2023年山西省壺關(guān)縣九年級數(shù)學(xué)第一學(xué)期期末達標(biāo)測試試題含解析_第1頁
2023年山西省壺關(guān)縣九年級數(shù)學(xué)第一學(xué)期期末達標(biāo)測試試題含解析_第2頁
2023年山西省壺關(guān)縣九年級數(shù)學(xué)第一學(xué)期期末達標(biāo)測試試題含解析_第3頁
2023年山西省壺關(guān)縣九年級數(shù)學(xué)第一學(xué)期期末達標(biāo)測試試題含解析_第4頁
2023年山西省壺關(guān)縣九年級數(shù)學(xué)第一學(xué)期期末達標(biāo)測試試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2023年山西省壺關(guān)縣九年級數(shù)學(xué)第一學(xué)期期末達標(biāo)測試試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.起重機的滑輪裝置如圖所示,已知滑輪半徑是10cm,當(dāng)物體向上提升3πcm時,滑輪的一條半徑OA繞軸心旋轉(zhuǎn)的角度為()A. B.C. D.2.已知和的半徑長分別是方程的兩根,且,則和的位置關(guān)系為()A.相交 B.內(nèi)切 C.內(nèi)含 D.外切3.如圖,把繞點逆時針旋轉(zhuǎn),得到,點恰好落在邊上的點處,連接,則的度數(shù)為()A. B. C. D.4.圖中信息是小明和小華射箭的成績,兩人都射了10箭,則射箭成績的方差較大的是()A.小明 B.小華 C.兩人一樣 D.無法確定5.某閉合電路中,電源的電壓為定值,電流I(A)與電阻R(Ω)成反比例.圖表示的是該電路中電流I與電阻R之間函數(shù)關(guān)系的圖象,則用電阻R表示電流I的函數(shù)解析式為()A. B. C. D.6.四邊形為平行四邊形,點在的延長線上,連接交于點,則下列結(jié)論正確的是()A. B. C. D.7.已知⊙O半徑為3,M為直線AB上一點,若MO=3,則直線AB與⊙O的位置關(guān)系為()A.相切 B.相交 C.相切或相離 D.相切或相交8.如圖,某小區(qū)規(guī)劃在一個長50米,寬30米的矩形場地ABCD上,修建三條同樣寬的道路,使其中兩條與AB平行,另一條與AD平行,其余部分種草,若使每塊草坪面積都為178平方米,設(shè)道路寬度為x米,則()A.(50﹣2x)(30﹣x)=178×6B.30×50﹣2×30x﹣50x=178×6C.(30﹣2x)(50﹣x)=178D.(50﹣2x)(30﹣x)=1789.如圖,電線桿的高度為,兩根拉線與相互垂直,,則拉線的長度為(、、在同一條直線上)()A. B. C. D.10.如圖,AB是半徑為1的⊙O的直徑,點C在⊙O上,∠CAB=30°,D為劣弧CB的中點,點P是直徑AB上一個動點,則PC+PD的最小值為()A.1 B.2 C. D.11.如圖所示的幾何體的左視圖是()A. B. C. D.12.計算的值為()A.1 B.C. D.二、填空題(每題4分,共24分)13.已知⊙O的內(nèi)接正六邊形的邊心距為1.則該圓的內(nèi)接正三角形的面積為_____.14.已知關(guān)于x的一元二次方程有兩個不相等的實數(shù)根,則k的取值范圍是________.15.如圖,是矗立在高速公路水平地面上的交通警示牌,經(jīng)測量得到如下數(shù)據(jù):AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,則警示牌的高CD為_______米(結(jié)果保留根號).16.如圖,C為半圓內(nèi)一點,O為圓心,直徑AB長為1cm,∠BOC=60°,∠BCO=90°,將△BOC繞圓心O逆時針旋轉(zhuǎn)至△B′OC′,點C′在OA上,則邊BC掃過區(qū)域(圖中陰影部分)的面積為_________cm1.17.已知:如圖,△ABC的面積為12,點D、E分別是邊AB、AC的中點,則四邊形BCED的面積為_____.18.如圖,一段與水平面成30°角的斜坡上有兩棵樹,兩棵樹水平距離為,樹的高度都是.一只小鳥從一棵樹的頂端飛到另一棵樹的頂端,小鳥至少要飛____________.三、解答題(共78分)19.(8分)已知關(guān)于的方程(1)當(dāng)m取何值時,方程有兩個實數(shù)根;(2)為m選取一個合適的整數(shù),使方程有兩個不相等的實數(shù)根,并求出這兩個實數(shù)根.20.(8分)如圖,點A的坐標(biāo)為(0,﹣2),點B的坐標(biāo)為(﹣3,2),點C的坐標(biāo)為(﹣3,﹣1).(1)請在直角坐標(biāo)系中畫出△ABC繞著點A順時針旋轉(zhuǎn)90°后的圖形△AB′C′;(2)直接寫出:點B′的坐標(biāo),點C′的坐標(biāo).21.(8分)小華為了測量樓房的高度,他從樓底的處沿著斜坡向上行走,到達坡頂處.已知斜坡的坡角為,小華的身高是,他站在坡頂看樓頂處的仰角為,求樓房的高度.(計算結(jié)果精確到)(參考數(shù)據(jù):,,)22.(10分)如圖,為反比例函數(shù)(x>0)圖象上的一點,在軸正半軸上有一點,.連接,,且.(1)求的值;(2)過點作,交反比例函數(shù)(x>0)的圖象于點,連接交于點,求的值.23.(10分)如圖,點A(1,m2)、點B(2,m﹣1)是函數(shù)y=(其中x>0)圖象上的兩點.(1)求點A、點B的坐標(biāo)及函數(shù)的解析式;(2)連接OA、OB、AB,求△AOB的面積.24.(10分)如圖,△ABC中,E是AC上一點,且AE=AB,∠BAC=2∠EBC,以AB為直徑的⊙O交AC于點D,交EB于點F.(1)求證:BC與⊙O相切;(2)若AB=8,BE=4,求BC的長.25.(12分)某校九年級學(xué)生某科目學(xué)期總評成績是由完成作業(yè)、單元檢測、期末考試三項成績構(gòu)成的,如果學(xué)期總評成績80分以上(含80分),則評定為“優(yōu)秀”,下表是小張和小王兩位同學(xué)的成績記錄:完成作業(yè)單元測試期末考試小張709080小王6075_______若按完成作業(yè)、單元檢測、期末考試三項成績按1:2:7的權(quán)重來確定學(xué)期總評成績.(1)請計算小張的學(xué)期總評成績?yōu)槎嗌俜???)小王在期末(期末成績?yōu)檎麛?shù))應(yīng)該最少考多少分才能達到優(yōu)秀?26.如圖,某反比例函數(shù)圖象的一支經(jīng)過點A(2,3)和點B(點B在點A的右側(cè)),作BC⊥y軸,垂足為點C,連結(jié)AB,AC.(1)求該反比例函數(shù)的解析式;(2)若△ABC的面積為6,求直線AB的表達式.

