2023-2024學年湖北省鄂州梁子湖區(qū)四校聯(lián)考九年級數(shù)學第一學期期末復習檢測模擬試題含解析_第1頁
2023-2024學年湖北省鄂州梁子湖區(qū)四校聯(lián)考九年級數(shù)學第一學期期末復習檢測模擬試題含解析_第2頁
2023-2024學年湖北省鄂州梁子湖區(qū)四校聯(lián)考九年級數(shù)學第一學期期末復習檢測模擬試題含解析_第3頁
2023-2024學年湖北省鄂州梁子湖區(qū)四校聯(lián)考九年級數(shù)學第一學期期末復習檢測模擬試題含解析_第4頁
2023-2024學年湖北省鄂州梁子湖區(qū)四校聯(lián)考九年級數(shù)學第一學期期末復習檢測模擬試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年湖北省鄂州梁子湖區(qū)四校聯(lián)考九年級數(shù)學第一學期期末復習檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖,把正三角形繞著它的中心順時針旋轉(zhuǎn)60°后,是()A. B. C. D.2.用配方法解方程2x2-x-2=0,變形正確的是()A. B.=0 C. D.3.如圖,點D在△ABC的邊AC上,要判斷△ADB與△ABC相似,添加一個條件,不正確的是()A.∠ABD=∠C B.∠ADB=∠ABC C. D.4.如圖,在菱形ABCD中,對角線AC、BD相交于點O,BD=8,tan∠ABD=,則線段AB的長為()A. B.2 C.5 D.105.點關于原點的對稱點是A. B. C. D.6.已知關于x的函數(shù)y=k(x+1)和y=﹣(k≠0)它們在同一坐標系中的大致圖象是()A. B.C. D.7.如圖,已知AB是△ABC外接圓的直徑,∠A=35°,則∠B的度數(shù)是()A.35° B.45° C.55° D.65°8.如果兩個相似三角形的面積比是1:4,那么它們的周長比是A.1:16 B.1:6 C.1:4 D.1:29.如圖是一個圓柱形輸水管橫截面的示意圖,陰影部分為有水部分,如果水面AB的寬為8cm,水面最深的地方高度為2cm,則該輸水管的半徑為()A.3cm B.5cm C.6cm D.8cm10.如圖,在平行四邊形ABCD中,∠BAD的平分線交BC于點E,∠ABC的平分線交AD于點F,若BF=12,AB=10,則AE的長為()A.10 B.12 C.16 D.1811.二次函數(shù)的圖象與軸有且只有一個交點,則的值為()A.1或-3 B.5或-3 C.-5或3 D.-1或312.在Rt△ABC中,∠C=90°,cosA=,AC=,則BC等于()A. B.1 C.2 D.3二、填空題(每題4分,共24分)13.如圖,拋物線與軸的負半軸交于點,與軸交于點,連接,點分別是直線與拋物線上的點,若點圍成的四邊形是平行四邊形,則點的坐標為__________.14.Rt△ABC中,已知∠C=90°,∠B=50°,點D在邊BC上,BD=2CD(如圖).把△ABC繞著點D逆時針旋轉(zhuǎn)m(0<m<180)度后,如果點B恰好落在初始Rt△ABC的邊上,那么m=______.15.如圖,在四邊形ABCD中,AD∥BC,AD=2,AB=,以點A為圓心,AD為半徑的圓與BC相切于點E,交AB于點F,則弧DF的長為_________.16.如圖,已知圓錐的高為,高所在直線與母線的夾角為30°,圓錐的側(cè)面積為_____.17.如圖示一些小正方體木塊所搭的幾何體,從正面和從左面看到的圖形,則搭建該幾何體最多需要塊正方體木塊.18.拋物線的頂點坐標是__________.三、解答題(共78分)19.(8分)已知正比例函數(shù)的圖象與反比例函數(shù)的圖象交于一點,且點的橫坐標為1.