版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆四川省德陽市重點中學(xué)數(shù)學(xué)高三上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.過圓外一點引圓的兩條切線,則經(jīng)過兩切點的直線方程是().A. B. C. D.2.正項等比數(shù)列中,,且與的等差中項為4,則的公比是()A.1 B.2 C. D.3.連接雙曲線及的4個頂點的四邊形面積為,連接4個焦點的四邊形的面積為,則當取得最大值時,雙曲線的離心率為()A. B. C. D.4.已知F為拋物線y2=4x的焦點,過點F且斜率為1的直線交拋物線于A,B兩點,則||FA|﹣|FB||的值等于()A. B.8 C. D.45.如圖,在直角梯形ABCD中,AB∥DC,AD⊥DC,AD=DC=2AB,E為AD的中點,若,則λ+μ的值為()A. B. C. D.6.設(shè)是虛數(shù)單位,則()A. B. C. D.7.設(shè)為非零實數(shù),且,則()A. B. C. D.8.已知實數(shù),滿足,則的最大值等于()A.2 B. C.4 D.89.函數(shù)在內(nèi)有且只有一個零點,則a的值為()A.3 B.-3 C.2 D.-210.已知非零向量,滿足,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件解:11.復(fù)數(shù)為純虛數(shù),則()A.i B.﹣2i C.2i D.﹣i12.已知拋物線的焦點為,過焦點的直線與拋物線分別交于、兩點,與軸的正半軸交于點,與準線交于點,且,則()A. B.2 C. D.3二、填空題:本題共4小題,每小題5分,共20分。13.在中,,點是邊的中點,則__________,________.14.已知向量,,,若,則______.15.已知,橢圓的方程為,雙曲線方程為,與的離心率之積為,則的漸近線方程為________.16.已知△ABC得三邊長成公比為2的等比數(shù)列,則其最大角的余弦值為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓:和拋物線:,為坐標原點.(1)已知直線和圓相切,與拋物線交于兩點,且滿足,求直線的方程;(2)過拋物線上一點作兩直線和圓相切,且分別交拋物線于兩點,若直線的斜率為,求點的坐標.18.(12分)已知在平面四邊形中,的面積為.(1)求的長;(2)已知,為銳角,求.19.(12分)(Ⅰ)證明:;(Ⅱ)證明:();(Ⅲ)證明:.20.(12分)在平面直角坐標系中,直線的的參數(shù)方程為(其中為參數(shù)),以坐標原點為極點,軸的正半軸為極軸的極坐標系中,點的極坐標為,直線經(jīng)過點.曲線的極坐標方程為.(1)求直線的普通方程與曲線的直角坐標方程;(2)過點作直線的垂線交曲線于兩點(在軸上方),求的值.21.(12分)在如圖所示的多面體中,四邊形是矩形,梯形為直角梯形,平面平面,且,,.(1)求證:平面.(2)求二面角的大小.22.(10分)在中,內(nèi)角A,B,C的對邊分別為a,b,c,且滿足.(1)求B;(2)若,AD為BC邊上的中線,當?shù)拿娣e取得最大值時,求AD的長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】過圓外一點,引圓的兩條切線,則經(jīng)過兩切點的直線方程為,故選.2、D【解析】
