云南省墨江第二中學2024屆高三第二次調研考試數(shù)學試題試卷_第1頁
云南省墨江第二中學2024屆高三第二次調研考試數(shù)學試題試卷_第2頁
云南省墨江第二中學2024屆高三第二次調研考試數(shù)學試題試卷_第3頁
云南省墨江第二中學2024屆高三第二次調研考試數(shù)學試題試卷_第4頁
云南省墨江第二中學2024屆高三第二次調研考試數(shù)學試題試卷_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

云南省墨江第二中學2024屆高三第二次調研考試數(shù)學試題試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在平面直角坐標系中,若不等式組所表示的平面區(qū)域內存在點,使不等式成立,則實數(shù)的取值范圍為()A. B. C. D.2.定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),當x∈[﹣3,﹣2]時,f(x)=﹣x﹣2,則()A. B.f(sin3)<f(cos3)C. D.f(2020)>f(2019)3.點是單位圓上不同的三點,線段與線段交于圓內一點M,若,則的最小值為()A. B. C. D.4.已知數(shù)列滿足:,則()A.16 B.25 C.28 D.335.若非零實數(shù)、滿足,則下列式子一定正確的是()A. B.C. D.6.如圖,網(wǎng)格紙是由邊長為1的小正方形構成,若粗實線畫出的是某幾何體的三視圖,則該幾何體的表面積為()A. B. C. D.7.的展開式中,項的系數(shù)為()A.-23 B.17 C.20 D.638.劉徽是我國魏晉時期偉大的數(shù)學家,他在《九章算術》中對勾股定理的證明如圖所示.“勾自乘為朱方,股自乘為青方,令出入相補,各從其類,因就其余不移動也.合成弦方之冪,開方除之,即弦也”.已知圖中網(wǎng)格紙上小正方形的邊長為1,其中“正方形為朱方,正方形為青方”,則在五邊形內隨機取一個點,此點取自朱方的概率為()A. B. C. D.9.已知函數(shù)的圖象如圖所示,則可以為()A. B. C. D.10.已知函數(shù),關于的方程R)有四個相異的實數(shù)根,則的取值范圍是(

)A. B. C. D.11.若,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件12.設,,是非零向量.若,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.不等式的解集為________14.甲,乙兩隊參加關于“一帶一路”知識競賽,甲隊有編號為1,2,3的三名運動員,乙隊有編號為1,2,3,4的四名運動員,若兩隊各出一名隊員進行比賽,則出場的兩名運動員編號相同的概率為______.15.集合,,則_____.16.點是曲線()圖象上的一個定點,過點的切線方程為,則實數(shù)k的值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在如圖所示的幾何體中,面CDEF為正方形,平面ABCD為等腰梯形,AB//CD,AB=2BC,點Q為AE的中點.(1)求證:AC//平面DQF;(2)若∠ABC=60°,AC⊥FB,求BC與平面DQF所成角的正弦值.18.(12分)在最新公布的湖南新高考方案中,“”模式要求學生在語數(shù)外3門全國統(tǒng)考科目之外,在歷史和物理2門科目中必選且只選1門,再從化學、生物、地理、政治4門科目中任選2門,后三科的高考成績按新的規(guī)則轉換后計入高考總分.相應地,高校在招生時可對特定專業(yè)設置具體的選修科目要求.雙超中學高一年級有學生1200人,現(xiàn)從中隨機抽取40人進行選科情況調查,用數(shù)字1~6分別依次代表歷史、物理、化學、生物、地理、政治6科,得到如下的統(tǒng)計表:序號選科情況序號選科情況序號選科情況序號選科情況11341123621156312352235122342223532236323513145232453323541451413524235341355156152362525635156624516236261563623672561715627134371568235182362823538134923519145292463923510236202353015640245(1)雙超中學規(guī)定:每個選修班最多編排50人且盡量滿額編班,每位老師執(zhí)教2個選修班(當且僅當一門科目的選課班級總數(shù)為奇數(shù)時,允許這門科目的1位老師只教1個班).已知雙超中學高一年級現(xiàn)有化學、生物科目教師每科各8人,用樣本估計總體,則化學、生物兩科的教師人數(shù)是否需要調整?如果需要調整,各需增加或減少多少人?(2)請創(chuàng)建列聯(lián)表,運用獨立性檢驗的知識進行分析,探究是否有的把握判斷學生“選擇化學科目”與“選擇物理科目”有關.附:0.1000.0500.0100.0012.7063.8416.63510.828(3)某高校在其熱門人文專業(yè)的招生簡章中明確要求,僅允許選修了歷史科目,且在政治和地理2門中至少選修了1門的考生報名.現(xiàn)從雙超中學高一新生中隨機抽取3人,設具備高校專業(yè)報名資格的人數(shù)為,用樣本的頻率估計概率,求的分布列與期望.19.(12分)在三棱柱中,四邊形是菱形,,,,,點M、N分別是、的中點,且.(1)求證:平面平面;(2)求四棱錐的體積.20.(12分)設函數(shù),,其中,為正實數(shù).(1)若的圖象總在函數(shù)的圖象的下方,求實數(shù)的取值范圍;(2)設,證明:對任意,都有.21.(12分)已知函數(shù),(Ⅰ)當時,證明;(Ⅱ)已知點,點,設函數(shù),當時,試判斷的零點個數(shù).22.(10分)新高考,取消文理科,實行“”,成績由語文、數(shù)學、外語統(tǒng)一高考成績和自主選考的3門普通高中學業(yè)水平考試等級性考試科目成績構成.為了解各年齡層對新高考的了解情況,隨機調查50人(把年齡在稱為中青年,年齡在稱為中老年),并把調查結果制成下表:年齡(歲)頻數(shù)515101055了解4126521(1)分別估計中青年和中老年對新高考了解的概率;(2)請根據(jù)上表完成下面列聯(lián)表,是否有95%的把握判斷對新高考的了解與年齡(中青年、中老年)有關?了解新高考不了解新高考總計中青年中老年總計附:.0.0500.0100.0013.8416.63510.828(3)若從年齡在的被調查者中隨機選取3人進行調查,記選中的3人中了解新高考的人數(shù)為,求的分布列以及.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解題分析】

