2023年湖北省襄陽市棗陽市蔡陽中學數(shù)學九上期末監(jiān)測試題含解析_第1頁
2023年湖北省襄陽市棗陽市蔡陽中學數(shù)學九上期末監(jiān)測試題含解析_第2頁
2023年湖北省襄陽市棗陽市蔡陽中學數(shù)學九上期末監(jiān)測試題含解析_第3頁
2023年湖北省襄陽市棗陽市蔡陽中學數(shù)學九上期末監(jiān)測試題含解析_第4頁
2023年湖北省襄陽市棗陽市蔡陽中學數(shù)學九上期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年湖北省襄陽市棗陽市蔡陽中學數(shù)學九上期末監(jiān)測試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每題4分,共48分)1.二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,那么下列說法正確的是()A.a>0,b>0,c>0 B.a<0,b>0,c>0 C.a<0,b>0,c<0 D.a<0,b<0,c>02.如圖,在中,D、E分別在AB邊和AC邊上,,M為BC邊上一點(不與B、C重合),連結AM交DE于點N,則()A. B. C. D.3.已知△ABC的外接圓⊙O,那么點O是△ABC的()A.三條中線交點 B.三條高的交點C.三條邊的垂直平分線的交點 D.三條角平分線交點4.已知正多邊形的一個內角是135°,則這個正多邊形的邊數(shù)是()A.3 B.4 C.6 D.85.如圖,河壩橫斷面的迎水坡AB的坡比為3:4,BC=6m,則坡面AB的長為()A.6m B.8m C.10m D.12m6.王洪存銀行5000元,定期一年后取出3000元,剩下的錢繼續(xù)定期一年存入,如果每年的年利率不變,到期后取出2750元,則年利率為()A.5% B.20% C.15% D.10%7.如圖,已知雙曲線上有一點,過作垂直軸于點,連接,則的面積為()A. B. C. D.8.如圖,已知矩形的面積是,它的對角線與雙曲線圖象交于點,且,則值是()A. B. C. D.9.在直角坐標系中,點關于坐標原點的對稱點的坐標為()A. B. C. D.10.如圖,在中,是斜邊上的高,則圖中的相似三角形共有()A.1對 B.2對 C.3對 D.4對11.如圖,若AB是⊙O的直徑,CD是⊙O的弦,∠ABD=55°,則∠BCD的度數(shù)為()A. B. C. D.12.如圖是一根電線桿在一天中不同時刻的影長圖,試按其天中發(fā)生的先后順序排列,正確的是()A.①②③④ B.④①③② C.④②③① D.④③②①二、填空題(每題4分,共24分)13.如圖,在中,點分別是邊上的點,,則的長為________.14.如圖,在平面直角坐標系中,已知點,為平面內的動點,且滿足,為直線上的動點,則線段長的最小值為________.15.在一個不透明的口袋中,裝有一些除顏色外完全相同的紅、白、黑三種顏色的小球.己知袋中有紅球5個,白球23個,且從袋中隨機摸出一個紅球的概率是,則袋中黑球的個數(shù)為__________.16.