版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
上海市張堰中學2024屆高三4月聯(lián)考數學試題解析注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.對兩個變量進行回歸分析,給出如下一組樣本數據:,,,,下列函數模型中擬合較好的是()A. B. C. D.2.若復數()是純虛數,則復數在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.過拋物線的焦點作直線交拋物線于兩點,若線段中點的橫坐標為3,且,則拋物線的方程是()A. B. C. D.4.函數在上的大致圖象是()A. B.C. D.5.復數的共軛復數對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.設點是橢圓上的一點,是橢圓的兩個焦點,若,則()A. B. C. D.7.正項等差數列的前和為,已知,則=()A.35 B.36 C.45 D.548.已知集合,集合,則()A. B. C. D.9.已知雙曲線,過原點作一條傾斜角為直線分別交雙曲線左、右兩支P,Q兩點,以線段PQ為直徑的圓過右焦點F,則雙曲線離心率為A. B. C.2 D.10.函數的圖象與軸交點的橫坐標構成一個公差為的等差數列,要得到函數的圖象,只需將的圖象()A.向左平移個單位 B.向右平移個單位C.向左平移個單位 D.向右平移個單位11.設等差數列的前n項和為,若,則()A. B. C.7 D.212.用一個平面去截正方體,則截面不可能是()A.正三角形 B.正方形 C.正五邊形 D.正六邊形二、填空題:本題共4小題,每小題5分,共20分。13.已知集合,,則________.14.在一底面半徑和高都是的圓柱形容器中盛滿小麥,有一粒帶麥銹病的種子混入了其中.現從中隨機取出的種子,則取出了帶麥銹病種子的概率是_____.15.若變量,滿足約束條件則的最大值為________.16.在平面直角坐標系中,點在單位圓上,設,且.若,則的值為________________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系xOy中,曲線的參數方程為(為參數).以平面直角坐標系的原點為極點,軸的非負半軸為極軸建立極坐標系,直線的極坐標方程為.(1)求曲線的極坐標方程;(2)設和交點的交點為,求的面積.18.(12分)設為等差數列的前項和,且,.(1)求數列的通項公式;(2)若滿足不等式的正整數恰有個,求正實數的取值范圍.19.(12分)設函數()的最小值為.(1)求的值;(2)若,,為正實數,且,證明:.20.(12分)如圖,在正四棱柱中,已知,.(1)求異面直線與直線所成的角的大??;(2)求點到平面的距離.21.(12分)已知矩陣不存在逆矩陣,且非零特低值對應的一個特征向量,求的值.22.(10分)已知函數.(1)求不等式的解集;(2)若對任意恒成立,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解題分析】
作出四個函數的圖象及給出的四個點,觀察這四個點在靠近哪個曲線.【題目詳解】如圖,作出A,B,C,D中四個函數圖象,同時描出題中的四個點,它們在曲線的兩側,與其他三個曲線都離得很遠,因此D是正確選項,故選:D.【題目點撥】本題考查回歸分析,擬合曲線包含或靠近樣本數據的點越多,說明擬合效果好.2、B【解題分析】
化簡復數,由它是純虛數,求得,從而確定對應的點的坐標.【題目詳解】是純虛數,則,,,對應點為,在第二象限.故選:B.【題目點撥】本題考查復數的除法運算,考查復數的概念與幾何意義.本題屬于基礎題.3、B【解題分析】
利用拋物線的定義可得,,把線段AB中點的橫坐標為3,代入可得p值,然后可得出拋物線的方程.【題目詳解】設拋物線的焦點為F,設點,由拋物線的定義可知,線段AB中點的橫坐標為3,又,,可得,所以拋物線方程為.故選:B.【題目點撥】本題考查拋物線的定義、標準方程,以及簡單性質的應用,利用拋物線的定義是解題的關鍵.4、D【解題分析】
