版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
四川省廣元天立國(guó)際學(xué)校2024屆高三保溫練習(xí)(一)數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.2019年10月17日是我國(guó)第6個(gè)“扶貧日”,某醫(yī)院開(kāi)展扶貧日“送醫(yī)下鄉(xiāng)”醫(yī)療義診活動(dòng),現(xiàn)有五名醫(yī)生被分配到四所不同的鄉(xiāng)鎮(zhèn)醫(yī)院中,醫(yī)生甲被指定分配到醫(yī)院,醫(yī)生乙只能分配到醫(yī)院或醫(yī)院,醫(yī)生丙不能分配到醫(yī)生甲、乙所在的醫(yī)院,其他兩名醫(yī)生分配到哪所醫(yī)院都可以,若每所醫(yī)院至少分配一名醫(yī)生,則不同的分配方案共有()A.18種 B.20種 C.22種 D.24種2.已知集合,則全集則下列結(jié)論正確的是()A. B. C. D.3.已知函數(shù)是奇函數(shù),且,若對(duì),恒成立,則的取值范圍是()A. B. C. D.4.A. B. C. D.5.在條件下,目標(biāo)函數(shù)的最大值為40,則的最小值是()A. B. C. D.26.給出個(gè)數(shù),,,,,,其規(guī)律是:第個(gè)數(shù)是,第個(gè)數(shù)比第個(gè)數(shù)大,第個(gè)數(shù)比第個(gè)數(shù)大,第個(gè)數(shù)比第個(gè)數(shù)大,以此類推,要計(jì)算這個(gè)數(shù)的和.現(xiàn)已給出了該問(wèn)題算法的程序框圖如圖,請(qǐng)?jiān)趫D中判斷框中的①處和執(zhí)行框中的②處填上合適的語(yǔ)句,使之能完成該題算法功能()A.; B.;C.; D.;7.過(guò)橢圓的左焦點(diǎn)的直線過(guò)的上頂點(diǎn),且與橢圓相交于另一點(diǎn),點(diǎn)在軸上的射影為,若,是坐標(biāo)原點(diǎn),則橢圓的離心率為()A. B. C. D.8.已知為拋物線的準(zhǔn)線,拋物線上的點(diǎn)到的距離為,點(diǎn)的坐標(biāo)為,則的最小值是()A. B.4 C.2 D.9.已知斜率為2的直線l過(guò)拋物線C:的焦點(diǎn)F,且與拋物線交于A,B兩點(diǎn),若線段AB的中點(diǎn)M的縱坐標(biāo)為1,則p=()A.1 B. C.2 D.410.當(dāng)時(shí),函數(shù)的圖象大致是()A. B.C. D.11.空間點(diǎn)到平面的距離定義如下:過(guò)空間一點(diǎn)作平面的垂線,這個(gè)點(diǎn)和垂足之間的距離叫做這個(gè)點(diǎn)到這個(gè)平面的距離.已知平面,,兩兩互相垂直,點(diǎn),點(diǎn)到,的距離都是3,點(diǎn)是上的動(dòng)點(diǎn),滿足到的距離與到點(diǎn)的距離相等,則點(diǎn)的軌跡上的點(diǎn)到的距離的最小值是()A. B.3 C. D.12.已知是平面內(nèi)互不相等的兩個(gè)非零向量,且與的夾角為,則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,點(diǎn)是直線:上位于第一象限內(nèi)的一點(diǎn).已知以為直徑的圓被直線所截得的弦長(zhǎng)為,則點(diǎn)的坐標(biāo)__________.14.已知向量滿足,,則______________.15.已知多項(xiàng)式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,則a4=________,a5=________.16.已知是函數(shù)的極大值點(diǎn),則的取值范圍是____________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),將曲線經(jīng)過(guò)伸縮變換后得到曲線.