四邊形ABCD是☉O的內接四邊形,,則的度數(shù)為____________.17.如圖,將繞頂點A順時針旋轉后得到,且為的中點,與相交于,若,則線段的長度為________.18.如圖,是一個半徑為6cm,面積為12πcm2的扇形紙片,現(xiàn)需要一個半徑為R的圓形紙片,使兩張紙片剛好能組合成圓錐體,則R等于_____cm.三、解答題(共78分)19.(8分)一個斜拋物體的水平運動距離為x(m),對應的高度記為h(m),且滿足h=ax1+bx﹣1a(其中a≠0).已知當x=0時,h=1;當x=10時,h=1.(1)求h關于x的函數(shù)表達式;(1)求斜拋物體的最大高度和達到最大高度時的水平距離.20.(8分)如圖,在平面直角坐標系中,點從點運動到點停止,連接,以長為直徑作.(1)若,求的半徑;(2)當與相切時,求的面積;(3)連接,在整個運動過程中,的面積是否為定值,如果是,請直接寫出面積的定值,如果不是,請說明理由.21.(8分)如圖,四邊形ABCD中,AB∥CD,CD≠AB,點F在BC上,連DF與AB的延長線交于點G.(1)求證:CF?FG=DF?BF;(2)當點F是BC的中點時,過F作EF∥CD交AD于點E,若AB=12,EF=8,求CD的長.22.(10分)如圖,正方形、等腰的頂點在對角線上(點與、不重合),與交于,延長線與交于點,連接.(1)求證:.(2)求證:(3)若,求的值.23.(10分)綜合與探究:已知二次函數(shù)y=﹣x2+x+2的圖象與x軸交于A,B兩點(點B在點A的左側),與y軸交于點C.(1)求點A,B,C的坐標;(2)求證:△ABC為直角三角形;(3)如圖,動點E,F(xiàn)同時從點A出發(fā),其中點E以每秒2個單位長度的速度沿AB邊向終點B運動,點F以每秒個單位長度的速度沿射線AC方向運動.當點F停止運動時,點E隨之停止運動.設運動時間為t秒,連結EF,將△AEF沿EF翻折,使點A落在點D處,得到△DEF.當點F在AC上時,是否存在某一時刻t,使得△DCO≌△BCO?(點D不與點B重合)若存在,求出t的值;若不存在,請說明理由.24.(10分)在全校的科技制作大賽中,王浩同學用木板制作了一個帶有卡槽的三角形手機架.如圖所示,卡槽的寬度DF與內三角形ABC的AB邊長相等.已知AC=20cm,BC=18cm,∠ACB=50°,一塊手機的最長邊為17cm,王浩同學能否將此手機立放入卡槽內?請說明你的理由(參考數(shù)據(jù):sin50°≈0.8,cos50°≈0.6,tan50°≈1.2)25.(12分)已知:PA=,PB=4,以AB為一邊作正方形ABCD,使P、D兩點落在直線AB的兩側.(1)如圖,當∠APB=45°時,求AB及PD的長;(2)當∠APB變化,且其它條件不變時,求PD的最大值,及相應∠APB的大小.26.拋物線的圖像與軸的一個交點為,另一交點為,與軸交于點,對稱軸是直線.(1)求該二次函數(shù)的表達式及頂點坐標;(2)畫出此二次函數(shù)的大致圖象;利用圖象回答:當取何值時,?(3)若點在拋物線的圖像上,且點到軸距離小于3,則的取值范圍為;

