![福建省福州第八中學(xué)2023-2024學(xué)年高三數(shù)學(xué)第一學(xué)期期末檢測(cè)模擬試題含解析_第1頁(yè)](http://file4.renrendoc.com/view11/M02/20/3B/wKhkGWWVjBCAOUbTAAIV2JshyEY156.jpg)
![福建省福州第八中學(xué)2023-2024學(xué)年高三數(shù)學(xué)第一學(xué)期期末檢測(cè)模擬試題含解析_第2頁(yè)](http://file4.renrendoc.com/view11/M02/20/3B/wKhkGWWVjBCAOUbTAAIV2JshyEY1562.jpg)
![福建省福州第八中學(xué)2023-2024學(xué)年高三數(shù)學(xué)第一學(xué)期期末檢測(cè)模擬試題含解析_第3頁(yè)](http://file4.renrendoc.com/view11/M02/20/3B/wKhkGWWVjBCAOUbTAAIV2JshyEY1563.jpg)
![福建省福州第八中學(xué)2023-2024學(xué)年高三數(shù)學(xué)第一學(xué)期期末檢測(cè)模擬試題含解析_第4頁(yè)](http://file4.renrendoc.com/view11/M02/20/3B/wKhkGWWVjBCAOUbTAAIV2JshyEY1564.jpg)
![福建省福州第八中學(xué)2023-2024學(xué)年高三數(shù)學(xué)第一學(xué)期期末檢測(cè)模擬試題含解析_第5頁(yè)](http://file4.renrendoc.com/view11/M02/20/3B/wKhkGWWVjBCAOUbTAAIV2JshyEY1565.jpg)
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
福建省福州第八中學(xué)2023-2024學(xué)年高三數(shù)學(xué)第一學(xué)期期末檢測(cè)模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知滿足,則的取值范圍為()A. B. C. D.2.設(shè)是兩條不同的直線,是兩個(gè)不同的平面,下列命題中正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則3.已知某口袋中有3個(gè)白球和個(gè)黑球(),現(xiàn)從中隨機(jī)取出一球,再換回一個(gè)不同顏色的球(即若取出的是白球,則放回一個(gè)黑球;若取出的是黑球,則放回一個(gè)白球),記換好球后袋中白球的個(gè)數(shù)是.若,則=()A. B.1 C. D.24.已知,若,則等于()A.3 B.4 C.5 D.65.的展開(kāi)式中含的項(xiàng)的系數(shù)為()A. B.60 C.70 D.806.已知復(fù)數(shù),滿足,則()A.1 B. C. D.57.已知平行于軸的直線分別交曲線于兩點(diǎn),則的最小值為()A. B. C. D.8.如圖網(wǎng)格紙上小正方形的邊長(zhǎng)為,粗線畫(huà)出的是某幾何體的三視圖,則該幾何體的所有棱中最長(zhǎng)棱的長(zhǎng)度為()A. B. C. D.9.是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.已知為等比數(shù)列,,,則()A.9 B.-9 C. D.11.已知函數(shù),則不等式的解集為()A. B. C. D.12.已知某批零件的長(zhǎng)度誤差(單位:毫米)服從正態(tài)分布,從中隨機(jī)取一件,其長(zhǎng)度誤差落在區(qū)間(3,6)內(nèi)的概率為()(附:若隨機(jī)變量ξ服從正態(tài)分布,則,.)A.4.56% B.13.59% C.27.18% D.31.74%二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)在處的切線方程是____________.14.曲線在處的切線方程是_________.15.記實(shí)數(shù)中的最大數(shù)為,最小數(shù)為.已知實(shí)數(shù)且三數(shù)能構(gòu)成三角形的三邊長(zhǎng),若,則的取值范圍是.16.角的頂點(diǎn)在坐標(biāo)原點(diǎn),始邊與軸的非負(fù)半軸重合,終邊經(jīng)過(guò)點(diǎn),則的值是.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)數(shù)列是公差不為零的等差數(shù)列,其前項(xiàng)和為,,若,,成等比數(shù)列.(1)求及;(2)設(shè),設(shè)數(shù)列的前項(xiàng)和,證明:.18.(12分)已知數(shù)列滿足,,,且.(1)求證:數(shù)列為等比數(shù)列,并求出數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.19.(12分)如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,且PA=AD,E,F(xiàn)分別是棱AB,PC的中點(diǎn).求證:(1)EF//平面PAD;(2)平面PCE⊥平面PCD.20.(12分)設(shè)都是正數(shù),且,.求證:.21.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若函數(shù)在上存在兩個(gè)極值點(diǎn),,且,證明.22.(10分)已知函數(shù),其導(dǎo)函數(shù)為,(1)若,求不等式的解集;(2)證明:對(duì)任意的,恒有.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
