2024屆江蘇省靖江市劉國鈞中學招生全國統(tǒng)一考試仿真卷(五)-高考數(shù)學試題仿真試題_第1頁
2024屆江蘇省靖江市劉國鈞中學招生全國統(tǒng)一考試仿真卷(五)-高考數(shù)學試題仿真試題_第2頁
2024屆江蘇省靖江市劉國鈞中學招生全國統(tǒng)一考試仿真卷(五)-高考數(shù)學試題仿真試題_第3頁
2024屆江蘇省靖江市劉國鈞中學招生全國統(tǒng)一考試仿真卷(五)-高考數(shù)學試題仿真試題_第4頁
2024屆江蘇省靖江市劉國鈞中學招生全國統(tǒng)一考試仿真卷(五)-高考數(shù)學試題仿真試題_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆江蘇省靖江市劉國鈞中學招生全國統(tǒng)一考試仿真卷(五)-高考數(shù)學試題仿真試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線的焦點為,為拋物線上一點,,當周長最小時,所在直線的斜率為()A. B. C. D.2.將函數(shù)的圖象沿軸向左平移個單位長度后,得到函數(shù)的圖象,則“”是“是偶函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件3.已知在中,角的對邊分別為,若函數(shù)存在極值,則角的取值范圍是()A. B. C. D.4.己知,,,則()A. B. C. D.5.已知復數(shù)滿足,則的共軛復數(shù)是()A. B. C. D.6.已知函數(shù),若,則下列不等關(guān)系正確的是()A. B.C. D.7.已知等式成立,則()A.0 B.5 C.7 D.138.已知集合,,則()A. B.C.或 D.9.如圖,在中,,是上的一點,若,則實數(shù)的值為()A. B. C. D.10.已知無窮等比數(shù)列的公比為2,且,則()A. B. C. D.11.一個正三棱柱的正(主)視圖如圖,則該正三棱柱的側(cè)面積是()A.16 B.12 C.8 D.612.已知是等差數(shù)列的前項和,,,則()A.85 B. C.35 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,則_____.14.電影《厲害了,我的國》于2018年3月正式登陸全國院線,網(wǎng)友紛紛表示,看完電影熱血沸騰“我為我的國家驕傲,我為我是中國人驕傲!”《厲害了,我的國》正在召喚我們每一個人,不忘初心,用奮斗書寫無悔人生,小明想約甲、乙、丙、丁四位好朋友一同去看《厲害了,我的國》,并把標識為的四張電影票放在編號分別為1,2,3,4的四個不同的盒子里,讓四位好朋友進行猜測:甲說:第1個盒子里放的是,第3個盒子里放的是乙說:第2個盒子里放的是,第3個盒子里放的是丙說:第4個盒子里放的是,第2個盒子里放的是丁說:第4個盒子里放的是,第3個盒子里放的是小明說:“四位朋友你們都只說對了一半”可以預測,第4個盒子里放的電影票為_________15.設是公差不為0的等差數(shù)列的前n項和,且,則______.16.如圖在三棱柱中,,,,點為線段上一動點,則的最小值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),(1)若,求的單調(diào)區(qū)間和極值;(2)設,且有兩個極值點,,若,求的最小值.18.(12分)已知函數(shù)f(x)ax﹣lnx(a∈R).(1)若a=2時,求函數(shù)f(x)的單調(diào)區(qū)間;(2)設g(x)=f(x)1,若函數(shù)g(x)在上有兩個零點,求實數(shù)a的取值范圍.19.(12分)某商場舉行有獎促銷活動,顧客購買每滿元的商品即可抽獎一次.抽獎規(guī)則如下:抽獎者擲各面標有點數(shù)的正方體骰子次,若擲得點數(shù)大于,則可繼續(xù)在抽獎箱中抽獎;否則獲得三等獎,結(jié)束抽獎,已知抽獎箱中裝有個紅球與個白球,抽獎者從箱中任意摸出個球,若個球均為紅球,則獲得一等獎,若個球為個紅球和個白球,則獲得二等獎,否則,獲得三等獎(抽獎箱中的所有小球,除顏色外均相同).若,求顧客參加一次抽獎活動獲得三等獎的概率;若一等獎可獲獎金元,二等獎可獲獎金元,三等獎可獲獎金元,記顧客一次抽獎所獲得的獎金為,若商場希望的數(shù)學期望不超過元,求的最小值.20.(12分)如圖,四棱錐中,四邊形是矩形,,,為正三角形,且平面平面,、分別為、的中點.(1)證明:平面;(2)求幾何體的體積.21.(12分)已知函數(shù)(,),且對任意,都有.(Ⅰ)用含的表達式表示;(Ⅱ)若存在兩個極值點,,且,求出的取值范圍,并證明;(Ⅲ)在(Ⅱ)的條件下,判斷零點的個數(shù),并說明理由.22.(10分)如圖,在四棱錐中,底面是直角梯形,,,,是正三角形,,是的中點.(1)證明:;(2)求直線與平面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解題分析】