設(shè)等比數(shù)列的公比為q,,運用等比數(shù)列的性質(zhì)和通項公式,以及等差數(shù)列的中項性質(zhì),解方程可得公比q.【詳解】由題意,正項等比數(shù)列中,,可得,即,與的等差中項為4,即,設(shè)公比為q,則,則負的舍去,故選D.【點睛】本題主要考查了等差數(shù)列的中項性質(zhì)和等比數(shù)列的通項公式的應(yīng)用,其中解答中熟記等比數(shù)列通項公式,合理利用等比數(shù)列的性質(zhì)是解答的關(guān)鍵,著重考查了方程思想和運算能力,屬于基礎(chǔ)題.3、D【解析】
先求出四個頂點、四個焦點的坐標,四個頂點構(gòu)成一個菱形,求出菱形的面積,四個焦點構(gòu)成正方形,求出其面積,利用重要不等式求得取得最大值時有,從而求得其離心率.【詳解】雙曲線與互為共軛雙曲線,四個頂點的坐標為,四個焦點的坐標為,四個頂點形成的四邊形的面積,四個焦點連線形成的四邊形的面積,所以,當取得最大值時有,,離心率,故選:D.【點睛】該題考查的是有關(guān)雙曲線的離心率的問題,涉及到的知識點有共軛雙曲線的頂點,焦點,菱形面積公式,重要不等式求最值,等軸雙曲線的離心率,屬于簡單題目.4、C【解析】
將直線方程代入拋物線方程,根據(jù)根與系數(shù)的關(guān)系和拋物線的定義即可得出的值.【詳解】F(1,0),故直線AB的方程為y=x﹣1,聯(lián)立方程組,可得x2﹣6x+1=0,設(shè)A(x1,y1),B(x2,y2),由根與系數(shù)的關(guān)系可知x1+x2=6,x1x2=1.由拋物線的定義可知:|FA|=x1+1,|FB|=x2+1,∴||FA|﹣|FB||=|x1﹣x2|=.故選C.【點睛】本題考查了拋物線的定義,直線與拋物線的位置關(guān)系,屬于中檔題.5、B【解析】
建立平面直角坐標系,用坐標表示,利用,列出方程組求解即可.【詳解】建立如圖所示的平面直角坐標系,則D(0,0).不妨設(shè)AB=1,則CD=AD=2,所以C(2,0),A(0,2),B(1,2),E(0,1),∴(-2,2)=λ(-2,1)+μ(1,2),解得則.故選:B【點睛】本題主要考查了由平面向量線性運算的結(jié)果求參數(shù),屬于中檔題.6、A【解析】
利用復(fù)數(shù)的乘法運算可求得結(jié)果.【詳解】由復(fù)數(shù)的乘法法則得.故選:A.【點睛】本題考查復(fù)數(shù)的乘法運算,考查計算能力,屬于基礎(chǔ)題.7、C【解析】
取,計算知錯誤,根據(jù)不等式性質(zhì)知正確,得到答案.【詳解】,故,,故正確;取,計算知錯誤;故選:.【點睛】本題考查了不等式性質(zhì),意在考查學(xué)生對于不等式性質(zhì)的靈活運用.8、D【解析】
畫出可行域,計算出原點到可行域上的點的最大距離,由此求得的最大值.【詳解】畫出可行域如下圖所示,其中,由于,,所以,所以原點到可行域上的點的最大距離為.所以的最大值為.故選:D【點睛】本小題主要考查根據(jù)可行域求非線性目標函數(shù)的最值,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.9、A【解析】
求出,對分類討論,求出單調(diào)區(qū)間和極值點,結(jié)合三次函數(shù)的圖像特征,即可求解.【詳解】,若,,在單調(diào)遞增,且,在不存在零點;若,,在內(nèi)有且只有一個零點,.故選:A.【點睛】本題考查函數(shù)的零點、導(dǎo)數(shù)的應(yīng)用,考查分類討論思想,熟練掌握函數(shù)圖像和性質(zhì)是解題的關(guān)鍵,屬于中檔題.10、C【解析】
根據(jù)向量的數(shù)量積運算,由向量的關(guān)系,可得選項.【詳解】,,∴等價于,故選:C.【點睛】本題考查向量的數(shù)量積運算和命題的充分、必要條件,屬于基礎(chǔ)題.11、B【解析】