在以原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.(1)說(shuō)明曲線是哪一種曲線,并將曲線的方程化為極坐標(biāo)方程;(2)已知點(diǎn)是曲線上的任意一點(diǎn),又直線上有兩點(diǎn)和,且,又點(diǎn)的極角為,點(diǎn)的極角為銳角.求:①點(diǎn)的極角;②面積的取值范圍.18.(12分)如圖,在四面體中,.(1)求證:平面平面;(2)若,二面角為,求異面直線與所成角的余弦值.19.(12分)如圖,在三棱柱中,平面ABC.(1)證明:平面平面(2)求二面角的余弦值.20.(12分)已知點(diǎn)為圓:上的動(dòng)點(diǎn),為坐標(biāo)原點(diǎn),過(guò)作直線的垂線(當(dāng)、重合時(shí),直線約定為軸),垂足為,以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.(1)求點(diǎn)的軌跡的極坐標(biāo)方程;(2)直線的極坐標(biāo)方程為,連接并延長(zhǎng)交于,求的最大值.21.(12分)已知函數(shù)(,為自然對(duì)數(shù)的底數(shù)),.(1)若有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;(2)當(dāng)時(shí),對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍.22.(10分)如圖所示,在四面體中,,平面平面,,且.(1)證明:平面;(2)設(shè)為棱的中點(diǎn),當(dāng)四面體的體積取得最大值時(shí),求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解題分析】
分兩類:一類是醫(yī)院A只分配1人,另一類是醫(yī)院A分配2人,分別計(jì)算出兩類的分配種數(shù),再由加法原理即可得到答案.【題目詳解】根據(jù)醫(yī)院A的情況分兩類:第一類:若醫(yī)院A只分配1人,則乙必在醫(yī)院B,當(dāng)醫(yī)院B只有1人,則共有種不同分配方案,當(dāng)醫(yī)院B有2人,則共有種不同分配方案,所以當(dāng)醫(yī)院A只分配1人時(shí),共有種不同分配方案;第二類:若醫(yī)院A分配2人,當(dāng)乙在醫(yī)院A時(shí),共有種不同分配方案,當(dāng)乙不在A醫(yī)院,在B醫(yī)院時(shí),共有種不同分配方案,所以當(dāng)醫(yī)院A分配2人時(shí),共有種不同分配方案;共有20種不同分配方案.故選:B【題目點(diǎn)撥】本題考查排列與組合的綜合應(yīng)用,在做此類題時(shí),要做到分類不重不漏,考查學(xué)生分類討論的思想,是一道中檔題.2、D【解題分析】
化簡(jiǎn)集合,根據(jù)對(duì)數(shù)函數(shù)的性質(zhì),化簡(jiǎn)集合,按照集合交集、并集、補(bǔ)集定義,逐項(xiàng)判斷,即可求出結(jié)論.【題目詳解】由,則,故,由知,,因此,,,,故選:D【題目點(diǎn)撥】本題考查集合運(yùn)算以及集合間的關(guān)系,求解不等式是解題的關(guān)鍵,屬于基礎(chǔ)題.3、A【解題分析】
先根據(jù)函數(shù)奇偶性求得,利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性,利用函數(shù)單調(diào)性求解不等式即可.【題目詳解】因?yàn)楹瘮?shù)是奇函數(shù),所以函數(shù)是偶函數(shù).,即,又,所以,.函數(shù)的定義域?yàn)?,所以,則函數(shù)在上為單調(diào)遞增函數(shù).又在上,,所以為偶函數(shù),且在上單調(diào)遞增.由,可得,對(duì)恒成立,則,對(duì)恒成立,,得,所以的取值范圍是.故選:A.【題目點(diǎn)撥】本題考查利用函數(shù)單調(diào)性求解不等式,根據(jù)方程組法求函數(shù)解析式,利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性,屬壓軸題.4、A【解題分析】
