2024屆浙江省寧波市咸祥中學(xué)數(shù)學(xué)高三上期末教學(xué)質(zhì)量檢測試題含解析_第1頁
2024屆浙江省寧波市咸祥中學(xué)數(shù)學(xué)高三上期末教學(xué)質(zhì)量檢測試題含解析_第2頁
2024屆浙江省寧波市咸祥中學(xué)數(shù)學(xué)高三上期末教學(xué)質(zhì)量檢測試題含解析_第3頁
2024屆浙江省寧波市咸祥中學(xué)數(shù)學(xué)高三上期末教學(xué)質(zhì)量檢測試題含解析_第4頁
2024屆浙江省寧波市咸祥中學(xué)數(shù)學(xué)高三上期末教學(xué)質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆浙江省寧波市咸祥中學(xué)數(shù)學(xué)高三上期末教學(xué)質(zhì)量檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),,且,則()A.3 B.3或7 C.5 D.5或82.已知函數(shù),若對任意,都有成立,則實數(shù)的取值范圍是()A. B. C. D.3.已知是雙曲線的左、右焦點,若點關(guān)于雙曲線漸近線的對稱點滿足(為坐標(biāo)原點),則雙曲線的漸近線方程為()A. B. C. D.4.已知橢圓,直線與直線相交于點,且點在橢圓內(nèi)恒成立,則橢圓的離心率取值范圍為()A. B. C. D.5.若的展開式中二項式系數(shù)和為256,則二項式展開式中有理項系數(shù)之和為()A.85 B.84 C.57 D.566.已知函數(shù),其圖象關(guān)于直線對稱,為了得到函數(shù)的圖象,只需將函數(shù)的圖象上的所有點()A.先向左平移個單位長度,再把所得各點橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)保持不變B.先向右平移個單位長度,再把所得各點橫坐標(biāo)縮短為原來的,縱坐標(biāo)保持不變C.先向右平移個單位長度,再把所得各點橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)保持不變D.先向左平移個單位長度,再把所得各點橫坐標(biāo)縮短為原來的,縱坐標(biāo)保持不變7.已知是函數(shù)的極大值點,則的取值范圍是A. B.C. D.8.已知△ABC中,.點P為BC邊上的動點,則的最小值為()A.2 B. C. D.9.已知直線:過雙曲線的一個焦點且與其中一條漸近線平行,則雙曲線的方程為()A. B. C. D.10.設(shè)、,數(shù)列滿足,,,則()A.對于任意,都存在實數(shù),使得恒成立B.對于任意,都存在實數(shù),使得恒成立C.對于任意,都存在實數(shù),使得恒成立D.對于任意,都存在實數(shù),使得恒成立11.已知某幾何體的三視圖如圖所示,其中正視圖與側(cè)視圖是全等的直角三角形,則該幾何體的各個面中,最大面的面積為()A.2 B.5 C. D.12.設(shè),,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,若,則______.14.已知平面向量,的夾角為,且,則=____15.已知函數(shù)在上單調(diào)遞增,則實數(shù)a值范圍為_________.16.若復(fù)數(shù)z滿足,其中i是虛數(shù)單位,則z的模是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,直線交曲線于兩點,為中點.(1)求曲線的直角坐標(biāo)方程和點的軌跡的極坐標(biāo)方程;(2)若,求的值.18.(12分)中國古建筑中的窗飾是藝術(shù)和技術(shù)的統(tǒng)一體,給人于美的享受.如圖(1)為一花窗;圖(2)所示是一扇窗中的一格,呈長方形,長30cm,寬26cm,其內(nèi)部窗芯(不含長方形邊框)用一種條形木料做成,由兩個菱形和六根支條構(gòu)成,整個窗芯關(guān)于長方形邊框的兩條對稱軸成軸對稱.設(shè)菱形的兩條對角線長分別為xcm和ycm,窗芯所需條形木料的長度之和為L.(1)試用x,y表示L;(2)如果要求六根支條的長度均不小于2cm,每個菱形的面積為130cm2,那么做這樣一個窗芯至少需要多長的條形木料(不計榫卯及其它損耗)?19.(12分)設(shè)拋物線過點.(1)求拋物線C的方程;(2)F是拋物線C的焦點,過焦點的直線與拋物線交于A,B兩點,若,求的值.20.(12分)已知△ABC三內(nèi)角A、B、C所對邊的長分別為a,b,c,且3sin2A+3sin2B=4sinAsinB+3sin2C.(1)求cosC的值;(2)若a=3,c,求△ABC的面積.21.(12分)已知矩陣,,若矩陣,求矩陣的逆矩陣.22.(10分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),),點.以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的直角坐標(biāo)方程,并指出其形狀;(2)曲線與曲線交于,兩點,若,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

