甘肅省東鄉(xiāng)族自治縣第二中學2024屆高三二模考試(針對性訓練)數(shù)學試題試卷_第1頁
甘肅省東鄉(xiāng)族自治縣第二中學2024屆高三二??荚嚕ㄡ槍π杂柧殻?shù)學試題試卷_第2頁
甘肅省東鄉(xiāng)族自治縣第二中學2024屆高三二模考試(針對性訓練)數(shù)學試題試卷_第3頁
甘肅省東鄉(xiāng)族自治縣第二中學2024屆高三二??荚嚕ㄡ槍π杂柧殻?shù)學試題試卷_第4頁
甘肅省東鄉(xiāng)族自治縣第二中學2024屆高三二??荚嚕ㄡ槍π杂柧殻?shù)學試題試卷_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

甘肅省東鄉(xiāng)族自治縣第二中學2024屆高三二??荚嚕ㄡ槍π杂柧殻?shù)學試題試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設為虛數(shù)單位,為復數(shù),若為實數(shù),則()A. B. C. D.2.如圖,矩形ABCD中,,,E是AD的中點,將沿BE折起至,記二面角的平面角為,直線與平面BCDE所成的角為,與BC所成的角為,有如下兩個命題:①對滿足題意的任意的的位置,;②對滿足題意的任意的的位置,,則()A.命題①和命題②都成立 B.命題①和命題②都不成立C.命題①成立,命題②不成立 D.命題①不成立,命題②成立3.已知函數(shù)是定義在上的奇函數(shù),函數(shù)滿足,且時,,則()A.2 B. C.1 D.4.已知雙曲線:的焦距為,焦點到雙曲線的漸近線的距離為,則雙曲線的漸近線方程為()A. B. C. D.5.要得到函數(shù)的圖象,只需將函數(shù)的圖象上所有點的()A.橫坐標縮短到原來的(縱坐標不變),再向左平移個單位長度B.橫坐標縮短到原來的(縱坐標不變),再向右平移個單位長度C.橫坐標伸長到原來的2倍(縱坐標不變),再向左平移個單位長度D.橫坐標伸長到原來的2倍(縱坐標不變),再向右平移個單位長度6.設則以線段為直徑的圓的方程是()A. B.C. D.7.已知命題p:若,,則;命題q:,使得”,則以下命題為真命題的是()A. B. C. D.8.若函數(shù),在區(qū)間上任取三個實數(shù),,均存在以,,為邊長的三角形,則實數(shù)的取值范圍是()A. B. C. D.9.為得到函數(shù)的圖像,只需將函數(shù)的圖像()A.向右平移個長度單位 B.向右平移個長度單位C.向左平移個長度單位 D.向左平移個長度單位10.如圖,在平行四邊形中,為對角線的交點,點為平行四邊形外一點,且,,則()A. B.C. D.11.已知直線與圓有公共點,則的最大值為()A.4 B. C. D.12.復數(shù)滿足(為虛數(shù)單位),則的值是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如果函數(shù)(,且,)在區(qū)間上單調遞減,那么的最大值為__________.14.將底面直徑為4,高為的圓錐形石塊打磨成一個圓柱,則該圓柱的側面積的最大值為__________.15.若雙曲線C:(,)的頂點到漸近線的距離為,則的最小值________.16.已知數(shù)列的各項均為正數(shù),記為數(shù)列的前項和,若,,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的通項,數(shù)列為等比數(shù)列,且,,成等差數(shù)列.(1)求數(shù)列的通項;(2)設,求數(shù)列的前項和.18.(12分)已知數(shù)列的各項均為正數(shù),且滿足.(1)求,及的通項公式;(2)求數(shù)列的前項和.19.(12分)在直角坐標系中,直線l過點,且傾斜角為,以直角坐標系的原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為.求直線l的參數(shù)方程和曲線C的直角坐標方程,并判斷曲線C是什么曲線;設直線l與曲線C相交與M,N兩點,當,求的值.20.(12分)在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)).在以原點為極點,軸正半軸為極軸的極坐標系中,圓的方程為.(1)寫出直線的普通方程和圓的直角坐標方程;(2)若點坐標為,圓與直線交于兩點,求的值.21.(12分)已知橢圓:()的左、右頂點分別為、,焦距為2,點為橢圓上異于、的點,且直線和的斜率之積為.(1)求的方程;(2)設直線與軸的交點為,過坐標原點作交橢圓于點,試探究是否為定值,若是,求出該定值;若不是,請說明理由.22.(10分)已知函數(shù).(Ⅰ)求在點處的切線方程;(Ⅱ)求證:在上存在唯一的極大值;(Ⅲ)直接寫出函數(shù)在上的零點個數(shù).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解題分析】

可設,將化簡,得到,由復數(shù)為實數(shù),可得,解方程即可求解【題目詳解】設,則.由題意有,所以.故選:B【題目點撥】本題考查復數(shù)的模長、除法運算,由復數(shù)的類型求解對應參數(shù),屬于基礎題2、A【解題分析】