直接利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)得答案.【題目詳解】本題正確選項(xiàng):【題目點(diǎn)撥】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,是基礎(chǔ)的計(jì)算題.5、B【解題分析】
畫(huà)出可行域和目標(biāo)函數(shù),根據(jù)平移得到最值點(diǎn),再利用均值不等式得到答案.【題目詳解】如圖所示,畫(huà)出可行域和目標(biāo)函數(shù),根據(jù)圖像知:當(dāng)時(shí),有最大值為,即,故..當(dāng),即時(shí)等號(hào)成立.故選:.【題目點(diǎn)撥】本題考查了線性規(guī)劃中根據(jù)最值求參數(shù),均值不等式,意在考查學(xué)生的綜合應(yīng)用能力.6、A【解題分析】
要計(jì)算這個(gè)數(shù)的和,這就需要循環(huán)50次,這樣可以確定判斷語(yǔ)句①,根據(jù)累加最的變化規(guī)律可以確定語(yǔ)句②.【題目詳解】因?yàn)橛?jì)算這個(gè)數(shù)的和,循環(huán)變量的初值為1,所以步長(zhǎng)應(yīng)該為1,故判斷語(yǔ)句①應(yīng)為,第個(gè)數(shù)是,第個(gè)數(shù)比第個(gè)數(shù)大,第個(gè)數(shù)比第個(gè)數(shù)大,第個(gè)數(shù)比第個(gè)數(shù)大,這樣可以確定語(yǔ)句②為,故本題選A.【題目點(diǎn)撥】本題考查了補(bǔ)充循環(huán)結(jié)構(gòu),正確讀懂題意是解本題的關(guān)鍵.7、D【解題分析】
求得點(diǎn)的坐標(biāo),由,得出,利用向量的坐標(biāo)運(yùn)算得出點(diǎn)的坐標(biāo),代入橢圓的方程,可得出關(guān)于、、的齊次等式,進(jìn)而可求得橢圓的離心率.【題目詳解】由題意可得、.由,得,則,即.而,所以,所以點(diǎn).因?yàn)辄c(diǎn)在橢圓上,則,整理可得,所以,所以.即橢圓的離心率為故選:D.【題目點(diǎn)撥】本題考查橢圓離心率的求解,解答的關(guān)鍵就是要得出、、的齊次等式,充分利用點(diǎn)在橢圓上這一條件,圍繞求點(diǎn)的坐標(biāo)來(lái)求解,考查計(jì)算能力,屬于中等題.8、B【解題分析】
設(shè)拋物線焦點(diǎn)為,由題意利用拋物線的定義可得,當(dāng)共線時(shí),取得最小值,由此求得答案.【題目詳解】解:拋物線焦點(diǎn),準(zhǔn)線,過(guò)作交于點(diǎn),連接由拋物線定義,
,
當(dāng)且僅當(dāng)三點(diǎn)共線時(shí),取“=”號(hào),∴的最小值為.
故選:B.【題目點(diǎn)撥】本題主要考查拋物線的定義、標(biāo)準(zhǔn)方程,以及簡(jiǎn)單性質(zhì)的應(yīng)用,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.9、C【解題分析】
設(shè)直線l的方程為x=y(tǒng),與拋物線聯(lián)立利用韋達(dá)定理可得p.【題目詳解】由已知得F(,0),設(shè)直線l的方程為x=y(tǒng),并與y2=2px聯(lián)立得y2﹣py﹣p2=0,設(shè)A(x1,y1),B(x2,y2),AB的中點(diǎn)C(x0,y0),∴y1+y2=p,又線段AB的中點(diǎn)M的縱坐標(biāo)為1,則y0(y1+y2)=,所以p=2,故選C.