依據(jù)線性約束條件畫出可行域,目標函數(shù)恒過,再分別討論的正負進一步確定目標函數(shù)與可行域的基本關系,即可求解【題目詳解】作出不等式對應的平面區(qū)域,如圖所示:其中,直線過定點,當時,不等式表示直線及其左邊的區(qū)域,不滿足題意;當時,直線的斜率,不等式表示直線下方的區(qū)域,不滿足題意;當時,直線的斜率,不等式表示直線上方的區(qū)域,要使不等式組所表示的平面區(qū)域內存在點,使不等式成立,只需直線的斜率,解得.綜上可得實數(shù)的取值范圍為,故選:B.【題目點撥】本題考查由目標函數(shù)有解求解參數(shù)取值范圍問題,分類討論與數(shù)形結合思想,屬于中檔題2、B【解題分析】

根據(jù)函數(shù)的周期性以及x∈[﹣3,﹣2]的解析式,可作出函數(shù)f(x)在定義域上的圖象,由此結合選項判斷即可.【題目詳解】由f(x+2)=f(x),得f(x)是周期函數(shù)且周期為2,先作出f(x)在x∈[﹣3,﹣2]時的圖象,然后根據(jù)周期為2依次平移,并結合f(x)是偶函數(shù)作出f(x)在R上的圖象如下,選項A,,所以,選項A錯誤;選項B,因為,所以,所以f(sin3)<f(﹣cos3),即f(sin3)<f(cos3),選項B正確;選項C,,所以,即,選項C錯誤;選項D,,選項D錯誤.故選:B.【題目點撥】本題考查函數(shù)性質的綜合運用,考查函數(shù)值的大小比較,考查數(shù)形結合思想,屬于中檔題.3、D【解題分析】

由題意得,再利用基本不等式即可求解.【題目詳解】將平方得,(當且僅當時等號成立),,的最小值為,故選:D.【題目點撥】本題主要考查平面向量數(shù)量積的應用,考查基本不等式的應用,屬于中檔題.4、C【解題分析】

依次遞推求出得解.【題目詳解】n=1時,,n=2時,,n=3時,,n=4時,,n=5時,.故選:C【題目點撥】本題主要考查遞推公式的應用,意在考查學生對這些知識的理解掌握水平.5、C【解題分析】

令,則,,將指數(shù)式化成對數(shù)式得、后,然后取絕對值作差比較可得.【題目詳解】令,則,,,,,因此,.故選:C.【題目點撥】本題考查了利用作差法比較大小,同時也考查了指數(shù)式與對數(shù)式的轉化,考查推理能力,屬于中等題.6、C【解題分析】

根據(jù)三視圖還原為幾何體,結合組合體的結構特征求解表面積.【題目詳解】由三視圖可知,該幾何體可看作是半個圓柱和一個長方體的組合體,其中半圓柱的底面半圓半徑為1,高為4,長方體的底面四邊形相鄰邊長分別為1,2,高為4,所以該幾何體的表面積,故選C.【題目點撥】本題主要考查三視圖的識別,利用三視圖還原成幾何體是求解關鍵,側重考查直觀想象和數(shù)學運算的核心素養(yǎng).7、B【解題分析】