(1)求反比例函數(shù)的解析式;(2)當時,求反比例函數(shù)的取值范圍20.(8分)如圖,已知的三個頂點的坐標分別為、、,P(a,b)是△ABC的邊AC上一點:(1)將繞原點逆時針旋轉(zhuǎn)90°得到,請在網(wǎng)格中畫出,旋轉(zhuǎn)過程中點A所走的路徑長為.(2)將△ABC沿一定的方向平移后,點P的對應點為P2(a+6,b+2),請在網(wǎng)格畫出上述平移后的△A2B2C2,并寫出點A2、的坐標:A2().(3)若以點O為位似中心,作△A3B3C3與△ABC成2:1的位似,則與點P對應的點P3位似坐標為(直接寫出結果).21.(8分)如圖,在正方形ABCD中,等邊△AEF的頂點E、F分別在BC和CD上.(1)、求證:△ABE≌△ADF;(2)、若等邊△AEF的周長為6,求正方形ABCD的邊長.22.(10分)如圖,有四張背面相同的卡片A、B、C、D,卡片的正面分別印有正三角形、平行四邊形、圓、正五邊形(這些卡片除圖案不同外,其余均相同).把這四張卡片背面向上洗勻后,進行下列操作:(1)若任意抽取其中一張卡片,抽到的卡片既是中心對稱圖形又是軸對稱圖形的概率是;(2)若任意抽出一張不放回,然后再從余下的抽出一張.請用樹狀圖或列表表示摸出的兩張卡片所有可能的結果,求抽出的兩張卡片的圖形是中心對稱圖形的概率.23.(10分)春節(jié)期間,支付寶“集五福”活動中的“集五?!备?ü卜譃?種,分別為富強福、和諧福、友善福、愛國福、敬業(yè)福,從國家、社會和個人三個層面體現(xiàn)了社會主義核心價值觀的價值目標.(1)小明一家人春節(jié)期間參與了支付寶“集五?!被顒?,小明和姐姐都缺一個“敬業(yè)?!?,恰巧爸爸有一個可以送給他們其中一個人,兩個人各設計了一個游戲,獲勝者得到“敬業(yè)福”.在一個不透明盒子里放入標號分別為1,2,3,4的四個小球,這些小球除了標號數(shù)字外都相同,將小球搖勻.小明的游戲規(guī)則是:從盒子中隨機摸出一個小球,摸到標號數(shù)字為奇數(shù)小球,則判小明獲勝,否則,判姐姐獲勝.請判斷,此游戲規(guī)則對小明和姐姐公平嗎?說明理由.姐姐的游戲規(guī)則是:小明從盒子中隨機摸出一個小球,記下標號數(shù)字后放回盒里,充分搖勻后,姐姐再從盒中隨機摸出一個小球,并記下標號數(shù)字.若兩次摸到小球的標號數(shù)字同為奇數(shù)或同為偶數(shù),則判小明獲勝,若兩次摸到小球的標號數(shù)字為一奇一偶,則判姐姐獲勝.請用列表法或畫樹狀圖的方法進行判斷此游戲規(guī)則對小明和姐姐是否公平.(2)“五?!敝畜w現(xiàn)了社會主義核心價值觀的價值目標的個人層面有哪些?24.(10分)已知關于x的方程x2+ax+16=0,(1)若這個方程有兩個相等的實數(shù)根,求a的值(2)若這個方程有一個根是2,求a的值及另外一個根25.(12分)(1)某學?!爸腔鄯綀@”數(shù)學社團遇到這樣一個題目:如圖(1),在中,點在線段上,,,,,求的長.經(jīng)過社團成員討論發(fā)現(xiàn):過點作,交的延長線于點,通過構造就可以解決問題,如圖(2).請回答:______.(2)求的長.(3)請參考以上解決思路,解決問題:如圖(3),在四邊形中,對角線與相交于點,,,,,求的長.26.如圖,在矩形ABCD中,CE⊥BD,AB=4,BC=3,P為BD上一個動點,以P為圓心,PB長半徑作⊙P,⊙P交CE、BD、BC交于F、G、H(任意兩點不重合),(1)半徑BP的長度范圍為;(2)連接BF并延長交CD于K,若tanKFC3,求BP;(3)連接GH,將劣弧HG沿著HG翻折交BD于點M,試探究是否為定值,若是求出該值,若不是,請說明理由.