【題目點(diǎn)撥】本題主要考查了直線與拋物線的相交弦問(wèn)題,利用韋達(dá)定理是解題的關(guān)鍵,屬中檔題.10、B【解題分析】由,解得,即或,函數(shù)有兩個(gè)零點(diǎn),,不正確,設(shè),則,由,解得或,由,解得:,即是函數(shù)的一個(gè)極大值點(diǎn),不成立,排除,故選B.【方法點(diǎn)晴】本題通過(guò)對(duì)多個(gè)圖象的選擇考察函數(shù)的解析式、定義域、值域、單調(diào)性,導(dǎo)數(shù)的應(yīng)用以及數(shù)學(xué)化歸思想,屬于難題.這類題型也是近年高考常見(jiàn)的命題方向,該題型的特點(diǎn)是綜合性較強(qiáng)較強(qiáng)、考查知識(shí)點(diǎn)較多,但是并不是無(wú)路可循.解答這類題型可以從多方面入手,根據(jù)函數(shù)的定義域、值域、單調(diào)性、奇偶性、特殊點(diǎn)以及時(shí)函數(shù)圖象的變化趨勢(shì),利用排除法,將不合題意選項(xiàng)一一排除.11、D【解題分析】
建立平面直角坐標(biāo)系,將問(wèn)題轉(zhuǎn)化為點(diǎn)的軌跡上的點(diǎn)到軸的距離的最小值,利用到軸的距離等于到點(diǎn)的距離得到點(diǎn)軌跡方程,得到,進(jìn)而得到所求最小值.【題目詳解】如圖,原題等價(jià)于在直角坐標(biāo)系中,點(diǎn),是第一象限內(nèi)的動(dòng)點(diǎn),滿足到軸的距離等于點(diǎn)到點(diǎn)的距離,求點(diǎn)的軌跡上的點(diǎn)到軸的距離的最小值.設(shè),則,化簡(jiǎn)得:,則,解得:,即點(diǎn)的軌跡上的點(diǎn)到的距離的最小值是.故選:.【題目點(diǎn)撥】本題考查立體幾何中點(diǎn)面距離最值的求解,關(guān)鍵是能夠準(zhǔn)確求得動(dòng)點(diǎn)軌跡方程,進(jìn)而根據(jù)軌跡方程構(gòu)造不等關(guān)系求得最值.12、C【解題分析】試題分析:如下圖所示,則,因?yàn)榕c的夾角為,即,所以,設(shè),則,在三角形中,由正弦定理得,所以,所以,故選C.考點(diǎn):1.向量加減法的幾何意義;2.正弦定理;3.正弦函數(shù)性質(zhì).二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
依題意畫(huà)圖,設(shè),根據(jù)圓的直徑所對(duì)的圓周角為直角,可得,通過(guò)勾股定理得,再利用兩點(diǎn)間的距離公式即可求出,進(jìn)而得出點(diǎn)坐標(biāo).【題目詳解】解:依題意畫(huà)圖,設(shè)以為直徑的圓被直線所截得的弦長(zhǎng)為,且,又因?yàn)闉閳A的直徑,則所對(duì)的圓周角,則,則為點(diǎn)到直線:的距離.所以,則.又因?yàn)辄c(diǎn)在直線:上,設(shè),則.解得,則.故答案為:【題目點(diǎn)撥】本題考查了直線與圓的位置關(guān)系,考查了兩點(diǎn)間的距離公式,點(diǎn)到直線的距離公式,是基礎(chǔ)題.14、1【解題分析】
首先根據(jù)向量的數(shù)量積的運(yùn)算律求出,再根據(jù)計(jì)算可得;【題目詳解】解:因?yàn)椋杂炙运怨蚀鸢笧椋骸绢}目點(diǎn)撥】本題考查平面向量的數(shù)量積的運(yùn)算,屬于基礎(chǔ)題.15、164【解題分析】
只需令x=0,易得a5,再由(x+1)3(x+2)2=(x+1)5+2(x+1)4+(x+1)3,可得a4=+2+.【題目詳解】令x=0,得a5=(0+1)3(0+2)2=4,而(x+1)3(x+2)2=(x+1)3[(x+1)2+2(x+1)+1]=(x+1)5+2(x+1)4+(x+1)3;則a4=+2+=5+8+3=16.故答案為:16,4.【題目點(diǎn)撥】本題主要考查了多項(xiàng)式展開(kāi)中的特定項(xiàng)的求解,可以用賦值法也可以用二項(xiàng)展開(kāi)的通項(xiàng)公式求解,屬于中檔題.16、【解題分析】