討論的取值范圍,然后對函數進行求導,利用導數的幾何意義即可判斷.【題目詳解】當時,,則,所以函數在上單調遞增,令,則,根據三角函數的性質,當時,,故切線的斜率變小,當時,,故切線的斜率變大,可排除A、B;當時,,則,所以函數在上單調遞增,令,,當時,,故切線的斜率變大,當時,,故切線的斜率變小,可排除C,故選:D【題目點撥】本題考查了識別函數的圖像,考查了導數與函數單調性的關系以及導數的幾何意義,屬于中檔題.5、A【解題分析】
試題分析:由題意可得:.共軛復數為,故選A.考點:1.復數的除法運算;2.以及復平面上的點與復數的關系6、B【解題分析】∵∵∴∵,∴∴故選B點睛:本題主要考查利用橢圓的簡單性質及橢圓的定義.求解與橢圓性質有關的問題時要結合圖形進行分析,既使不畫出圖形,思考時也要聯(lián)想到圖形,當涉及頂點、焦點、長軸、短軸等橢圓的基本量時,要理清它們之間的關系,挖掘出它們之間的內在聯(lián)系.7、C【解題分析】
由等差數列通項公式得,求出,再利用等差數列前項和公式能求出.【題目詳解】正項等差數列的前項和,,,解得或(舍),,故選C.【題目點撥】本題主要考查等差數列的性質與求和公式,屬于中檔題.解等差數列問題要注意應用等差數列的性質()與前項和的關系.8、C【解題分析】
求出集合的等價條件,利用交集的定義進行求解即可.【題目詳解】解:∵,,∴,故選:C.【題目點撥】本題主要考查了對數的定義域與指數不等式的求解以及集合的基本運算,屬于基礎題.9、B【解題分析】
求得直線的方程,聯(lián)立直線的方程和雙曲線的方程,求得兩點坐標的關系,根據列方程,化簡后求得離心率.【題目詳解】設,依題意直線的方程為,代入雙曲線方程并化簡得,故,設焦點坐標為,由于以為直徑的圓經過點,故,即,即,即,兩邊除以得,解得.故,故選B.【題目點撥】本小題主要考查直線和雙曲線的交點,考查圓的直徑有關的幾何性質,考查運算求解能力,屬于中檔題.10、A【解題分析】依題意有的周期為.而,故應左移.11、B【解題分析】
根據等差數列的性質并結合已知可求出,再利用等差數列性質可得,即可求出結果.【題目詳解】因為,所以,所以,所以,故選:B【題目點撥】本題主要考查等差數列的性質及前項和公式,屬于基礎題.12、C【解題分析】試題分析:畫出截面圖形如圖顯然A正三角形,B正方形:D正六邊形,可以畫出五邊形但不是正五邊形;故選C.考點:平面的基本性質及推論.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
利用交集定義直接求解.【題目詳解】解:集合奇數,偶數,.故答案為:.【題目點撥】本題考查交集的求法,考查交集定義等基礎知識,考查運算求解能力,屬于基礎題.14、【解題分析】
求解占圓柱形容器的的總容積的比例求解即可.【題目詳解】解:由題意可得:取出了帶麥銹病種子的概率.故答案為:.【題目點撥】本題主要考查了體積類的幾何概型問題,屬于基礎題.15、7【解題分析】
畫出不等式組表示的平面區(qū)域,數形結合,即可容易求得目標函數的最大值.【題目詳解】作出不等式組所表示的平面區(qū)域,如下圖陰影部分所示.觀察可知,當直線過點時,有最大值,.故答案為:.【題目點撥】本題考查二次不等式組與平面區(qū)域、線性規(guī)劃,主要考查推理論證能力以及數形結合思想,屬基礎題.16、【解題分析】
根據三角函數定義表示出,由同角三角函數關系式結合求得,而,展開后即可由余弦差角公式求得的值.【題目詳解】點在單位圓上,設,由三角函數定義可知,因為,則,所以由同角三角函數關系式可得,所以故答案為:.【題目點撥】本題考查了三角函數定義,同角三角函數關系式的應用,余弦差角公式的應用,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解題分析】