參考答案一、選擇題(每題4分,共48分)1、A【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)判斷即可.【詳解】解:∵把正三角形繞著它的中心順時針旋轉(zhuǎn)60°,∴圖形A符合題意,故選:A.【點睛】本題考查的是圖形的旋轉(zhuǎn),和學生的空間想象能力,熟練掌握旋轉(zhuǎn)的性質(zhì)是解題的關鍵.2、D【解析】用配方法解方程2?x?2=0過程如下:移項得:,二次項系數(shù)化為1得:,配方得:,即:.故選D.3、C【分析】由∠A是公共角,利用有兩角對應相等的三角形相似,即可得A與B正確;又由兩組對應邊的比相等且夾角對應相等的兩個三角形相似,即可得D正確,繼而求得答案,注意排除法在解選擇題中的應用.【詳解】∵∠A是公共角,∴當∠ABD=∠C或∠ADB=∠ABC時,△ADB∽△ABC(有兩角對應相等的三角形相似),故A與B正確,不符合題意要求;當AB:AD=AC:AB時,△ADB∽△ABC(兩組對應邊的比相等且夾角對應相等的兩個三角形相似),故D正確,不符合題意要求;AB:BD=CB:AC時,∠A不是夾角,故不能判定△ADB與△ABC相似,故C錯誤,符合題意要求,故選C.4、C【解析】分析:根據(jù)菱形的性質(zhì)得出AC⊥BD,AO=CO,OB=OD,求出OB,解直角三角形求出AO,根據(jù)勾股定理求出AB即可.詳解:∵四邊形ABCD是菱形,∴AC⊥BD,AO=CO,OB=OD,∴∠AOB=90°,∵BD=8,∴OB=4,∵tan∠ABD=,∴AO=3,在Rt△AOB中,由勾股定理得:AB==5,故選C.點睛:本題考查了菱形的性質(zhì)、勾股定理和解直角三角形,能熟記菱形的性質(zhì)是解此題的關鍵.5、C【解析】解:點P(4,﹣3)關于原點的對稱點是(﹣4,3).故選C.【點睛】本題考查關于原點對稱的點的坐標,兩個點關于原點對稱時,兩個點的橫、縱坐標符號相反,即P(x,y)關于原點O的對稱點是P′(﹣x,﹣y).6、A【分析】先根據(jù)反比例函數(shù)的性質(zhì)判斷出k的取值,再根據(jù)一次函數(shù)的性質(zhì)判斷出k取值,二者一致的即為正確答案.【詳解】解:當k>0時,反比例函數(shù)的系數(shù)﹣k<0,反比例函數(shù)過二、四象限,一次函數(shù)過一、二、三象限,原題沒有滿足的圖形;當k<0時,反比例函數(shù)的系數(shù)﹣k>0,所以反比例函數(shù)過一、三象限,一次函數(shù)過二、三、四象限.故選:A.7、C【解析】試題分析:由AB是△ABC外接圓的直徑,根據(jù)直徑所對的圓周角是直角,可求得∠C=90°,又由直角三角形兩銳角互余的關系即可求得∠B的度數(shù):∵AB是△ABC外接圓的直徑,∴∠C=90°,∵∠A=35°,∴∠B=90°﹣∠A=55°.故選C.考點:1.圓周角定理;2.直角三角形兩銳角的關系.8、D【解析】根據(jù)相似三角形面積的比等于相似比的平方求出相似比,根據(jù)相似三角形周長的比等于相似比解答即可.【詳解】解:兩個相似三角形的面積比是1:4,兩個相似三角形的相似比是1:2,兩個相似三角形的周長比是1:2,故選:D.【點睛】本題考查的是相似三角形的性質(zhì),掌握相似三角形周長的比等于相似比、相似三角形面積的比等于相似比的平方是解題的關鍵.9、B【分析】先過點O作OD⊥AB于點D,連接OA,由垂徑定理可知AD=AB,設OA=r,則OD=r﹣2,在Rt△AOD中,利用勾股定理即可求出r的值.【詳解】解:如圖所示:過點O作OD⊥AB于點D,連接OA,∵OD⊥AB,∴AD=AB=4cm,設OA=r,則OD=r﹣2,在Rt△AOD中,OA2=OD2+AD2,即r2=(r﹣2)2+42,解得r=5cm.∴該輸水管的半徑為5cm;故選:B.