方法一:令,則,,當(dāng),時(shí),,單調(diào)遞減,∴時(shí),,,且,∴在上單調(diào)遞增,時(shí),,,且,∴在上單調(diào)遞減,∴是函數(shù)的極大值點(diǎn),∴滿足題意;當(dāng)時(shí),存在使得,即,又在上單調(diào)遞減,∴時(shí),,,所以,這與是函數(shù)的極大值點(diǎn)矛盾.綜上,.方法二:依據(jù)極值的定義,要使是函數(shù)的極大值點(diǎn),由知須在的左側(cè)附近,,即;在的右側(cè)附近,,即.易知,時(shí),與相切于原點(diǎn),所以根據(jù)與的圖象關(guān)系,可得.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)曲線為圓心在原點(diǎn),半徑為2的圓.的極坐標(biāo)方程為(2)①②【解題分析】
(1)求得曲線伸縮變換后所得的參數(shù)方程,消參后求得的普通方程,判斷出對(duì)應(yīng)的曲線,并將的普通方程轉(zhuǎn)化為極坐標(biāo)方程.(2)①將的極角代入直線的極坐標(biāo)方程,由此求得點(diǎn)的極徑,判斷出為等腰三角形,求得直線的普通方程,由此求得,進(jìn)而求得,從而求得點(diǎn)的極角.②解法一:利用曲線的參數(shù)方程,求得曲線上的點(diǎn)到直線的距離的表達(dá)式,結(jié)合三角函數(shù)的知識(shí)求得的最小值和最大值,由此求得面積的取值范圍.解法二:根據(jù)曲線表示的曲線,利用圓的幾何性質(zhì)求得圓上的點(diǎn)到直線的距離的最大值和最小值,進(jìn)而求得面積的取值范圍.【題目詳解】(1)因?yàn)榍€的參數(shù)方程為(為參數(shù)),因?yàn)閯t曲線的參數(shù)方程所以的普通方程為.所以曲線為圓心在原點(diǎn),半徑為2的圓.所以的極坐標(biāo)方程為,即.(2)①點(diǎn)的極角為,代入直線的極坐標(biāo)方程得點(diǎn)極徑為,且,所以為等腰三角形,又直線的普通方程為,又點(diǎn)的極角為銳角,所以,所以,所以點(diǎn)的極角為.②解法1:直線的普通方程為.曲線上的點(diǎn)到直線的距離.當(dāng),即()時(shí),取到最小值為.當(dāng),即()時(shí),取到最大值為.所以面積的最大值為;所以面積的最小值為;故面積的取值范圍.解法2:直線的普通方程為.因?yàn)閳A的半徑為2,且圓心到直線的距離,因?yàn)?,所以圓與直線相離.所以圓上的點(diǎn)到直線的距離最大值為,最小值為.所以面積的最大值為;所以面積的最小值為;故面積的取值范圍.【題目點(diǎn)撥】本小題考查坐標(biāo)變換,極徑與極角;直線,圓的極坐標(biāo)方程,圓的參數(shù)方程,直線的極坐標(biāo)方程與普通方程,點(diǎn)到直線的距離等.考查數(shù)學(xué)運(yùn)算能力,包括運(yùn)算原理的理解與應(yīng)用、運(yùn)算方法的選擇與優(yōu)化、運(yùn)算結(jié)果的檢驗(yàn)與改進(jìn)等.也兼考了數(shù)學(xué)抽象素養(yǎng)、邏輯推理、數(shù)學(xué)運(yùn)算、直觀想象等核心素養(yǎng).18、(1)證明見(jiàn)解析(2)【解題分析】
(1)取中點(diǎn)連接,得,可得,可證,可得,進(jìn)而平面,即可證明結(jié)論;(2)設(shè)分別為邊的中點(diǎn),連,可得,,可得(或補(bǔ)角)是異面直線與所成的角,,可得,為二面角的平面角,即,設(shè),求解,即可得出結(jié)論.【題目詳解】(1)證明:取中點(diǎn)連接,由則,則,故,,平面,又平面,故平面平面(2)解法一:設(shè)分別為邊的中點(diǎn),則,(或補(bǔ)角)是異面直線與所成的角.設(shè)為邊的中點(diǎn),則,由知.又由(1)有平面,平面,所以為二面角的平面角,,設(shè)則在中,從而在中,,又,從而在中,因,,因此,異面直線與所成角的余弦值為.