參考答案一、選擇題(每題4分,共48分)1、B【分析】利用拋物線開口方向確定a的符號,利用對稱軸方程可確定b的符號,利用拋物線與y軸的交點位置可確定c的符號.【詳解】∵拋物線開口向下,∴a<0,∵拋物線的對稱軸在y軸的右側,∴x=﹣>0,∴b>0,∵拋物線與y軸的交點在x軸上方,∴c>0,故選B.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關系:對于二次函數(shù)y=ax2+bx+c(a≠0),二次項系數(shù)a決定拋物線的開口方向和大?。寒攁>0時,拋物線向上開口;當a<0時,拋物線向下開口;一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置:當a與b同號時(即ab>0),對稱軸在y軸左;當a與b異號時(即ab<0),對稱軸在y軸右;常數(shù)項c決定拋物線與y軸交點位置:拋物線與y軸交于(0,c);拋物線與x軸交點個數(shù)由△決定:△=b2﹣4ac>0時,拋物線與x軸有2個交點;△=b2﹣4ac=0時,拋物線與x軸有1個交點;△=b2﹣4ac<0時,拋物線與x軸沒有交點.2、C【分析】根據(jù)平行線的性質和相似三角形的判定可得△ADN∽△ABM,△ANE∽△AMC,再根據(jù)相似三角形的性質即可得到答案.【詳解】∵,∴△ADN∽△ABM,△ANE∽△AMC,∴,故選C.【點睛】本題考查平行線的性質、相似三角形的判定和性質,解題的關鍵是熟練掌握平行線的性質、相似三角形的判定和性質.3、C【分析】根據(jù)三角形外接圓圓心的確定方法,結合垂直平分線的性質,即可求得.【詳解】已知⊙O是△ABC的外接圓,那么點O一定是△ABC的三邊的垂直平分線的交點,故選:C.【點睛】本題考查三角形外接圓圓心的確定,屬基礎題.4、D【分析】根據(jù)正多邊形的一個內角是135°,則知該正多邊形的一個外角為45°,再根據(jù)多邊形的外角之和為360°,即可求出正多邊形的邊數(shù).【詳解】解:∵正多邊形的一個內角是135°,∴該正多邊形的一個外角為45°,∵多邊形的外角之和為360°,∴邊數(shù)=,∴這個正多邊形的邊數(shù)是1.故選:D.【點睛】本題考查了正多邊形的內角和與外角和的知識,知道正多邊形的外角之和為360°是解題關鍵.5、C【分析】迎水坡AB的坡比為3:4得出,再根據(jù)BC=6m得出AC的值,再根據(jù)勾股定理求解即可.【詳解】由題意得∴∴故選:C.【點睛】本題考查解直角三角形的應用,把坡比轉化為三角函數(shù)值是關鍵.6、D【分析】設定期一年的利率是x,則存入一年后的本息和是5000(1+x)元,取3000元后余[5000(1+x)﹣3000]元,再存一年則有方程[5000(1+x)﹣3000]?(1+x)=2750,解這個方程即可求解.【詳解】設定期一年的利率是x,根據(jù)題意得:一年時:5000(1+x),取出3000后剩:5000(1+x)﹣3000,同理兩年后是[5000(1+x)﹣3000](1+x),即方程為[5000(1+x)﹣3000]?(1+x)=2750,解得:x1=10%,x2=﹣150%(不符合題意,故舍去),即年利率是10%.故選:D.【點睛】此題考查了列代數(shù)式及一元二次方程的應用,是有關利率的問題,關鍵是掌握公式:本息和=本金×(1+利率×期數(shù)),難度一般.7、B【分析】根據(jù)已知雙曲線上有一點,點縱和橫坐標的積是4,的面積是它的二分之一,即為所求.【詳解】解:∵雙曲線上有一點,設A的坐標為(a,b),∴b=∴ab=4∴的面積==2故選:B.【點睛】本題考查了反比例函數(shù)的性質和三角形的面積,熟練掌握相關知識是解題的關鍵.8、D【分析】過點D作DE∥AB交AO于點E,通過平行線分線段成比例求出的長度,從而確定點D的坐標,代入到解析式中得到k的值,最后利用矩形的面積即可得出答案.【詳解】過點D作DE∥AB交AO于點E∵DE∥AB∴∵∴∴∴∵點D在上∴∵∴故選D【點睛】本題主要考查平行線分線段成比例及反比例函數(shù),掌握平行線分線段成比例是解題的關鍵.9、D【分析】根據(jù)關于原點對稱的點的坐標特征:橫、縱坐標都相反,進行判斷即可.