【點睛】此題主要考查垂徑定理,解題的關鍵是熟知垂徑定理及勾股定理的運用.10、C【解析】先證明四邊形ABEF是菱形,得出AE⊥BF,OA=OE,OB=OF=BF=6,由勾股定理求出OA,即可得出AE的長【詳解】如圖,∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠DAE=∠AEB,∵∠BAD的平分線交BC于點E,∴∠DAE=∠BAE,∴∠BAE=∠AEB,∴AB=BE,同理可得AB=AF,∴AF=BE,∴四邊形ABEF是平行四邊形,∵AB=AF,∴四邊形ABEF是菱形,AE⊥BF,OA=OE,OB=OF=BF=6,∴OA==8,∴AE=2OA=16;故選C.【點睛】本題考查平行四邊形的性質(zhì)與判定、等腰三角形的判定、菱形的判定和性質(zhì)、勾股定理等知識;熟練掌握平行四邊形的性質(zhì),證明四邊形ABEF是菱形是解決問題的關鍵.11、B【分析】由二次函數(shù)y=x2-(m-1)x+4的圖象與x軸有且只有一個交點,可知△=0,繼而求得答案.【詳解】解:∵二次函數(shù)y=x2-(m-1)x+4的圖象與x軸有且只有一個交點,∴△=b2-4ac=[-(m-1)]2-4×1×4=0,∴(m-1)2=16,解得:m-1=±4,∴m1=5,m2=-1.∴m的值為5或-1.故選:B.【點睛】此題考查了拋物線與x軸的交點問題,注意掌握二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)的交點與一元二次方程ax2+bx+c=0根之間的關系.△=b2-4ac決定拋物線與x軸的交點個數(shù).△>0時,拋物線與x軸有2個交點;△=0時,拋物線與x軸有1個交點;△<0時,拋物線與x軸沒有交點.12、B【分析】根據(jù)余弦函數(shù)的定義、勾股定理,即可直接求解.【詳解】解:∵在Rt△ABC中,∠C=90°,cosA=,AC=,∴,即,,∴=1,

故選:B.【點睛】本題考查了解直角三角形,解題的基礎是掌握余弦函數(shù)的定義和勾股定理.二、填空題(每題4分,共24分)13、或或【分析】根據(jù)二次函數(shù)與x軸的負半軸交于點,與軸交于點.直接令x=0和y=0求出A,B的坐標.再根據(jù)平行四邊形的性質(zhì)分情況求出點E的坐標.【詳解】由拋物線的表達式求得點的坐標分別為.由題意知當為平行四邊形的邊時,,且,∴線段可由線段平移得到.∵點在直線上,①當點的對應點為時,如圖,需先將向左平移1個單位長度,此時點的對應點的橫坐標為,將代入,得,∴.②當點A的對應點為時,同理,先將向右平移2個單位長度,可得點的對應點的橫坐標為2,將代入得,∴當為平行四邊形的對角線時,可知的中點坐標為,∵在直線上,∴根據(jù)對稱性可知的橫坐標為,將代入得,∴.綜上所述,點的坐標為或或.【點睛】本題是二次函數(shù)的綜合題,主要考查了特殊點的坐標的確定,平行四邊形的性質(zhì),解本題的關鍵是分情況解決問題的思想.14、80°或120°【分析】本題可以圖形的旋轉(zhuǎn)問題轉(zhuǎn)化為點B繞D點逆時針旋轉(zhuǎn)的問題,故可以D點為圓心,DB長為半徑畫弧,第一次與原三角形交于斜邊AB上的一點B′,交直角邊AC于B″,此時DB′=DB,DB″=DB=2CD,由等腰三角形的性質(zhì)求旋轉(zhuǎn)角∠BDB′的度數(shù),在Rt△B″CD中,解直角三角形求∠CDB″,可得旋轉(zhuǎn)角∠BDB″的度數(shù).【詳解】解:如圖,在線段AB取一點B′,使DB=DB′,在線段AC取一點B″,使DB=DB″,∴①旋轉(zhuǎn)角m=∠BDB′=180°-∠DB′B-∠B=180°-2∠B=80°,②在Rt△B″CD中,∵DB″=DB=2CD,∴∠CDB″=60°,旋轉(zhuǎn)角∠BDB″=180°-∠CDB″=120°.故答案為80°或120°.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì):對應點到旋轉(zhuǎn)中心的距離相等;對應點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.運用含30度的直角三角形三邊的關系也是解決問題的關鍵.15、【解析】分析:連接AE,根據(jù)圓的切線的性質(zhì)可得AD⊥BC,解Rt△ABE可求出∠ABE,進而得到∠DAB,然后運用弧長的計算公式即可得出答案.