可得,即以為首項(xiàng)、為公比的等比數(shù)列;同理可得以為首項(xiàng)、為公比的等比數(shù)列;對(duì)任意的,,可得,即有,所以對(duì),,,可得,,即且,則,可令,故數(shù)列,,,,,,,,,是以為首項(xiàng),為公比的等比數(shù)列,其中.【點(diǎn)睛】本題考查新定義的理解和運(yùn)用,考查等差數(shù)列和等比數(shù)列的定義和通項(xiàng)公式的運(yùn)用,考查分類討論思想方法和推理、運(yùn)算能力,屬于難題.22、(1)(2)詳見解析(3)事件雖然發(fā)生概率小,但是發(fā)生可能性為0.02,所以認(rèn)為早期體驗(yàn)用戶沒有發(fā)生變化,詳見解析【解
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年滬教版選修6地理上冊(cè)月考試卷含答案
- 2025年外研銜接版高一歷史下冊(cè)階段測(cè)試試卷
- 2025年蘇教版選擇性必修1歷史下冊(cè)階段測(cè)試試卷含答案
- 2025年教科新版九年級(jí)生物上冊(cè)月考試卷含答案
- 2025年外研版選擇性必修1歷史下冊(cè)階段測(cè)試試卷
- 2025年滬科版選擇性必修3化學(xué)上冊(cè)階段測(cè)試試卷含答案
- 2025年冀教版九年級(jí)歷史下冊(cè)階段測(cè)試試卷
- 2025年度中央廚房設(shè)備定期檢查與維護(hù)合同4篇
- 2025年度租賃合同范本(含轉(zhuǎn)租規(guī)定)2篇
- 2025年度高端面包屋品牌加盟及產(chǎn)品訂購(gòu)合同4篇
- 圖像識(shí)別領(lǐng)域自適應(yīng)技術(shù)-洞察分析
- 個(gè)體戶店鋪?zhàn)赓U合同
- 禮盒業(yè)務(wù)銷售方案
- 二十屆三中全會(huì)精神學(xué)習(xí)試題及答案(100題)
- 小學(xué)五年級(jí)英語(yǔ)閱讀理解(帶答案)
- 仁愛版初中英語(yǔ)單詞(按字母順序排版)
- (正式版)YS∕T 5040-2024 有色金屬礦山工程項(xiàng)目可行性研究報(bào)告編制標(biāo)準(zhǔn)
- 小學(xué)一年級(jí)拼音天天練
- 新概念英語(yǔ)第二冊(cè)考評(píng)試卷含答案(第49-56課)
- 【奧運(yùn)會(huì)獎(jiǎng)牌榜預(yù)測(cè)建模實(shí)證探析12000字(論文)】
- 保安部工作計(jì)劃
評(píng)論
0/150
提交評(píng)論