根據(jù)二項式展開式的通項公式,結合乘法分配律,求得的系數(shù).【題目詳解】的展開式的通項公式為.則①出,則出,該項為:;②出,則出,該項為:;③出,則出,該項為:;綜上所述:合并后的項的系數(shù)為17.故選:B【題目點撥】本小題考查二項式定理及展開式系數(shù)的求解方法等基礎知識,考查理解能力,計算能力,分類討論和應用意識.8、C【解題分析】

首先明確這是一個幾何概型面積類型,然后求得總事件的面積和所研究事件的面積,代入概率公式求解.【題目詳解】因為正方形為朱方,其面積為9,五邊形的面積為,所以此點取自朱方的概率為.故選:C【題目點撥】本題主要考查了幾何概型的概率求法,還考查了數(shù)形結合的思想和運算求解的能力,屬于基礎題.9、A【解題分析】

根據(jù)圖象可知,函數(shù)為奇函數(shù),以及函數(shù)在上單調遞增,且有一個零點,即可對選項逐個驗證即可得出.【題目詳解】首先對4個選項進行奇偶性判斷,可知,為偶函數(shù),不符合題意,排除B;其次,在剩下的3個選項,對其在上的零點個數(shù)進行判斷,在上無零點,不符合題意,排除D;然后,對剩下的2個選項,進行單調性判斷,在上單調遞減,不符合題意,排除C.故選:A.【題目點撥】本題主要考查圖象的識別和函數(shù)性質的判斷,意在考查學生的直觀想象能力和邏輯推理能力,屬于容易題.10、A【解題分析】=,當時時,單調遞減,時,單調遞增,且當,當,

當時,恒成立,時,單調遞增且,方程R)有四個相異的實數(shù)根.令=則,,即.11、A【解題分析】

本題根據(jù)基本不等式,結合選項,判斷得出充分性成立,利用“特殊值法”,通過特取的值,推出矛盾,確定必要性不成立.題目有一定難度,注重重要知識、基礎知識、邏輯推理能力的考查.【題目詳解】當時,,則當時,有,解得,充分性成立;當時,滿足,但此時,必要性不成立,綜上所述,“”是“”的充分不必要條件.【題目點撥】易出現(xiàn)的錯誤有,一是基本不等式掌握不熟,導致判斷失誤;二是不能靈活的應用“賦值法”,通過特取的值,從假設情況下推出合理結果或矛盾結果.12、D【解題分析】試題分析:由題意得:若,則;若,則由可知,,故也成立,故選D.考點:平面向量數(shù)量積.【思路點睛】幾何圖形中向量的數(shù)量積問題是近幾年高考的又一熱點,作為一類既能考查向量的線性運算、坐標運算、數(shù)量積及平面幾何知識,又能考查學生的數(shù)形結合能力及轉化與化歸能力的問題,實有其合理之處.解決此類問題的常用方法是:①利用已知條件,結合平面幾何知識及向量數(shù)量積的基本概念直接求解(較易);②將條件通過向量的線性運算進行轉化,再利用①求解(較難);③建系,借助向量的坐標運算,此法對解含垂直關系的問題往往有很好效果.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

通過平方,將無理不等式化為有理不等式求解即可?!绢}目詳解】由得,解得,所以解集是?!绢}目點撥】本題主要考查無理不等式的解法。14、【解題分析】

出場運動員編號相同的事件顯然有3種,計算出總的基本事件數(shù),由古典概型概率計算公式求得答案.【題目詳解】甲隊有編號為1,2,3的三名運動員,乙隊有編號為1,2,3,4的四名運動員,出場的兩名運動員編號相同的事件數(shù)為3,出現(xiàn)的基本事件總數(shù),則出場的兩名運動員編號相同的概率為.故答案為:【題目點撥】本題考查求古典概率的概率問題,屬于基礎題.15、【解題分析】

分析出集合A為奇數(shù)構成的集合,即可求得交集.【題目詳解】因為表示為奇數(shù),故.故答案為:【題目點撥】此題考查求集合的交集,根據(jù)已知集合求解,屬于簡單題.16、1【解題分析】

求出導函數(shù),由切線斜率為4即導數(shù)為4求出切點橫坐標,再由切線方程得縱坐標后可求得.【題目詳解】設,由題意,∴,,,即,∴,.故答案為:1.【題目點撥】本題考查導數(shù)的幾何意義,函數(shù)圖象某點處的切線的斜率就是該點處導數(shù)值.本題屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解題分析】