本道題繪圖發(fā)現(xiàn)三角形周長最小時A,P位于同一水平線上,計算點P的坐標,計算斜率,即可.【題目詳解】結(jié)合題意,繪制圖像要計算三角形PAF周長最小值,即計算PA+PF最小值,結(jié)合拋物線性質(zhì)可知,PF=PN,所以,故當點P運動到M點處,三角形周長最小,故此時M的坐標為,所以斜率為,故選A.【題目點撥】本道題考查了拋物線的基本性質(zhì),難度中等.2、A【解題分析】

求出函數(shù)的解析式,由函數(shù)為偶函數(shù)得出的表達式,然后利用充分條件和必要條件的定義判斷即可.【題目詳解】將函數(shù)的圖象沿軸向左平移個單位長度,得到的圖象對應函數(shù)的解析式為,若函數(shù)為偶函數(shù),則,解得,當時,.因此,“”是“是偶函數(shù)”的充分不必要條件.故選:A.【題目點撥】本題考查充分不必要條件的判斷,同時也考查了利用圖象變換求三角函數(shù)解析式以及利用三角函數(shù)的奇偶性求參數(shù),考查運算求解能力與推理能力,屬于中等題.3、C【解題分析】

求出導函數(shù),由有不等的兩實根,即可得不等關(guān)系,然后由余弦定理可及余弦函數(shù)性質(zhì)可得結(jié)論.【題目詳解】,.若存在極值,則,又.又.故選:C.【題目點撥】本題考查導數(shù)與極值,考查余弦定理.掌握極值存在的條件是解題關(guān)鍵.4、B【解題分析】

先將三個數(shù)通過指數(shù),對數(shù)運算變形,再判斷.【題目詳解】因為,,所以,故選:B.【題目點撥】本題主要考查指數(shù)、對數(shù)的大小比較,還考查推理論證能力以及化歸與轉(zhuǎn)化思想,屬于中檔題.5、B【解題分析】

根據(jù)復數(shù)的除法運算法則和共軛復數(shù)的定義直接求解即可.【題目詳解】由,得,所以.故選:B【題目點撥】本題考查了復數(shù)的除法的運算法則,考查了復數(shù)的共軛復數(shù)的定義,屬于基礎題.6、B【解題分析】

利用函數(shù)的單調(diào)性得到的大小關(guān)系,再利用不等式的性質(zhì),即可得答案.【題目詳解】∵在R上單調(diào)遞增,且,∴.∵的符號無法判斷,故與,與的大小不確定,對A,當時,,故A錯誤;對C,當時,,故C錯誤;對D,當時,,故D錯誤;對B,對,則,故B正確.故選:B.【題目點撥】本題考查分段函數(shù)的單調(diào)性、不等式性質(zhì)的運用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,屬于基礎題.7、D【解題分析】

根據(jù)等式和特征和所求代數(shù)式的值的特征用特殊值法進行求解即可.【題目詳解】由可知:令,得;令,得;令,得,得,,而,所以.故選:D【題目點撥】本題考查了二項式定理的應用,考查了特殊值代入法,考查了數(shù)學運算能力.8、D【解題分析】

首先求出集合,再根據(jù)補集的定義計算可得;【題目詳解】解:∵,解得∴,∴.故選:D【題目點撥】本題考查補集的概念及運算,一元二次不等式的解法,屬于基礎題.9、B【解題分析】