詳解:連接AE,∵BC為圓A的切線,∴AE⊥BC,∴△ABE為直角三角形,∵AD=2,AB=2,∴AE=2,∴△ABE為等腰直角三角形,∴∠BAE=45°,∵AD∥BC,∴∠DAE=∠AEB=90°,∴∠BAD=45°+90°=135°,∴弧FED的長=π.點睛:本題主要考查的是圓的切線的性質(zhì)以及弧長的計算公式,屬于中等難度題型.得出∠BAD的度數(shù)是解題的關鍵.16、2π【解析】試題分析:如圖,∠BAO=30°,AO=,在Rt△ABO中,∵tan∠BAO=,∴BO=tan30°=1,即圓錐的底面圓的半徑為1,∴AB=,即圓錐的母線長為2,∴圓錐的側(cè)面積=.考點:圓錐的計算.17、16【解析】根據(jù)俯視圖標數(shù)法可得,最多有1塊;故答案是1.點睛:三視圖是指一個立體圖形從上面、正面、側(cè)面(一般為左側(cè))三個方向看到的圖形,首先我們要分清三個概念:排、列、層,比較好理解,就像我們教室的座位一樣,橫著的為排,豎著的為列,上下的為層,如圖所示的立體圖形,共有兩排、三列、兩層.仔細觀察三視圖,可以發(fā)現(xiàn)在每一圖中,并不能同時看到排、列、層,比如正視圖看不到排,這個很好理解,比如在教室里,如果第一排的同學個子非常高,那么后面的同學都被擋住了,我們無法從正面看到后面的同學,也就無法確定有幾排.所以,我們可以知道正視圖可看到列和層,俯視圖可看到排和層列,側(cè)視圖可看到排和層.18、(-1,-3)【分析】根據(jù)拋物線頂點式得頂點為可得答案.【詳解】解:∵拋物線頂點式得頂點為,∴拋物線的頂點坐標是(-1,-3)故答案為(-1,-3).【點睛】本題考查了二次函數(shù)的頂點式的頂點坐標,熟記二次函數(shù)的頂點式及坐標是解題的關鍵.三、解答題(共78分)19、(1);(2).【分析】(1)根據(jù)M點的橫坐標為1,求出k的值,得到反比例函數(shù)的解析式;(2)求出x=2,x=5時y的取值,再根據(jù)反比例函數(shù)的增減性求出y的取值范圍.【詳解】(1)正比例函數(shù)的圖象與反比例函數(shù)的圖象交于一點,且點的橫坐標為.,,反比例函數(shù)的解析式為;(2)在反比例函數(shù)中,當,當,在反比例函數(shù)中,,當時,隨的增大而減小,當時,反比例函數(shù)的取值范圍為.【點睛】此題考查了三個方面:(1)函數(shù)圖象上點的坐標特征;(2)用待定系數(shù)法求函數(shù)解析式;(3)反比例函數(shù)的增減性.20、(1)畫圖見解析,π;(2)畫圖見解析,(4,4);(3)P3(2a,2b)或P3(-2a,-2b)【解析】(1)分別得出△ABC繞點O逆時針旋轉(zhuǎn)90o后的對應點得到的位置,進而得到旋轉(zhuǎn)后的得到,而點A所走的路徑長為以O為圓心,以OA長為半徑且圓心角為90°的扇形弧長;(2)由點P的對應點為P2(a+6,b+2)可知△ABC向右平移6個單位長度,再向上平移2個單位長度,即可得到的△A2B2C2;(3)以位似比2:1作圖即可,注意有兩個圖形,與點P對應的點P3的坐標是由P的橫、縱坐標都乘以2或-2得到的.【詳解】解:(1)如圖所示,∵∴點A所走的路徑長為:故答案為π(2)∵由點P的對應點為P2(a+6,b+2)∴△A2B2C2是△ABC向右平移6個單位長度,再向上平移2個單位長度可得到的,∴點A對應點A2坐標為(4,4)△A2B2C2如圖所示,(3)∵P(a,b)且以點O為位似中心,△A3B3C3與△ABC的位似比為2:1∴P3(2a,2b)或P3(-2a,-2b)△A3B3C3如圖所示,21、(1)證明見解析;(2).【解析】試題分析:(1)根據(jù)四邊形ABCD是正方形,得出AB=AD,∠B=∠D=90°,再根據(jù)△AEF是等邊三角形,得出AE=AF,最后根據(jù)HL即可證出△ABE≌△ADF;(2)根據(jù)等邊△AEF的周長是6,得出AE=EF=AF的長,再根據(jù)(1)的證明得出CE=CF,∠C=90°,從而得出△ECF是等腰直角三角形,再根據(jù)勾股定理得出EC的值,設BE=x,則AB=x+,在Rt△ABE中,AB2+BE2=AE2,求出x的值,即可得出正方形ABCD的邊長.