【詳解】點A(-1,2)關于原點的對稱點的坐標為(1,-2).故選:D.【點睛】本題考查點的坐標特征,熟記特殊點的坐標特征是關鍵.10、C【分析】根據(jù)相似三角形的判定定理及已知即可得到存在的相似三角形.【詳解】∵∠ACB=90°,CD⊥AB∴△ABC∽△ACD,△ACD∽△CBD,△ABC∽△CBD所以有三對相似三角形,故選:C.【點睛】考查相似三角形的判定定理:(1)兩角對應相等的兩個三角形相似;(2)兩邊對應成比例且夾角相等的兩個三角形相似;(3)三邊對應成比例的兩個三角形相似.11、A【解析】試題分析:根據(jù)∠ABD的度數(shù)可得:弧AD的度數(shù)為110°,則弧BD的度數(shù)為70°,則∠BCD的度數(shù)為35°.考點:圓周角的性質12、B【分析】北半球而言,從早晨到傍晚影子的指向是:西?西北?北?東北?東,影長由長變短,再變長.【詳解】根據(jù)題意,太陽是從東方升起,故影子指向的方向為西方.然后依次為西北?北?東北?東,即④①③②故選:B.【點睛】本題考查平行投影的特點和規(guī)律.在不同時刻,同一物體的影子的方向和大小可能不同,不同時刻物體在太陽光下的影子的大小在變,方向也在改變,就北半球而言,從早晨到傍晚影子的指向是:西?西北?北?東北?東,影長由長變短,再變長.二、填空題(每題4分,共24分)13、1【分析】根據(jù)平行線分線段成比例定理即可解決問題.【詳解】∵,,∴,,則,,∴,∵,∴.故答案為:1.【點睛】本題考查平行線分線段成比例定理,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.14、【分析】由直徑所對的圓周角為直角可知,動點軌跡為以中點為圓心,長為直徑的圓,求得圓心到直線的距離,即可求得答案.【詳解】∵,∴動點軌跡為:以中點為圓心,長為直徑的圓,∵,,∴點M的坐標為:,半徑為1,過點M作直線垂線,垂足為D,交⊙D于C點,如圖:此時取得最小值,∵直線的解析式為:,∴,∴,∵,∴,∴最小值為,故答案為:.【點睛】本題考查了點的軌跡,圓周角定理,圓心到直線的距離,正確理解點到直線的距離垂線段最短是正確解答本題的關鍵.15、1【分析】袋中黑球的個數(shù)為,利用概率公式得到,然后利用比例性質求出即可.【詳解】解:設袋中黑球的個數(shù)為,根據(jù)題意得,解得,即袋中黑球的個數(shù)為個.故答案為:1.【點睛】本題主要考查概率的計算問題,關鍵在于根據(jù)題意對概率公式的應用.16、130°【分析】根據(jù)圓內接四邊形的對角互補,得∠ABC=180°-∠D=130°.【詳解】解:∵四邊形ABCD是⊙O的內接四邊形,∴∠ABC+∠D=180°,∵∠D=50°,∴∠ABC=180°-∠D=130°.故答案為:130°.【點睛】本題考查了圓內接四邊形的性質,圓內接四邊形對角互補.17、【分析】根據(jù)旋轉的性質可知△ACC1為等邊三角形,進而得出BC1=CC1=AC1=2,△ADC1是含20°的直角三角形,得到DC1的長,利用線段的和差即可得出結論.【詳解】根據(jù)旋轉的性質可知:AC=AC1,∠CAC1=60°,B1C1=BC,∠B1C1A=∠C,∴△ACC1為等邊三角形,∴∠AC1C=∠C=60°,CC1=AC1.∵C1是BC的中點,∴BC1=CC1=AC1=2,∴∠B=∠C1AB=20°.∵∠B1C1A=∠C=60°,∴∠ADC1=180°-(∠C1AB+∠B1C1A)=180°-(20°+60°)=90°,∴DC1=AC1=1,∴B1D=B1C1-DC1=4-1=2.故答案為:2.【點睛】本題考查了旋轉的性質以及直角三角形的性質,得出△ADC1是含20°的直角三角形是解答本題的關鍵.18、2.【解析】能組合成圓錐體,那么扇形的弧長等于圓形紙片的周長.應先利用扇形的面積=圓錐的弧長母線長,得到圓錐的弧長=2扇形的面積母線長,進而根據(jù)圓錐的底面半徑=圓錐的弧長求解.【詳解】圓錐的弧長,