根據(jù)函數(shù)的對稱軸以及函數(shù)值,可得結(jié)果.【詳解】函數(shù),若,則的圖象關(guān)于對稱,又,所以或,所以的值是7或3.故選:B.【點睛】本題考查的是三角函數(shù)的概念及性質(zhì)和函數(shù)的對稱性問題,屬基礎(chǔ)題2、D【解析】

先將所求問題轉(zhuǎn)化為對任意恒成立,即得圖象恒在函數(shù)圖象的上方,再利用數(shù)形結(jié)合即可解決.【詳解】由得,由題意函數(shù)得圖象恒在函數(shù)圖象的上方,作出函數(shù)的圖象如圖所示過原點作函數(shù)的切線,設(shè)切點為,則,解得,所以切線斜率為,所以,解得.故選:D.【點睛】本題考查導(dǎo)數(shù)在不等式恒成立中的應(yīng)用,考查了學(xué)生轉(zhuǎn)化與化歸思想以及數(shù)形結(jié)合的思想,是一道中檔題.3、B【解析】

先利用對稱得,根據(jù)可得,由幾何性質(zhì)可得,即,從而解得漸近線方程.【詳解】如圖所示:由對稱性可得:為的中點,且,所以,因為,所以,故而由幾何性質(zhì)可得,即,故漸近線方程為,故選B.【點睛】本題考查了點關(guān)于直線對稱點的知識,考查了雙曲線漸近線方程,由題意得出是解題的關(guān)鍵,屬于中檔題.4、A【解析】

先求得橢圓焦點坐標(biāo),判斷出直線過橢圓的焦點.然后判斷出,判斷出點的軌跡方程,根據(jù)恒在橢圓內(nèi)列不等式,化簡后求得離心率的取值范圍.【詳解】設(shè)是橢圓的焦點,所以.直線過點,直線過點,由于,所以,所以點的軌跡是以為直徑的圓.由于點在橢圓內(nèi)恒成立,所以橢圓的短軸大于,即,所以,所以雙曲線的離心率,所以.故選:A【點睛】本小題主要考查直線與直線的位置關(guān)系,考查動點軌跡的判斷,考查橢圓離心率的取值范圍的求法,屬于中檔題.5、A【解析】

先求,再確定展開式中的有理項,最后求系數(shù)之和.【詳解】解:的展開式中二項式系數(shù)和為256故,要求展開式中的有理項,則則二項式展開式中有理項系數(shù)之和為:故選:A【點睛】考查二項式的二項式系數(shù)及展開式中有理項系數(shù)的確定,基礎(chǔ)題.6、D【解析】

由函數(shù)的圖象關(guān)于直線對稱,得,進而得再利用圖像變換求解即可【詳解】由函數(shù)的圖象關(guān)于直線對稱,得,即,解得,所以,,故只需將函數(shù)的圖象上的所有點“先向左平移個單位長度,得再將橫坐標(biāo)縮短為原來的,縱坐標(biāo)保持不變,得”即可.故選:D【點睛】本題考查三角函數(shù)的圖象與性質(zhì),考查圖像變換,考查運算求解能力,是中檔題7、B【解析】