試題解析:(1)證明:∵四邊形ABCD是正方形,∴AB=AD,∵△AEF是等邊三角形,∴AE=AF,在Rt△ABE和Rt△ADF中,∵AB=AD,AE=AF∴Rt△ABE≌Rt△ADF;(2)∵等邊△AEF的周長是6,∴AE=EF=AF=2,又∵Rt△ABE≌Rt△ADF,∴BE=DF,∴CE=CF,∠C=90°,即△ECF是等腰直角三角形,由勾股定理得CE2+CF2=EF2,∴EC=,設BE=x,則AB=x+,在Rt△ABE中,AB2+BE2=AE2,即(x+)2+x2=4,解得x1=或x2=(舍去),∴AB=+=,∴正方形ABCD的邊長為.考點:1.正方形的性質(zhì);2.全等三角形的判定與性質(zhì);22、(1);(2).【解析】(1)既是中心對稱圖形又是軸對稱圖形只有圓一個圖形,然后根據(jù)概率的意義解答即可;(2)畫出樹狀圖,然后根據(jù)概率公式列式計算即可得解.【詳解】(1)∵正三角形、平行四邊形、圓、正五邊形中只有圓既是中心對稱圖形又是軸對稱圖形,∴抽到的卡片既是中心對稱圖形又是軸對稱圖形的概率是;(2)根據(jù)題意畫出樹狀圖如下:一共有12種情況,抽出的兩張卡片的圖形是中心對稱圖形的是B、C共有2種情況,所以,P(抽出的兩張卡片的圖形是中心對稱圖形).【點睛】本題考查了列表法和樹狀圖法,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.23、(1)游戲1對小明和姐姐是公平的;游戲2對小明和姐姐是公平的;(2)友善福、愛國福、敬業(yè)福.【分析】(1)在兩種游戲中,分別求出小明和姐姐獲勝的概率,即可得答案;(2)分別從國家、社會和個人三個層面解答即可得答案.【詳解】(1)小明的游戲:∵共有4種等可能結果,一次摸到小球的標號數(shù)字為奇數(shù)或為偶數(shù)的各有2種,∴小明獲勝的概率為=,姐姐獲勝的概率為=,∴游戲1對小明和姐姐是公平的;姐姐的游戲:畫樹狀圖如下:共有16種可能情況,其中兩次摸到小球的標號數(shù)字同為奇數(shù)或同為偶數(shù)的共有8種,兩次摸到小球的標號數(shù)字為一奇一偶的結果也共有8種,∴小明獲勝的概率為=,姐姐獲勝的概率為=,∴游戲2對小明和姐姐是公平的..(2)“五福”中國家層面是:富強福,“五福”中社會層面是:和諧福,“五福”中個人層面是:友善福、愛國福、敬業(yè)福.【點睛】本題考查游戲公平性的判斷,判斷游戲的公平性要計算每個參與者獲勝的概率,概率相等則游戲公平,否則游戲不公平,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.24、(1)a=1或﹣1;(2)a=﹣10,方程的另一個根為1.【分析】(1)由題意可得方程的判別式△=0,由此可得關于a的方程,解方程即得結果;(2)把x=2代入原方程即可求出a,然后再解方程即可求出方程的另一個根.【詳解】解:(1)∵方程x2+ax+16=0有兩個相等的實數(shù)根,∴a2-4×1×16=0,解得a=1或﹣1;(2)∵方程x2+ax+16=0有一個根是2,∴22+2a+16=0,解得a=﹣10;此時方程為x2﹣10x+16=0,解得x1=2,x2=1;∴a=﹣10,方程的另一個根為1.【點睛】本題考查了一元二次方程的解、一元二次方程的解法以及根的判別式等知識,屬于基礎題目,熟練掌握上述知識是解題的關鍵.25、(1)75°;(2);(3).【分析】(1)根據(jù)平行線的性質(zhì)可得出∠ADB=∠OAC=75°;(2)結合∠BOD=∠COA可得出△BOD∽△COA,利用相似三角形的性質(zhì)可求出OD的值,進而可得出AD的值,由三角形內(nèi)角和定理可得出∠ABD=75°=∠ADB,由等角對等邊可得出AB的長;(3)過點B作BE∥AD交AC于點E,同(1)可得出AE的長.在Rt△AEB中,利用勾股定理可求出BE的長度,再在Rt△CAD中,利用勾股定理可求出DC的長,此題得解.【詳解】(1)∵BD∥AC,∴∠ADB=∠OAC=75°.(2)∵∠BOD=∠COA,∠ADB=∠OAC,∴△BOD∽△COA,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論