作出二面角的補角、線面角、線線角的補角,由此判斷出兩個命題的正確性.【題目詳解】①如圖所示,過作平面,垂足為,連接,作,連接.由圖可知,,所以,所以①正確.②由于,所以與所成角,所以,所以②正確.綜上所述,①②都正確.故選:A【題目點撥】本題考查了折疊問題、空間角、數(shù)形結合方法,考查了推理能力與計算能力,屬于中檔題.3、D【解題分析】

說明函數(shù)是周期函數(shù),由周期性把自變量的值變小,再結合奇偶性計算函數(shù)值.【題目詳解】由知函數(shù)的周期為4,又是奇函數(shù),,又,∴,∴.故選:D.【題目點撥】本題考查函數(shù)的奇偶性與周期性,掌握周期性與奇偶性的概念是解題基礎.4、A【解題分析】

利用雙曲線:的焦點到漸近線的距離為,求出,的關系式,然后求解雙曲線的漸近線方程.【題目詳解】雙曲線:的焦點到漸近線的距離為,可得:,可得,,則的漸近線方程為.故選A.【題目點撥】本題考查雙曲線的簡單性質的應用,構建出的關系是解題的關鍵,考查計算能力,屬于中檔題.5、C【解題分析】

根據(jù)三角函數(shù)圖像的變換與參數(shù)之間的關系,即可容易求得.【題目詳解】為得到,將橫坐標伸長到原來的2倍(縱坐標不變),故可得;再將向左平移個單位長度,故可得.故選:C.【題目點撥】本題考查三角函數(shù)圖像的平移,涉及誘導公式的使用,屬基礎題.6、A【解題分析】

計算的中點坐標為,圓半徑為,得到圓方程.【題目詳解】的中點坐標為:,圓半徑為,圓方程為.故選:.【題目點撥】本題考查了圓的標準方程,意在考查學生的計算能力.7、B【解題分析】

先判斷命題的真假,進而根據(jù)復合命題真假的真值表,即可得答案.【題目詳解】,,因為,,所以,所以,即命題p為真命題;畫出函數(shù)和圖象,知命題q為假命題,所以為真.故選:B.【題目點撥】本題考查真假命題的概念,以及真值表的應用,解題的關鍵是判斷出命題的真假,難度較易.8、D【解題分析】

利用導數(shù)求得在區(qū)間上的最大值和最小,根據(jù)三角形兩邊的和大于第三邊列不等式,由此求得的取值范圍.【題目詳解】的定義域為,,所以在上遞減,在上遞增,在處取得極小值也即是最小值,,,,,所以在區(qū)間上的最大值為.要使在區(qū)間上任取三個實數(shù),,均存在以,,為邊長的三角形,則需恒成立,且,也即,也即當、時,成立,即,且,解得.所以的取值范圍是.故選:D【題目點撥】本小題主要考查利用導數(shù)研究函數(shù)的最值,考查恒成立問題的求解,屬于中檔題.9、D【解題分析】,所以要的函數(shù)的圖象,只需將函數(shù)的圖象向左平移個長度單位得到,故選D10、D【解題分析】

連接,根據(jù)題目,證明出四邊形為平行四邊形,然后,利用向量的線性運算即可求出答案【題目詳解】連接,由,知,四邊形為平行四邊形,可得四邊形為平行四邊形,所以.【題目點撥】本題考查向量的線性運算問題,屬于基礎題11、C【解題分析】

根據(jù)表示圓和直線與圓有公共點,得到,再利用二次函數(shù)的性質求解.【題目詳解】因為表示圓,所以,解得,因為直線與圓有公共點,所以圓心到直線的距離,即,解得,此時,因為,在遞增,所以的最大值.故選:C【題目點撥】本題主要考查圓的方程,直線與圓的位置關系以及二次函數(shù)的性質,還考查了運算求解的能力,屬于中檔題.12、C【解題分析】

直接利用復數(shù)的除法的運算法則化簡求解即可.【題目詳解】由得:本題正確選項:【題目點撥】本題考查復數(shù)的除法的運算法則的應用,考查計算能力.二、填空題:本題共4小題,每小題5分,共20分。13、18【解題分析】

根據(jù)函數(shù)單調性的性質,分一次函數(shù)和一元二次函數(shù)的對稱性和單調區(qū)間的關系建立不等式,利用基本不等式求解即可.【題目詳解】解:①當時,,在區(qū)間上單調遞減,則,即,則.②當時,,函數(shù)開口向上,對稱軸為,因為在區(qū)間上單調遞減,則,因為,則,整理得,又因為,則.所以即,所以當且僅當時等號成立.綜上所述,的最大值為18.故答案為:18【題目點撥】本題主要考查一次函數(shù)與二次函數(shù)的單調性和均值不等式.利用均值不等式求解要注意”一定,二正,三相等”.14、【解題分析】