變形為,由得,轉(zhuǎn)化在中,利用三點共線可得.【題目詳解】解:依題:,又三點共線,,解得.故選:.【題目點撥】本題考查平面向量基本定理及用向量共線定理求參數(shù).思路是(1)先選擇一組基底,并運用該基底將條件和結(jié)論表示成向量的形式,再通過向量的運算來解決.利用向量共線定理及向量相等的條件列方程(組)求參數(shù)的值.(2)直線的向量式參數(shù)方程:三點共線?(為平面內(nèi)任一點,)10、A【解題分析】

依據(jù)無窮等比數(shù)列求和公式,先求出首項,再求出,利用無窮等比數(shù)列求和公式即可求出結(jié)果。【題目詳解】因為無窮等比數(shù)列的公比為2,則無窮等比數(shù)列的公比為。由有,,解得,所以,,故選A?!绢}目點撥】本題主要考查無窮等比數(shù)列求和公式的應用。11、B【解題分析】

根據(jù)正三棱柱的主視圖,以及長度,可知該幾何體的底面正三角形的邊長,然后根據(jù)矩形的面積公式,可得結(jié)果.【題目詳解】由題可知:該幾何體的底面正三角形的邊長為2所以該正三棱柱的三個側(cè)面均為邊長為2的正方形,所以該正三棱柱的側(cè)面積為故選:B【題目點撥】本題考查正三棱柱側(cè)面積的計算以及三視圖的認識,關(guān)鍵在于求得底面正三角形的邊長,掌握一些常見的幾何體的三視圖,比如:三棱錐,圓錐,圓柱等,屬基礎題.12、B【解題分析】

將已知條件轉(zhuǎn)化為的形式,求得,由此求得.【題目詳解】設公差為,則,所以,,,.故選:B【題目點撥】本小題主要考查等差數(shù)列通項公式的基本量計算,考查等差數(shù)列前項和的計算,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

對原方程兩邊求導,然后令求得表達式的值.【題目詳解】對等式兩邊求導,得,令,則.【題目點撥】本小題主要考查二項式展開式,考查利用導數(shù)轉(zhuǎn)化已知條件,考查賦值法,屬于中檔題.14、A或D【解題分析】

分別假設每一個人一半是對的,然后分別進行驗證即可.【題目詳解】解:假設甲說:第1個盒子里面放的是是對的,則乙說:第3個盒子里面放的是是對的,丙說:第2個盒子里面放的是是對的,丁說:第4個盒子里面放的是是對的,由此可知第4個盒子里面放的是;假設甲說:第3個盒子里面放的是是對的,則丙說:第4個盒子里面放的是是對的,乙說:第2個盒子里面放的是是對的,丁說:第3個盒子里面放的是是對的,由此可知第4個盒子里面放的是.故第4個盒子里面放的電影票為或.故答案為:或【題目點撥】本題考查簡單的合情推理,考查推理論證能力、分析判斷能力、歸納總結(jié)能力,屬于中檔題.15、18【解題分析】

將已知已知轉(zhuǎn)化為的形式,化簡后求得,利用等差數(shù)列前公式化簡,由此求得表達式的值.【題目詳解】因為,所以.故填:.【題目點撥】本題考查等差數(shù)列基本量的計算,考查等差數(shù)列的性質(zhì)以及求和,考查運算求解能力,屬于基礎題.16、【解題分析】

把繞著進行旋轉(zhuǎn),當四點共面時,運用勾股定理即可求得的最小值.【題目詳解】將以為軸旋轉(zhuǎn)至與面在一個平面,展開圖如圖所示,若,,三點共線時最小為,為直角三角形,故答案為:【題目點撥】本題考查了空間幾何體的翻折,平面內(nèi)兩點之間線段最短,解直角三角形進行求解,考查了空間想象能力和計算能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)增區(qū)間為,減區(qū)間為;極小值,無極大值;(2)【解題分析】