參考答案一、選擇題(每題4分,共48分)1、A【分析】設(shè)半徑OA繞軸心旋轉(zhuǎn)的角度為n°,根據(jù)弧長公式列出方程即可求出結(jié)論.【詳解】解:設(shè)半徑OA繞軸心旋轉(zhuǎn)的角度為n°根據(jù)題意可得解得n=54即半徑OA繞軸心旋轉(zhuǎn)的角度為54°故選A.【點睛】此題考查的是根據(jù)弧長,求圓心角的度數(shù),掌握弧長公式是解決此題的關(guān)鍵.2、A【解析】解答此題,先要求一元二次方程的兩根,然后根據(jù)圓與圓的位置關(guān)系判斷條件,確定位置關(guān)系.圓心距<兩個半徑和,說明兩圓相交.【詳解】解:解方程x2-6x+8=0得:

x1=2,x2=4,

∵O1O2=5,x2-x1=2,x2+x1=6,

∴x2-x1<O1O2<x2+x1.

∴⊙O1與⊙O2相交.

故選A.【點睛】此題綜合考查一元二次方程的解法及兩圓的位置關(guān)系的判斷,關(guān)鍵解出兩圓半徑.3、D【分析】由旋轉(zhuǎn)的性質(zhì)可得AB'=AB,∠BAB'=50°,由等腰三角形的性質(zhì)可得∠AB'B=∠ABB'=65°.【詳解】解:∵Rt△ABC繞點A逆時針旋轉(zhuǎn)50°得到Rt△AB′C′,

∴AB'=AB,∠BAB'=50°,∴,故選:D.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),等腰三角形的性質(zhì),掌握旋轉(zhuǎn)的性質(zhì)是本題的關(guān)鍵.4、B【分析】根據(jù)圖中的信息找出波動性小的即可.【詳解】解:根據(jù)圖中的信息可知,小明的成績波動性小,則這兩人中成績穩(wěn)定的是小明;