(1)連接交于點,連接,通過證明,證得平面.(2)建立空間直角坐標系,利用直線的方向向量和平面的法向量,計算出線面角的正弦值.【題目詳解】(1)證明:連接交于點,連接,因為四邊形為正方形,所以點為的中點,又因為為的中點,所以;平面平面,平面.(2)解:,設,則,在中,,由余弦定理得:,.又,平面..平面.如圖建立的空間直角坐標系.在等腰梯形中,可得.則.那么設平面的法向量為,則有,即,取,得.設與平面所成的角為,則.所以與平面所成角的正弦值為.【題目點撥】本小題主要考查線面平行的證明,考查線面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.18、(1)不需調整(2)列聯(lián)表見解析;有的把握判斷學生“選擇化學科目”與“選擇物理科目”有關(3)詳見解析【解題分析】

(1)可估計高一年級選修相應科目的人數(shù)分別為120,2,推理得對應開設選修班的數(shù)目分別為15,1.推理知生物科目需要減少4名教師,化學科目不需要調整.(2)根據(jù)列聯(lián)表計算觀測值,根據(jù)臨界值表可得結論.(3)經(jīng)統(tǒng)計,樣本中選修了歷史科目且在政治和地理2門中至少選修了一門的人數(shù)為12,頻率為.用頻率估計概率,則,根據(jù)二項分布概率公式可得分布列和數(shù)學期望.【題目詳解】(1)經(jīng)統(tǒng)計可知,樣本40人中,選修化學、生物的人數(shù)分別為24,11,則可估計高一年級選修相應科目的人數(shù)分別為120,2.根據(jù)每個選修班最多編排50人,且盡量滿額編班,得對應開設選修班的數(shù)目分別為15,1.現(xiàn)有化學、生物科目教師每科各8人,根據(jù)每位教師執(zhí)教2個選修班,當且僅當一門科目的選課班級總數(shù)為奇數(shù)時,允許這門科目的一位教師執(zhí)教一個班的條件,知生物科目需要減少4名教師,化學科目不需要調整.(2)根據(jù)表格中的數(shù)據(jù)進行統(tǒng)計后,制作列聯(lián)表如下:選物理不選物理合計選化學19524不選化學61016合計251540則,有的把握判斷學生”選擇化學科目”與“選擇物理科目”有關.(3)經(jīng)統(tǒng)計,樣本中選修了歷史科目且在政治和地理2門中至少選修了一門的人數(shù)為12,頻率為.用頻率估計概率,則,分布列如下:01230.3430.4410.1890.021數(shù)學期望為.【題目點撥】本題主要考查了離散型隨機變量的期望與方差,考查獨立性檢驗,意在考查學生對這些知識的理解掌握水平和分析推理能力.19、(1)證明見解析;(2).【解題分析】

(1)要證面面垂直需要先證明線面垂直,即證明出平面即可;(2)求出點A到平面的距離,然后根據(jù)棱錐的體積公式即可求出四棱錐的體積.【題目詳解】(1)連接,由是平行四邊形及N是的中點,得N也是的中點,因為點M是的中點,所以,因為,所以,又,,所以平面,又平面,所以平面平面;(2)過A作交于點O,因為平面平面,平面平面,所以平面,由是菱形及,得為三角形,則,由平面,得,從而側面為矩形,所以.【題目點撥】本題主要考查了面面垂直的證明,求四棱錐的體積,屬于一般題.20、(1)(2)證明見解析【解題分析】

(1)據(jù)題意可得在區(qū)間上恒成立,利用導數(shù)討論函數(shù)的單調性,從而求出滿足不等式的的取值范圍;(2)不等式整理為,由(1)可知當時,,利用導數(shù)判斷函數(shù)的單調性從而證明在區(qū)間上成立,從而證明對任意,都有.【題目詳解】(1)解:因為函數(shù)的圖象恒在的圖象的下方,所以在區(qū)間上恒成立.設,其中,所以,其中,.①當,即時,,所以函數(shù)在上單調遞增,,故成立,滿足題意.②當,即時,設,則圖象的對稱軸,,,所以在上存在唯一實根,設為,則,,,所以在上單調遞減,此時,不合題意.綜上可得,實數(shù)的取值范圍是.(2)證明:由題意得,因為當時,,,所以.令,則,所以在上單調遞增,,即,所以,從而.由(1)知當時,在上恒成立,整理得.令,則要證,只需證.因

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論