復(fù)數(shù)為純虛數(shù),則實部為0,虛部不為0,求出,即得.【詳解】∵為純虛數(shù),∴,解得..故選:.【點睛】本題考查復(fù)數(shù)的分類,屬于基礎(chǔ)題.12、B【解析】
過點作準線的垂線,垂足為,與軸交于點,由和拋物線的定義可求得,利用拋物線的性質(zhì)可構(gòu)造方程求得,進而求得結(jié)果.【詳解】過點作準線的垂線,垂足為,與軸交于點,由拋物線解析式知:,準線方程為.,,,,由拋物線定義知:,,,.由拋物線性質(zhì)得:,解得:,.故選:.【點睛】本題考查拋物線定義與幾何性質(zhì)的應(yīng)用,關(guān)鍵是熟練掌握拋物線的定義和焦半徑所滿足的等式.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】
根據(jù)正弦定理直接求出,利用三角形的邊表示向量,然后利用向量的數(shù)量積求解即可.【詳解】中,,,可得因為點是邊的中點,所以故答案為:;.【點睛】本題主要考查了三角形的解法,向量的數(shù)量積的應(yīng)用,考查計算能力,屬于中檔題.14、-1【解析】
由向量垂直得向量的數(shù)量積為0,根據(jù)數(shù)量積的坐標運算可得結(jié)論.【詳解】由已知,∵,∴,.故答案為:-1.【點睛】本題考查向量垂直的坐標運算.掌握向量垂直與數(shù)量積的關(guān)系是解題關(guān)鍵.15、【解析】
求出橢圓與雙曲線的離心率,根據(jù)離心率之積的關(guān)系,然后推出關(guān)系,即可求解雙曲線的漸近線方程.【詳解】,橢圓的方程為,的離心率為:,雙曲線方程為,的離心率:,與的離心率之積為,,,的漸近線方程為:,即.故答案為:【點睛】本題考查了橢圓、雙曲線的幾何性質(zhì),掌握橢圓、雙曲線的離心率公式,屬于基礎(chǔ)題.16、-【解析】試題分析:根據(jù)題意設(shè)三角形的三邊長分別設(shè)為為a,2a,2a,∵2a>2a>a,∴2a所對的角為最大角,設(shè)為θ,則根據(jù)余弦定理得考點:余弦定理及等比數(shù)列的定義.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)或.【解析】試題分析:直線與圓相切只需圓心到直線的距離等于圓的半徑,直線與曲線相交于兩點,且滿足,只需數(shù)量積為0,要聯(lián)立方程組設(shè)而不求,利用坐標關(guān)系及根與系數(shù)關(guān)系解題,這是解析幾何常用解題方法,第二步利用直線的斜率找出坐標滿足的要求,再利用兩直線與圓相切,求出點的坐標.試題解析:(1)解:設(shè),,,由和圓相切,得.∴.由消去,并整理得,∴,.由,得,即.∴.∴,∴,∴.∴.∴或(舍).當時,,故直線的方程為.(2)設(shè),,,則.∴.設(shè),由直線和圓相切,得,即.設(shè),同理可得:.故是方程的兩根,故.由得,故.同理,則,即.∴,解或.當時,;當時,.故或.18、(1);(2)4.【解析】
(1)利用三角形的面積公式求得,利用余弦定理求得.(2)利用余弦定理求得,由此求得,進而求得,利用同角三角函數(shù)的基本關(guān)系式求得.【詳解】(1)在中,由面積公式:在中,由余弦定理可得:(2)在中,由余弦定理可得:在中,由正弦定理可得:,為銳角.【點睛】本小題主要考查正弦定理、余弦定理解三角形,考查三角形面積公式,考查同角三角函數(shù)的基本關(guān)系式,屬于中檔題.19、(Ⅰ)見解析(Ⅱ)見解析(Ⅲ)見解析【解析】