故射箭成績的方差較大的是小華,

故選:B.【點睛】本題考查了方差的意義,方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.5、C【解析】設(shè),那么點(3,2)滿足這個函數(shù)解析式,∴k=3×2=1.∴.故選C6、D【分析】根據(jù)四邊形為平行四邊形證明,從而出,對各選項進行判斷即可.【詳解】∵四邊形為平行四邊形∴∴∴∴∵,∴故答案為:D.【點睛】本題考查了平行四邊形的線段比例問題,掌握平行四邊形的性質(zhì)、相似三角形的性質(zhì)以及判定是解題的關(guān)鍵.7、D【解析】試題解析“因為垂線段最短,所以圓心到直線的距離小于等于1.此時和半徑1的大小不確定,則直線和圓相交、相切都有可能.故選D.點睛:直線和圓的位置關(guān)系與數(shù)量之間的聯(lián)系:若d<r,則直線與圓相交;若d=r,則直線于圓相切;若d>r,則直線與圓相離.8、A【分析】設(shè)道路的寬度為x米.把道路進行平移,使六塊草坪重新組合成一個矩形,根據(jù)矩形的面積公式即可列出方程.【詳解】解:設(shè)橫、縱道路的寬為x米,把兩條與AB平行的道路平移到左邊,另一條與AD平行的道路平移到下邊,則六塊草坪重新組合成一個矩形,矩形的長、寬分別為(50﹣2x)米、(30﹣x)米,所以列方程得(50﹣2x)×(30﹣x)=178×6,故選:A.【點睛】本題考查了由實際問題抽象出一元二次方程,對圖形進行適當(dāng)?shù)钠揭剖墙忸}的關(guān)鍵.9、B【分析】先通過等量代換得出,然后利用余弦的定義即可得出結(jié)論.【詳解】故選:B.【點睛】本題主要考查解直角三角形,掌握余弦的定義是解題的關(guān)鍵.10、C【分析】作D點關(guān)于AB的對稱點E,連接OC.OE、CE,CE交AB于P',如圖,利用對稱的性質(zhì)得到P'E=P'D,,再根據(jù)兩點之間線段最短判斷點P點在P'時,PC+PD的值最小,接著根據(jù)圓周角定理得到∠BOC=60°,∠BOE=30°,然后通過證明△COE為等腰直角三角形得到CE的長即可.【詳解】作D點關(guān)于AB的對稱點E,連接OC、OE、CE,CE交AB于P',如圖,∵點D與點E關(guān)于AB對稱,∴P'E=P'D,,∴P'C+P'D=P'C+P'E=CE,∴點P點在P'時,PC+PD的值最小,最小值為CE的長度.∵∠BOC=2∠CAB=2×30°=60°,而D為的中點,∴∠BOE∠BOC=30°,∴∠COE=60°+30°=90°,∴△COE為等腰直角三角形,∴CEOC,∴PC+PD的最小值為.故選:C.【點睛】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.11、D【分析】根據(jù)左視圖是從左邊看得到的圖形,可得答案.【詳解】從左邊看一個正方形被分成兩部分,正方形中間有一條橫向的虛線,如圖:故選:D.【點睛】本題考查了幾何體的三視圖,從左邊看得到的是左視圖.12、B【解析】逆用同底數(shù)冪的乘法和積的乘方將式子變形,再運用平方差公式計算即可.【詳解】解:故選B.【點睛】本題考查二次根式的運算,高次冪因式相乘往往是先設(shè)法將底數(shù)化為積為1或0的形式,然后再靈活選用冪的運算法則進行化簡求值.二、填空題(每題4分,共24分)13、4【分析】作出⊙O及內(nèi)接正六邊形ABCDEF,連接OC、OB,過O作ON⊥CE于N,易得△COB是等邊三角形,利用三角函數(shù)求出OC,ON,CN,從而得到CE,再求內(nèi)接正三角形ACE的面積即可.【詳解】解:如圖所示,連接OC、OB,過O作ON⊥CE于N,∵多邊形ABCDEF是正六邊形,∴∠COB=60°,∵OC=OB,∴△COB是等邊三角形,∴∠OCM=60°,∴OM=OC?sin∠OCM,∴OC=.∵∠OCN=30°,∴ON=OC=,CN=1,∴CE=1CN=4,∴該圓的內(nèi)接正三角形ACE的面積=,故答案為:4.【點睛】本題考查圓的內(nèi)接多邊形與三角函數(shù),利用邊心距求出圓的半徑是解題的關(guān)鍵.14、【分析】根據(jù)一元二次方程的根的判別式,建立關(guān)于k的不等式,求出k的取值范圍.