圓錐的底面半徑,

故答案為2.【點睛】解決本題的難點是得到圓錐的弧長與扇形面積之間的關系,注意利用圓錐的弧長等于底面周長這個知識點.三、解答題(共78分)19、(1)h=﹣x1+10x+1;(1)斜拋物體的最大高度為17,達到最大高度時的水平距離為2.【分析】(1)將當x=0時,h=1;當x=10時,h=1,代入解析式,可求解;(1)由h=?x1+10x+1=?(x?2)1+17,即可求解.【詳解】(1)∵當x=0時,h=1;當x=10時,h=1.∴解得:∴h關于x的函數(shù)表達式為:h=﹣x1+10x+1;(1)∵h=﹣x1+10x+1=﹣(x﹣2)1+17,∴斜拋物體的最大高度為17,達到最大高度時的水平距離為2.【點睛】本題考查了二次函數(shù)的應用,求出二次函數(shù)的解析式是本題的關鍵.20、(1);(2);(3)是,【分析】(1)若,則,代入數(shù)值即可求得CD,從而求得的半徑.(2)當與相切時,則CD⊥AB,利用△ACD∽△ABO,得出比例式求得CD,AD的長,過P點作PE⊥AO于E點,再利用△CPE∽△CAD,得出比例式求得P點的坐標,即可求得△POB的面積.(3)①若與AB有一個交點,則與AB相切,由(2)可得PD⊥AB,PD=,則②若與AB有兩個交點,設另一個交點為F,連接CF,則∠CFD=90°,由(2)可得CF=3,過P點作PG⊥AB于G點,則DG=,PG為△DCF的中位線,PG=,則,綜上所述,△PAB的面積是定值,為.【詳解】(1)根據(jù)題意得:OA=8,OB=6,OC=3∴AC=5∵∴即∴CD=∴的半徑為(2)在直角三角形AOB中,OA=8,OB=6,∴AB=,當與相切時,CD⊥AB,∴∠ADC=∠AOB=90°,∠CAD=∠BAO∴△ACD∽△ABO∴,即∴CD=3,AD=4∵CD為圓P的直徑∴CP=過P點作PE⊥AO于E點,則∠PEC=∠ADC=90°,∠PCE=∠ACD∴△CPE∽△CAD∴即∴CE=∴OE=故P點的縱坐標為∴△POB的面積=(3)①若與AB有一個交點,則與AB相切,由(2)可得PD⊥AB,PD=,則②若與AB有兩個交點,設另一個交點為F,連接CF,則∠CFD=90°,由(2)可得CF=3,過P點作PG⊥AB于G點,則DG=,PG為△DCF的中位線,PG=,則.綜上所述,△PAB的面積是定值,為.【點睛】本題考查的是圓及相似三角形的綜合應用,熟練的掌握直線與圓的位置關系,相似三角形的判定是關鍵.21、(1)證明見解析;(2)1.【分析】(1)證明△CDF∽△BGF可得出結論;(2)證明△CDF≌△BGF,可得出DF=GF,CD=BG,得出EF是△DAG的中位線,則2EF=AG=AB+BG,求出BG即可.【詳解】(1)證明:∵四邊形ABCD,AB∥CD,∴∠CDF=∠G,∠DCF=∠GBF,∴△CDF∽△BGF.∴,∴CF?FG=DF?BF;(2)解:由(1)△CDF∽△BGF,又∵F是BC的中點,BF=FC,∴△CDF≌△BGF(AAS),∴DF=GF,CD=BG,∵AB∥DC∥EF,F(xiàn)為BC中點,∴E為AD中點,∴EF是△DAG的中位線,∴2EF=AG=AB+BG.∴BG=2EF﹣AB=2×8﹣12=1,∴BG=1.【點睛】此題考查三角形相似的判定及性質定理,三角形全等的判定及性質定理,三角形的中位線定理,(2)利用(1)的相似得到三角形全等是解題的關鍵,由此利用中點E得到三角形的中位線,利用中位線的定理來解題.22、(1)證明見解析;(2)證明見解析;(3).【分析】(1)證出∠ABP=∠CBQ,由SAS證明△ABP≌△CBQ可得結論;

(2)根據(jù)正方形的性質和全等三角形的性質得到,∠APF=∠ABP,可證明△APF∽△ABP,再根據(jù)相似三角形的性質即可求解;