運用數(shù)學(xué)歸納法證明即可得到結(jié)果化簡,運用累加法得出結(jié)果運用放縮法和累加法進行求證【詳解】(Ⅰ)數(shù)學(xué)歸納法證明時,①當時,成立;②當時,假設(shè)成立,則時所以時,成立綜上①②可知,時,(Ⅱ)由得所以;;故,又所以(Ⅲ)由累加法得:所以故【點睛】本題考查了數(shù)列的綜合,運用數(shù)學(xué)歸納法證明不等式的成立,結(jié)合已知條件進行化簡求出化簡后的結(jié)果,利用放縮法求出不等式,然后兩邊同時取對數(shù)再進行證明,本題較為困難。20、(1),;(2)【解析】
(1)利用代入法消去參數(shù)可得到直線的普通方程,利用公式可得到曲線的直角坐標方程;(2)設(shè)直線的參數(shù)方程為(為參數(shù)),代入得,根據(jù)直線參數(shù)方程的幾何意義,利用韋達定理可得結(jié)果.【詳解】(1)由題意得點的直角坐標為,將點代入得則直線的普通方程為.由得,即.故曲線的直角坐標方程為.(2)設(shè)直線的參數(shù)方程為(為參數(shù)),代入得.設(shè)對應(yīng)參數(shù)為,對應(yīng)參數(shù)為.則,,且..【點睛】參數(shù)方程主要通過代入法或者已知恒等式(如等三角恒等式)消去參數(shù)化為普通方程,通過選取相應(yīng)的參數(shù)可以把普通方程化為參數(shù)方程,利用關(guān)系式,等可以把極坐標方程與直角坐標方程互化,這類問題一般我們可以先把曲線方程化為直角坐標方程,用直角坐標方程解決相應(yīng)問題.21、(1)見解析;(2)【解析】
(1)根據(jù)面面垂直性質(zhì)及線面垂直性質(zhì),可證明;由所給線段關(guān)系,結(jié)合勾股定理逆定理,可證明,進而由線面垂直的判定定理證明平面.(2)建立空間直角坐標系,寫出各個點的坐標,并求得平面和平面的法向量,由空間向量法求得兩個平面夾角的余弦值,結(jié)合圖形即可求得二面角的大小.【詳解】(1)證明:∵平面平面ABEG,且,∴平面,∴,由題意可得,∴,∵,且,∴平面.(2)如圖所示,建立空間直角坐標系,則,,,,,,.設(shè)平面的法向量是,則,令,,由(1)可知平面的法向量是,∴,由圖可知,二面角為鈍二面角,所以二面角
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年岳麓版七年級科學(xué)上冊階段測試試卷
- 2025年上教版七年級科學(xué)上冊月考試卷
- 二零二五年計時工勞動報酬與福利協(xié)議3篇
- 2024版農(nóng)產(chǎn)品線上銷售合作伙伴合同版B版
- 二零二五年教育行業(yè)市場推廣與合作開發(fā)協(xié)議范本3篇
- 2025年新科版高三生物上冊月考試卷
- 二零二五年度生物多樣性保護項目勞動合同3篇
- 二零二五年度船舶買賣合同的海運規(guī)定與手續(xù)2篇
- 2025年蘇人新版選擇性必修3地理上冊月考試卷含答案
- 2025年度薪酬激勵策略薪酬體系保密協(xié)議正規(guī)范本2篇
- Starter Unit 2 同步練習(xí)人教版2024七年級英語上冊
- 分數(shù)的加法、減法、乘法和除法運算規(guī)律
- 合作學(xué)習(xí)構(gòu)建初中語文分層教學(xué)思考
- 成功九大理念
- 產(chǎn)品生產(chǎn)進度計劃匯總
- 【閱讀提升】部編版語文五年級下冊第八單元閱讀要素解析 類文閱讀課外閱讀過關(guān)(含答案)
- 平臺入駐方案
- 人教版化學(xué)選修一1.4《微生物和微量元素(微量元素與人體健康)》課件
- 小學(xué)科學(xué)試卷分析及改進措施
- 財務(wù)指標與財務(wù)管理
- 新課標下大單元整體教學(xué)的實踐與思考
評論
0/150
提交評論