【詳解】根據(jù)一元二次方程的根的判別式,建立關(guān)于k的不等式,求出k的取值范圍.,,方程有兩個不相等的實數(shù)根,,.故答案為:.【點睛】本題考查了根的判別式.總結(jié):一元二次方程根的情況與判別式△的關(guān)系:(1)△>0?方程有兩個不相等的實數(shù)根;(2)△=0?方程有兩個相等的實數(shù)根;(3)△<0?方程沒有實數(shù)根.15、一4【分析】分析:利用特殊三角函數(shù)值,解直角三角形,AM=MD,再用正切函數(shù),利用MB求CM,作差可求DC.【詳解】因為∠MAD=45°,AM=4,所以MD=4,因為AB=8,所以MB=12,因為∠MBC=30°,所以CM=MBtan30°=4.所以CD=4-4.【點睛】本題考查了解直角三角形的應(yīng)用,熟練掌握三角函數(shù)的相關(guān)定義以及變形是解題的關(guān)鍵.16、【分析】根據(jù)直角三角形的性質(zhì)求出OC、BC,根據(jù)扇形面積公式計算即可.【詳解】解:∵∠BOC=60°,∠BCO=90°,∴∠OBC=30°,∴OC=OB=1則邊BC掃過區(qū)域的面積為:故答案為.【點睛】考核知識點:扇形面積計算.熟記公式是關(guān)鍵.17、1【解析】設(shè)四邊形BCED的面積為x,則S△ADE=12﹣x,由題意知DE∥BC且DE=BC,從而得,據(jù)此建立關(guān)于x的方程,解之可得.【詳解】設(shè)四邊形BCED的面積為x,則S△ADE=12﹣x,∵點D、E分別是邊AB、AC的中點,∴DE是△ABC的中位線,∴DE∥BC,且DE=BC,∴△ADE∽△ABC,則=,即,解得:x=1,即四邊形BCED的面積為1,故答案為1.【點睛】本題主要考查相似三角形的判定與性質(zhì),解題的關(guān)鍵是掌握中位線定理及相似三角形的面積比等于相似比的平方的性質(zhì).18、1【分析】依題意可知所求的長度等于AB的長,通過解直角△ABC即可求解.【詳解】如圖,∵∠BAC=30,∠ACB=90,AC=,∴AB=AC/cos30=(m).故答案是:1.【點睛】本題考查了解直角三角形的應(yīng)用?坡度坡角問題.應(yīng)用問題盡管題型千變?nèi)f化,但關(guān)鍵是設(shè)法化歸為解直角三角形問題,必要時應(yīng)添加輔助線,構(gòu)造出直角三角形.三、解答題(共78分)19、(1)m≥—;(2)x1=0,x2=2.【分析】(1)方程有兩個實數(shù)根,必須滿足△=b2?4ac≥0,從而建立關(guān)于m的不等式,求出實數(shù)m的取值范圍.(2)答案不唯一,方程有兩個不相等的實數(shù)根,即△>0,可以解得m>?,在m>?的范圍內(nèi)選取一個合適的整數(shù)求解就可以.【詳解】解:(1)△=[-2(m+1)]2-4×1×m2=8m+4∵方程有兩個實數(shù)根∴△≥0,即8m+4≥0解得,m≥-(2)選取一個整數(shù)0,則原方程為,x2-2x=0解得x1=0,x2=2.【點睛】此題主要考查了根的判別式,以及解一元二次方程,關(guān)鍵是掌握一元二次方程根的情況與判別式△的關(guān)系:(1)△>0?方程有兩個不相等的實數(shù)根;(2)△=0?方程有兩個相等的實數(shù)根;(3)△<0?方程沒有實數(shù)根.20、(1)見解析;(2)(4,1),(1,1).【分析】(1)利用網(wǎng)格特點和旋轉(zhuǎn)的性質(zhì)畫出B、C點的對應(yīng)點B′、C′即可;(2)利用(1)所畫圖形寫出點B′的坐標(biāo),點C′的坐標(biāo).【詳解】解:(1)如圖,△ABC′為所作;(2)點B′的坐標(biāo)為(4,1),點C′的坐標(biāo)為(1,1).故答案為(4,1),(1,1).【點睛】本題考查了坐標(biāo)和圖形的變化-旋轉(zhuǎn),作出圖形,利用數(shù)形結(jié)合求解更加簡便21、.【分析】作DH⊥AB于H,根據(jù)余弦的定義求出BC,根據(jù)正弦的定義求出CD,結(jié)合題意計算即可.【詳解】作DH⊥AB于H,