由題意欲使圓柱側面積最大,需使圓柱內接于圓錐.設圓柱的高為h,底面半徑為r,則,將側面積表示成關于的函數(shù),再利用一元二次函數(shù)的性質求最值.【題目詳解】欲使圓柱側面積最大,需使圓柱內接于圓錐.設圓柱的高為h,底面半徑為r,則,所以.∴,當時,的最大值為.故答案為:.【題目點撥】本題考查圓柱的側面積的最值,考查函數(shù)與方程思想、轉化與化歸思想、,考查空間想象能力和運算求解能力,求解時注意將問題轉化為函數(shù)的最值問題.15、【解題分析】

根據(jù)雙曲線的方程求出其中一條漸近線,頂點,再利用點到直線的距離公式可得,由,利用基本不等式即可求解.【題目詳解】由雙曲線C:(,,可得一條漸近線,一個頂點,所以,解得,則,當且僅當時,取等號,所以的最小值為.故答案為:【題目點撥】本題考查了雙曲線的幾何性質、點到直線的距離公式、基本不等式求最值,注意驗證等號成立的條件,屬于基礎題.16、63【解題分析】

對進行化簡,可得,再根據(jù)等比數(shù)列前項和公式進行求解即可【題目詳解】由數(shù)列為首項為,公比的等比數(shù)列,所以63【題目點撥】本題考查等比數(shù)列基本量的求法,當處理復雜因式時,常用基本方法為:因式分解,約分。但解題本質還是圍繞等差和等比的基本性質三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解題分析】

(1)根據(jù),,成等差數(shù)列以及為等比數(shù)列,通過直接對進行賦值計算出的首項和公比,即可求解出的通項公式;(2)的通項公式符合等差乘以等比的形式,采用錯位相減法進行求和.【題目詳解】(1)數(shù)列為等比數(shù)列,且,,成等差數(shù)列.設數(shù)列的公比為,,,解得(2),,,,.【題目點撥】本題考查等差、等比數(shù)列的綜合以及錯位相減法求和的應用,難度一般.判斷是否適合使用錯位相減法,可根據(jù)數(shù)列的通項公式是否符合等差乘以等比的形式來判斷.18、(1);.;(2)【解題分析】

(1)根據(jù)題意,知,且,令和即可求出,,以及運用遞推關系求出的通項公式;(2)通過定義法證明出是首項為8,公比為4的等比數(shù)列,利用等比數(shù)列的前項和公式,即可求得的前項和.【題目詳解】解:(1)由題可知,,且,當時,,則,當時,,,由已知可得,且,∴的通項公式:.(2)設,則,所以,,得是首項為8,公比為4的等比數(shù)列,所以數(shù)列的前項和為:,即,所以數(shù)列的前項和:.【題目點撥】本題考查通過遞推關系求數(shù)列的通項公式,以及等比數(shù)列的前項和公式,考查計算能力.19、(Ⅰ)曲線是焦點在軸上的橢圓;(Ⅱ).【解題分析】試題分析:(1)由題易知,直線的參數(shù)方程為,(為參數(shù)),;曲線的直角坐標方程為,橢圓;(2)將直線代入橢圓得到,所以,解得.試題解析:(Ⅰ)直線的參數(shù)方程為.曲線的直角坐標方程為,即,所以曲線是焦點在軸上的橢圓.(Ⅱ)將的參數(shù)方程代入曲線的直角坐標方程為得,,得,,20、(1)(2)【解題分析】試題分析:(1)由加減消元得直線的普通方程,由得圓的直角坐標方程;(2)把直線l的參數(shù)方程代入圓C的直角坐標方程,由直線參數(shù)方程幾何意義得|PA|+|PB|=|t1|+|t2|=t1+t2,再根據(jù)韋達定理可得結果試題解析:解:(Ⅰ)由得直線l的普通方程為x+y﹣3﹣=0又由得ρ2=2ρsinθ,化為直角坐標方程為x2+(y﹣)2=5;(Ⅱ)把直線l的參數(shù)方程代入圓C的直角坐標方程,得(3﹣t)2+(t)2=5,即t2﹣3t+4=0設t1,t2是上述方程的兩實數(shù)根,所以t1+t2=3又直線l過點P,A、B兩點對應的參數(shù)分別為t1,t2,所以|PA|+|PB|=|t1|+|t2|=t1+t2=3.21、(1)(2)是定值,且定值為2【解題分析】

(1)設出點坐標并代入橢圓方程,根據(jù)列方程,求得的值,結合求得的值,進而求得橢圓的方程.(2)設出直線的方程,聯(lián)立直線的方程和橢圓方程,求得點的橫坐標,聯(lián)立直線的方程和橢圓方程,求得,由此化簡求得為定值.【題目詳解】(1)已知點在橢圓:()上,可設,即,又,且,可得橢圓的方程為.(2)設直線的方程為:,則直線的方程為.聯(lián)立直線與橢圓的方程可得:,由,可得,聯(lián)立直線與橢圓的方程可得:,即,即.即為定值,且定值為2.【題目點撥】本小題主要考查本小題主要考查橢圓方程的求法,考查橢圓中的定值問題的求解,考查直線和橢圓的位置關系,考查運算求解能力,屬于

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論