(1)先將曲線的參數方程化為普通方程,再將普通方程化為極坐標方程即可.(2)將和的極坐標方程聯(lián)立,求得兩個曲線交點的極坐標,即可由極坐標的含義求得的面積.【題目詳解】(1)曲線的參數方程為(α為參數),消去參數的的直角坐標方程為.所以的極坐標方程為(2)解方程組,得到.所以,則或().當()時,,當()時,.所以和的交點極坐標為:,.所以.故的面積為.【題目點撥】本題考查了參數方程與普通方程的轉化,直角坐標方程與極坐標的轉化,利用極坐標求三角形面積,屬于中檔題.18、(1);(2).【解題分析】
(1)設等差數列的公差為,根據題意得出關于和的方程組,解出這兩個量的值,然后利用等差數列的通項公式可得出數列的通項公式;(2)求出,可得出,可知當為奇數時不等式不成立,只考慮為偶數的情況,利用數列單調性的定義判斷數列中偶數項構成的數列的單調性,由此能求出正實數的取值范圍.【題目詳解】(1)設等差數列的公差為,則,整理得,解得,,因此,;(2),滿足不等式的正整數恰有個,得,由于,若為奇數,則不等式不可能成立.只考慮為偶數的情況,令,則,..當時,,則;當時,,則;當時,,則.所以,,又,,,,.因此,實數的取值范圍是.【題目點撥】本題考查數列的通項公式的求法,考查正實數的取值范圍的求法,考查等差數列的性質等基礎知識,考查運算求解能力,是中檔題.19、(1)(2)證明見解析【解題分析】
(1)分類討論,去絕對值求出函數的解析式,根據一次函數的性質,得出的單調性,得出取最小值,即可求的值;(2)由(1)得出,利用“乘1法”,令,化簡后利用基本不等式求出的最小值,即可證出.【題目詳解】(1)解:當時,單調遞減;當時,單調遞增.所以當時,取最小值.(2)證明:由(1)可知.要證明:,即證,因為,,為正實數,所以.當且僅當,即,,時取等號,所以.【題目點撥】本題考查絕對值不等式和基本不等式的應用,還運用“乘1法”和分類討論思想,屬于中檔題.20、(1);(2).【解題分析】
(1)建立空間坐標系,通過求向量與向量的夾角,轉化為異面直線與直線所成的角的大?。唬?)先求出面的一個法向量,再用點到面的距離公式算出即可.【題目詳解】以為原點,所在直線分別為軸建系,設所以,,所以異面直線與直線所成的角的余弦值為,異面直線與直線所成的角的大小為.(2)因為,,設是面的一個法向量,所以有即,令,,故,又,所以點到平面的距離為.【題目點撥】本題主要考查向量法求異面直線所成角的大小和點到面的距離,意在考查學生的數學建模以及數學運算能力.21、【解題分析】
由不存在逆矩陣,可得,再利用特征多項式求出特征值3,0,,利用矩陣乘法運算即可.【題目詳解】因為不存在逆矩陣,,所以.矩陣的特征多項式為,令,則或,所以,即,所以,所以【題目點撥】本題考查矩陣的乘法及特征值、特征向量有關的問題,考查學生的運算能力,是一道容易題.22、(1);(2).【解題分析】
(1)通過
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024新疆二手房買賣合同模板:包含房屋質量及安全隱患排查3篇
- 2024影樓與攝影師違約責任及賠償合同范本3篇
- 2024智能化設計合同范本
- 23《童年的發(fā)現》說課稿2023-2024學年統(tǒng)編版語文五年級下冊
- 2 丁香結 說課稿-2024-2025學年統(tǒng)編版語文六年級上冊
- 專業(yè)餐飲顧問服務合同(2024年修訂)版
- 2024跨境電子商務平臺搭建與運營服務合同
- 職業(yè)學生退宿申請表
- 2024年簡化版勞務協(xié)議格式
- 福建省南平市吳屯中學2021年高二化學上學期期末試卷含解析
- 全國教育科學規(guī)劃課題申報書:34.《高質量數字教材建設研究》
- 高處作業(yè)風險及隱患排查(安全檢查)清單
- 五年級口算1000題(打印版)
- 服務器自動化擴容與縮容解決方案
- 團意險項目招標書
- 城市軌道-城軌交通車輛制動系統(tǒng)故障與檢修
- (郭伯良)兒童青少年同伴關系評級量表
- 煙道加強肋計算書(樣本)
- 登高平臺梯安全操作保養(yǎng)規(guī)程
- 土力學與地基基礎(課件)
- ERP沙盤模擬經營實訓報告
評論
0/150
提交評論