∵∠DBC=15°,BD=20,∴,,由題意得,四邊形ECBF和四邊形CDHB是矩形,∴EF=BC=19.2,BH=CD=5,∵∠AEF=45°,∴AF=EF=19.2,∴AB=AF+FH+HB=19.2+1.6+5=25.8≈26m,答:樓房AB的高度約為26m.【點睛】本題考查的是解直角三角形的應(yīng)用-仰角俯角問題和坡度坡角問題,掌握仰角俯角的概念、熟記銳角三角函數(shù)的定義是解題的關(guān)鍵.22、(1)k=12;(2).【分析】(1)過點作交軸于點,交于點,易知OH長度,在直角三角形OHA中得到AH長度,從而得到A點坐標(biāo),進而算出k值;(2)先求出D點坐標(biāo),得到BC長度,從而得到AM長度,由平行線得到,所以【詳解】解:(1)過點作交軸于點,交于點.(2)【點睛】本題主要考查反比例函數(shù)與相似三角形的綜合問題,難度不大,解題關(guān)鍵在于求出k23、(1)A(1,2),B(2,1),函數(shù)的解析式為y=;(2)【分析】(1)根據(jù)反比例函數(shù)圖象上的點的坐標(biāo)特征,得到k=m2=2(m﹣1),解得m的值,即可求得點A、點B的坐標(biāo)及函數(shù)的解析式;(2)由反比例函數(shù)系數(shù)k的幾何意義,根據(jù)S△AOB=S△AOM+S梯形AMNB﹣S△BON=S梯形AMNB即可求解.【詳解】(1)點A(1,m2)、點B(2,m﹣1)是函數(shù)y=(其中x>0)圖象上的兩點,∴k=m2=2(m﹣1),解得:m=2,k=2,∴A(1,2),B(2,1),函數(shù)的解析式為:y=;(2)作AM⊥x軸于M,BN⊥x軸于N,∴S△AOM=S△BON=k,∴S△AOB=S△AOM+S梯形AMNB﹣S△BON=S梯形AMNB=(2+1)(2﹣1)=.【點睛】本題主要考查反比例函數(shù)的待定系數(shù)法和幾何圖形的綜合,掌握反比例函數(shù)比例系數(shù)k的幾何意義,是解題的關(guān)鍵.24、(1)證明見解析;(2)BC=【分析】(1)運用切線的判定,只需要證明AB⊥BC即可,即證∠ABC=90°.連接AF,依據(jù)直徑所對圓周角為90度,可以得到∠AFB=90°,依據(jù)三線合一可以得到2∠BAF=∠BAC,再結(jié)合已知條件進行等量代換可得∠BAF=∠EBC,最后運用直角三角形兩銳角互余及等量代換即可.(2)依據(jù)三線合一可以得到BF的長度,繼而算出∠BAF=∠EBC的正弦值,過E作EG⊥BC于點G,利用三角函數(shù)可以解除EG的值,依據(jù)垂直于同一直線的兩直線平行,可得EG與AB平行,從而得到相似三角形,依據(jù)相似三角形的性質(zhì)可以求出AC的長度,最后運用勾股定理求出BC的長度.【詳解】(1)證明:連接AF.∵AB為直徑,∴∠AFB=90°.又∵AE=AB,∴2∠BAF=∠BAC,∠FAB+∠FBA=90°.又∵∠BAC=2∠EBC,∴∠BAF=∠EBC,∴∠FAB+∠FBA=∠EBC+∠FBA=90°.∴∠ABC=90°.即AB⊥BC,∴BC與⊙O相切;(2)解:過E作EG⊥BC于點G,∵AB=AE,∠AFB=90°,∴BF=BE=×4=2,∴sin∠BAF=,又∵∠B

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論