(3)根據(jù)全等三角形的性質得到∠BCQ=∠BAC=45°,可得∠PCQ=90°,根據(jù)三角函數(shù)和已知條件得到,由(2)可得,等量代換可得∠CBQ=∠CPQ即可求解.【詳解】(1)∵是正方形,∴,,∵是等腰三角形,∴,,∴,∴,∴;(2)∵是正方形,∴,,∵是等腰三角形,∴,∵,∵,∴,∴,∴,∴,∴,;(3)由(1)得,,,∴,由(2),∴,∵,∴,在中,,∴【點睛】本題是四邊形綜合題目,考查了正方形的性質、全等三角形的判定與性質、相似三角形的判定與性質等知識;本題綜合性強,有一定難度.23、(1)點A的坐標為(4,0),點B的坐標為(﹣1,0),點C的坐標為(0,1);(1)證明見解析;(3)t=.【分析】(1)利用x=0和y=0解方程即可求出A、B、C三點坐標;

(1)先計算△ABC的三邊長,根據(jù)勾股定理的逆定理可得結論;

(3)先證明△AEF∽△ACB,得∠AEF=∠ACB=90°,確定△AEF沿EF翻折后,點A落在x軸上點D處,根據(jù)△DCO≌△BCO時,BO=OD,列方程4-4t=1,可得結論.【詳解】(1)解:當y=0時,﹣x+1=0,解得:x1=1,x1=4,∴點A的坐標為(4,0),點B的坐標為(﹣1,0),當x=0時,y=1,∴點C的坐標為(0,1);(1)證明:∵A(4,0),B(﹣1,0),C(0,1),∴OA=4,OB=1,OC=1.∴AB=5,AC==,∴AC1+BC1=15=AB1,∴△ABC為直角三角形;(3)解:由(1)可知△ABC為直角三角形.且∠ACB=90°,∵AE=1t,AF=t,∴,又∵∠EAF=∠CAB,∴△AEF∽△ACB,∴∠AEF=∠ACB=90°,∴△AEF沿EF翻折后,點A落在x軸上點D處,由翻折知,DE=AE,∴AD=1AE=4t,當△DCO≌△BCO時,BO=OD,∵OD=4﹣4t,BO=1,∴4﹣4t=1,t=,即:當t=秒時,△DCO≌△BCO.【點睛】本題考查二次函數(shù)的性質、拋物線與x軸的交點、翻折的性質、三角形相似和全等的性質和判定等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.24、王浩同學能將手機放入卡槽DF內,理由見解析【分析】作AD⊥BC于D,根據(jù)正弦、余弦的定義分別求出AD和CD的長,求出DB的長,根據(jù)勾股定理即可得到AB的長,然后與17比較大小,得到答案.【詳解】解:王浩同學能將手機放入卡槽DF內,理由如下:作AD⊥BC于點D,∵∠C=50°,AC=20,∴AD=AC?sin50°≈20×0.8=16,CD=AC?cos50°≈20×0.6=12,∴DB=BC﹣CD=18﹣12=6,∴AB===,∴DF=AB=,∵17=<,∴王浩同學能將手機放入卡槽DF內.【點睛】本題考查的是解直角三角形的應用,掌握銳角三角函數(shù)的定義是解題的關鍵.25、(1),;(2)的最大值為1【分析】(1)作輔助線,過點A作AE⊥PB于點E,在Rt△PAE中,已知∠APE,AP的值,根據(jù)三角函數(shù)可將AE,PE的值求出,由PB的值,可求BE的值,在Rt△ABE中,根據(jù)勾股定理可將AB的值求出;

求PD的值有兩種解法,解法一:可將△PAD繞點A順時針旋轉90°得到△P'AB,可得△PAD≌△P'AB,求PD長即為求P′B的長,在Rt△AP′P中,可將PP′的值求出,在Rt△PP′B中,根據(jù)勾股定理可將P′B的值求出;

解法二:過點P作AB的平行線,與DA的延長線交于F,交PB于G,在Rt△AEG中,可求出AG,EG的長,進而可知PG的值,在Rt△PFG中,可求出PF,在Rt△PDF中,根據(jù)勾股定理可將PD的值求出;

(2)將△PAD繞點A順時針旋轉90°,得到△P'AB,PD的最大

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論