(1)求出f(x)的導數(shù),解不等式,即可得到函數(shù)的單調(diào)區(qū)間,進而得到函數(shù)的極值;(2)由題意可得,,求出的表達式,,求出h(t)的最小值即可.【題目詳解】(1)將代入中,得到,求導,得到,結(jié)合,當?shù)玫剑涸鰠^(qū)間為,當,得減區(qū)間為且在時有極小值,無極大值.(2)將解析式代入,得,求導得到,令,得到,,,,,,,,因為,所以設,令,則所以在單調(diào)遞減,又因為所以,所以或又因為,所以所以,所以的最小值為.【題目點撥】本題考查了函數(shù)的單調(diào)性、極值、最值問題,考查導數(shù)的應用以及函數(shù)的極值的意義,考查轉(zhuǎn)化思想與減元意識,是一道綜合題.18、(1)單調(diào)遞減區(qū)間為(0,1),單調(diào)遞增區(qū)間為(1,+∞)(2)(3,2e]【解題分析】

(1)當a=2時,求出,求解,即可得出結(jié)論;(2)函數(shù)在上有兩個零點等價于a=2x在上有兩解,構(gòu)造函數(shù),,利用導數(shù),可分析求得實數(shù)a的取值范圍.【題目詳解】(1)當a=2時,定義域為,則,令,解得x1,或x1(舍去),所以當時,單調(diào)遞減;當時,單調(diào)遞增;故函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,(2)設,函數(shù)g(x)在上有兩個零點等價于在上有兩解令,,則,令,,顯然,在區(qū)間上單調(diào)遞增,又,所以當時,有,即,當時,有,即,所以在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,時,取得極小值,也是最小值,即,由方程在上有兩解及,可得實數(shù)a的取值范圍是.【題目點撥】本題考查了利用導數(shù)研究函數(shù)的單調(diào)性極值與最值、等價轉(zhuǎn)化思想以及數(shù)形結(jié)合思想,考查邏輯推理、數(shù)學計算能力,屬于中檔題.19、;.【解題分析】

設顧客獲得三等獎為事件,因為顧客擲得點數(shù)大于的概率為,顧客擲得點數(shù)小于,然后抽將得三等獎的概率為,求出;由題意可知,隨機變量的可能取值為,,,相應求出概率,求出期望,化簡得,由題意可知,,即,求出的最小值.【題目詳解】設顧客獲得三等獎為事件,因為顧客擲得點數(shù)大于的概率為,顧客擲得點數(shù)小于,然后抽將得三等獎的概率為,所以;由題意可知,隨機變量的可能取值為,,,且,,,所以隨機變量的數(shù)學期望,,化簡得,由題意可知,,即,化簡得,因為,解得,即的最小值為.【題目點撥】本題主要考查概率和期望的求法,屬于??碱}.20、(1)見解析;(2)【解題分析】

(1)由題可知,根據(jù)三角形的中位線的性質(zhì),得出,根據(jù)矩形的性質(zhì)得出,所以,再利用線面平行的判定定理即可證出平面;(2)由于平面平面,根據(jù)面面垂直的性質(zhì),得出平面,從而得出到平面的距離為,結(jié)合棱錐的體積公式,即可求得結(jié)果.【題目詳解】解:(1)∵,分別為,的中點,∴,∵四邊形是矩形,∴,∴,∵平面,平面,∴平面.(2)取,的中點,,連接,,,,則,由于為三棱柱,為四棱錐,∵平面平面,∴平面,由已知可求得,∴到平面的距離為,因為四邊形是矩形,,,,設幾何體的體積為,則,∴,即:.【題目點撥】本題考查線面平行的判定、面面垂直的性質(zhì)和棱錐的體積公式,考查邏輯推理和計算能力.21、(1)(2)見解析(3)見解析【解題分析】試題分析:利用賦值法求出關(guān)系,求函數(shù)導數(shù),要求函數(shù)有兩個極值點,只需在內(nèi)有兩個實根,利用一元二次方程的根的分布求出的取值范圍,再根據(jù)函數(shù)圖象和極值的大小判斷零點的個數(shù).試題解析:(Ⅰ)根據(jù)題意:令,可得,所以,經(jīng)驗證,可得當時,對任意,都有,所以.(Ⅱ)由(Ⅰ)可知,且,所以,令,要使存在兩個極值點,,則須有有兩個不相等的正數(shù)根,所以或解得或無解,所以的取值范圍,可得,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論