方法一:令,則,,當(dāng),時,,單調(diào)遞減,∴時,,,且,∴,即在上單調(diào)遞增,時,,,且,∴,即在上單調(diào)遞減,∴是函數(shù)的極大值點,∴滿足題意;當(dāng)時,存在使得,即,又在上單調(diào)遞減,∴時,,所以,這與是函數(shù)的極大值點矛盾.綜上,.故選B.方法二:依據(jù)極值的定義,要使是函數(shù)的極大值點,須在的左側(cè)附近,,即;在的右側(cè)附近,,即.易知,時,與相切于原點,所以根據(jù)與的圖象關(guān)系,可得,故選B.8、D【解析】

以BC的中點為坐標(biāo)原點,建立直角坐標(biāo)系,可得,設(shè),運用向量的坐標(biāo)表示,求得點A的軌跡,進而得到關(guān)于a的二次函數(shù),可得最小值.【詳解】以BC的中點為坐標(biāo)原點,建立如圖的直角坐標(biāo)系,可得,設(shè),由,可得,即,則,當(dāng)時,的最小值為.故選D.【點睛】本題考查向量數(shù)量積的坐標(biāo)表示,考查轉(zhuǎn)化思想和二次函數(shù)的值域解法,考查運算能力,屬于中檔題.9、A【解析】

根據(jù)直線:過雙曲線的一個焦點,得,又和其中一條漸近線平行,得到,再求雙曲線方程.【詳解】因為直線:過雙曲線的一個焦點,所以,所以,又和其中一條漸近線平行,所以,所以,,所以雙曲線方程為.故選:A.【點睛】本題主要考查雙曲線的幾何性質(zhì),還考查了運算求解的能力,屬于基礎(chǔ)題.10、D【解析】

取,可排除AB;由蛛網(wǎng)圖可得數(shù)列的單調(diào)情況,進而得到要使,只需,由此可得到答案.【詳解】取,,數(shù)列恒單調(diào)遞增,且不存在最大值,故排除AB選項;由蛛網(wǎng)圖可知,存在兩個不動點,且,,因為當(dāng)時,數(shù)列單調(diào)遞增,則;當(dāng)時,數(shù)列單調(diào)遞減,則;所以要使,只需要,故,化簡得且.故選:D.【點睛】本題考查遞推數(shù)列的綜合運用,考查邏輯推理能力,屬于難題.11、D【解析】

根據(jù)三視圖還原出幾何體,找到最大面,再求面積.【詳解】由三視圖可知,該幾何體是一個三棱錐,如圖所示,將其放在一個長方體中,并記為三棱錐.,,,故最大面的面積為.選D.【點睛】本題主要考查三視圖的識別,復(fù)雜的三視圖還原為幾何體時,一般借助長方體來實現(xiàn).12、A【解析】

先利用換底公式將對數(shù)都化為以2為底,利用對數(shù)函數(shù)單調(diào)性可比較,再由中間值1可得三者的大小關(guān)系.【詳解】,,,因此,故選:A.【點睛】本題主要考查了利用對數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性比較大小,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

根據(jù)向量加法和減法的坐標(biāo)運算,先分別求得與,再結(jié)合向量的模長公式即可求得的值.【詳解】向量,則,則因為即,化簡可得解得故答案為:【點睛】本題考查了向量坐標(biāo)加法和減法的運算,向量模長的求法,屬于基礎(chǔ)題.14、1【解析】

根據(jù)平面向量模的定義先由坐標(biāo)求得,再根據(jù)平面向量數(shù)量積定義求得;將化簡并代入即可求得.【詳解】,則,平面向量,的夾角為,則由平面向量數(shù)量積定義可得,根據(jù)平面向量模的求法可知,代入可得,解得,故答案為:1.【點睛】本題考查了平面向量模的求法及簡單應(yīng)用,平面向量數(shù)量積的定義及運算,屬于基礎(chǔ)題.15、【解析】

由在上恒成立可求解.【詳解】,令,∵,∴,又,,從而,令,問題等價于在時恒成立,∴,解得.故答案為:.【點睛】本題考查函數(shù)的單調(diào)性,解題關(guān)鍵是問題轉(zhuǎn)化為恒成立,利用換元法和二次函數(shù)的性質(zhì)易求解.16、【解析】