解法二:過(guò)點(diǎn)作交于點(diǎn)由(1)易知兩兩垂直,以為原點(diǎn),射線分別為軸,軸,軸的正半軸,建立空間直角坐標(biāo)系.不妨設(shè),由,易知點(diǎn)的坐標(biāo)分別為則顯然向量是平面的法向量已知二面角為,設(shè),則設(shè)平面的法向量為,則令,則由由上式整理得,解之得(舍)或,因此,異面直線與所成角的余弦值為.【題目點(diǎn)撥】本題考查空間點(diǎn)、線、面位置關(guān)系,證明平面與平面垂直,考查空間角,涉及到二面角、異面直線所成的角,做出空間角對(duì)應(yīng)的平面角是解題的關(guān)鍵,或用空間向量法求角,意在考查直觀想象、邏輯推理、數(shù)學(xué)計(jì)算能力,屬于中檔題.19、(1)證明見(jiàn)解析(2)【解題分析】
(1)證明平面即平面平面得證;(2)分別以所在直線為x軸,y軸.軸,建立如圖所示的空間直角坐標(biāo)系C-xyz,再利用向量方法求二面角的余弦值.【題目詳解】(1)證明:因?yàn)槠矫鍭BC,所以因?yàn)?所以.即又.所以平面因?yàn)槠矫?所以平面平面(2)解:由題可得兩兩垂直,所以分別以所在直線為x軸,y軸.軸,建立如圖所示的空間直角坐標(biāo)系C-xyz,則,所以設(shè)平面的一個(gè)法向量為,由.得令,得又平面,所以平面的一個(gè)法向量為.所以二面角的余弦值為.【題目點(diǎn)撥】本題主要考查空間幾何位置關(guān)系的證明,考查二面角的計(jì)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.20、(1);(2)【解題分析】
(1)設(shè)的極坐標(biāo)為,在中,有,即可得結(jié)果;(2)設(shè)射線:,,圓的極坐標(biāo)方程為,聯(lián)立兩個(gè)方程,可求出,聯(lián)立可得,則計(jì)算可得,利用三角函數(shù)的性質(zhì)可得最值.【題目詳解】(1)設(shè)的極坐標(biāo)為,在中,有,點(diǎn)的軌跡的極坐標(biāo)方程為;(2)設(shè)射線:,,圓的極坐標(biāo)方程為,由得:,由得:,,,當(dāng),即時(shí),,的最大值為.【題目點(diǎn)撥】本題考查極坐標(biāo)方程的應(yīng)用,考查三角函數(shù)性
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度“唐代書(shū)法與繪畫(huà)藝術(shù)品收藏與投資合同”3篇
- 2025年度體育賽事VI視覺(jué)形象合同3篇
- 2024簡(jiǎn)約合同封面圖片
- 2025年度文化旅游景區(qū)場(chǎng)地經(jīng)營(yíng)權(quán)出讓協(xié)議2篇
- 2025年度城市綜合體拆遷補(bǔ)償與開(kāi)發(fā)合同4篇
- 2025便利店加盟店品牌保護(hù)及知識(shí)產(chǎn)權(quán)合同范本3篇
- 2024年03月廣東興業(yè)銀行廣州分行春季校園招考筆試歷年參考題庫(kù)附帶答案詳解
- 2024版股權(quán)轉(zhuǎn)讓委托的協(xié)議書(shū)
- 專業(yè)會(huì)計(jì)咨詢與服務(wù)協(xié)議精簡(jiǎn)版版B版
- 2025年二零二五食堂工作人員聘用與食品安全培訓(xùn)及考核合同
- GB/T 14040-2007預(yù)應(yīng)力混凝土空心板
- 帶狀皰疹護(hù)理查房課件整理
- 奧氏體型不銹鋼-敏化處理
- 作物栽培學(xué)課件棉花
- 交通信號(hào)控制系統(tǒng)檢驗(yàn)批質(zhì)量驗(yàn)收記錄表
- 弱電施工驗(yàn)收表模板
- 絕對(duì)成交課件
- 探究基坑PC工法組合鋼管樁關(guān)鍵施工技術(shù)
- 國(guó)名、語(yǔ)言、人民、首都英文-及各地區(qū)國(guó)家英文名
- API SPEC 5DP-2020鉆桿規(guī)范
- 組合式塔吊基礎(chǔ)施工專項(xiàng)方案(117頁(yè))
評(píng)論
0/150
提交評(píng)論