先求得復(fù)數(shù),再由復(fù)數(shù)模的計算公式即得.【詳解】,,則.故答案為:【點睛】本題考查復(fù)數(shù)的四則運算和求復(fù)數(shù)的模,是基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2)或【解析】

(1)根據(jù)曲線的參數(shù)方程消去參數(shù),可得曲線的直角坐標(biāo)方程,再由,,可得點的軌跡的極坐標(biāo)方程;(2)將曲線極坐標(biāo)方程求,與直線極坐標(biāo)方程聯(lián)立,消去,得到關(guān)于的二次方程,由的幾何意義可求出,而(1)可知,然后列方程可求出的值.【詳解】(1)曲線的直角坐標(biāo)方程為,圓的圓心為,設(shè),所以,則由,即為點軌跡的極坐標(biāo)方程.(2)曲線的極坐標(biāo)方程為,將與曲線的極坐標(biāo)方程聯(lián)立得,,設(shè),所以,,由,即,令,上述方程可化為,解得.由,所以,即或.【點睛】此題考查參數(shù)方程與普通方程的互化,極坐標(biāo)方程與直角坐標(biāo)方程的互化,利用極坐標(biāo)求點的軌跡方程,考查運算求解能力,考查數(shù)形結(jié)合思想,屬于中檔題.18、(1)(2)【解析】試題分析:(1)由條件可先求水平方向每根支條長,豎直方向每根支條長為,因此所需木料的長度之和L=(2)先確定范圍由可得,再由面積為130cm2,得,轉(zhuǎn)化為一元函數(shù),令,則在上為增函數(shù),解得L有最小值.試題解析:(1)由題意,水平方向每根支條長為cm,豎直方向每根支條長為cm,菱形的邊長為cm.從而,所需木料的長度之和L=cm.(2)由題意,,即,又由可得.所以.令,其導(dǎo)函數(shù)在上恒成立,故在上單調(diào)遞減,所以可得.則=.因為函數(shù)和在上均為增函數(shù),所以在上為增函數(shù),故當(dāng),即時L有最小值.答:做這樣一個窗芯至少需要cm長的條形木料.考點:函數(shù)應(yīng)用題19、(1)(2)【解析】

(1)代入計算即可.(2)設(shè)直線AB的方程為,再聯(lián)立直線與拋物線的方程,消去可得的一元二次方程,再根據(jù)韋達(dá)定理與求解,進而利用弦長公式求解即可.【詳解】解:(1)因為拋物線過點,所以,所以,拋物線的方程為(2)由題意知直線AB的斜率存在,可設(shè)直線AB的方程為,,.因為,所以,聯(lián)立,化簡得,所以,,所以,,解得,所以.【點睛】本題考查拋物線的方程以及聯(lián)立直線與拋物線求弦長的簡單應(yīng)用.屬于基礎(chǔ)題.20、(1);(2)或.【解析】

(1)利用正弦定理對已知代數(shù)式化簡,根據(jù)余弦定理求解余弦值;(2)根據(jù)余弦定理求出b=1或b=3,結(jié)合面積公式求解.【詳解】(1)已知等式3sin2A+3sin2B=4sinAsinB+3sin2C,利用正弦定理化簡得:3a2+3b2﹣3c2=4ab,即a2+b2﹣c2ab,∴cosC;(2)把a=3,c,代入3a2+3b2﹣3c2=4ab得:b=1或b=3,∵cosC,C為三角形內(nèi)角,∴sinC,∴S△ABCabsinC3×bb,則△ABC的面積為或.【點睛】此題考查利用正余弦定理求解三角形,關(guān)鍵在于熟練掌握正弦定理進行邊角互化,利用余弦定理求解邊長,根據(jù)面積公式求解面積.21、.【解析】試題分析:,所以.試題解析:B.因為,所以.22、(1),以為圓心,為半徑的圓;(2)【解析】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論