設(shè),則的幾何意義為點(diǎn)到點(diǎn)的斜率,利用數(shù)形結(jié)合即可得到結(jié)論.【詳解】解:設(shè),則的幾何意義為點(diǎn)到點(diǎn)的斜率,作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:由圖可知當(dāng)過(guò)點(diǎn)的直線平行于軸時(shí),此時(shí)成立;取所有負(fù)值都成立;當(dāng)過(guò)點(diǎn)時(shí),取正值中的最小值,,此時(shí);故的取值范圍為;故選:C.【點(diǎn)睛】本題考查簡(jiǎn)單線性規(guī)劃的非線性目標(biāo)函數(shù)函數(shù)問(wèn)題,解題時(shí)作出可行域,利用目標(biāo)函數(shù)的幾何意義求解是解題關(guān)鍵.對(duì)于直線斜率要注意斜率不存在的直線是否存在.2、C【解析】
在A中,與相交或平行;在B中,或;在C中,由線面垂直的判定定理得;在D中,與平行或.【詳解】設(shè)是兩條不同的直線,是兩個(gè)不同的平面,則:在A中,若,,則與相交或平行,故A錯(cuò)誤;在B中,若,,則或,故B錯(cuò)誤;在C中,若,,則由線面垂直的判定定理得,故C正確;在D中,若,,則與平行或,故D錯(cuò)誤.故選C.【點(diǎn)睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),是中檔題.3、B【解析】由題意或4,則,故選B.4、C【解析】
先求出,再由,利用向量數(shù)量積等于0,從而求得.【詳解】由題可知,因?yàn)?,所以有,得,故選:C.【點(diǎn)睛】該題考查的是有關(guān)向量的問(wèn)題,涉及到的知識(shí)點(diǎn)有向量的減法坐標(biāo)運(yùn)算公式,向量垂直的坐標(biāo)表示,屬于基礎(chǔ)題目.5、B【解析】
展開(kāi)式中含的項(xiàng)是由的展開(kāi)式中含和的項(xiàng)分別與前面的常數(shù)項(xiàng)和項(xiàng)相乘得到,由二項(xiàng)式的通項(xiàng),可得解【詳解】由題意,展開(kāi)式中含的項(xiàng)是由的展開(kāi)式中含和的項(xiàng)分別與前面的常數(shù)項(xiàng)和項(xiàng)相乘得到,所以的展開(kāi)式中含的項(xiàng)的系數(shù)為.故選:B【點(diǎn)睛】本題考查了二項(xiàng)式系數(shù)的求解,考查了學(xué)生綜合分析,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.6、A【解析】
首先根據(jù)復(fù)數(shù)代數(shù)形式的除法運(yùn)算求出,求出的模即可.【詳解】解:,,故選:A【點(diǎn)睛】本題考查了復(fù)數(shù)求模問(wèn)題,考查復(fù)數(shù)的除法運(yùn)算,屬于基礎(chǔ)題.7、A【解析】
設(shè)直線為,用表示出,,求出,令,利用導(dǎo)數(shù)求出單調(diào)區(qū)間和極小值、最小值,即可求出的最小值.【詳解】解:設(shè)直線為,則,,而滿足,那么設(shè),則,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,所以故選:.【點(diǎn)睛】本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用:求單調(diào)區(qū)間和極值、最值,考查化簡(jiǎn)整理的運(yùn)算能力,正確求導(dǎo)確定函數(shù)的最小值是關(guān)鍵,屬于中檔題.8、C【解析】
利用正方體將三視圖還原,觀察可得最長(zhǎng)棱為AD,算出長(zhǎng)度.【詳解】幾何體的直觀圖如圖所示,易得最長(zhǎng)的棱長(zhǎng)為故選:C.【點(diǎn)睛】本題考查了三視圖還原幾何體的問(wèn)題,其中利用正方體作襯托是關(guān)鍵,屬于基礎(chǔ)題.9、B【解析】
分別判斷充分性和必要性得到答案.【詳解】所以(逆否命題)必要性成立當(dāng),不充分故是必要不充分條件,答案選B【點(diǎn)睛】本題考查了充分必要條件,屬于簡(jiǎn)單題.10、C【解析】
根據(jù)等比數(shù)列的下標(biāo)和性質(zhì)可求出,便可得出等比數(shù)列的公比,再根據(jù)等比數(shù)列的性質(zhì)即可求出.【詳解】∵,∴,又,可解得或設(shè)等比數(shù)列的公比為,則當(dāng)時(shí),,∴;當(dāng)時(shí),,∴.故選:C.【點(diǎn)睛】本題主要考查等比數(shù)列的性質(zhì)應(yīng)用,意在考查學(xué)生的數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題.11、D【解析】
先判斷函數(shù)的奇偶性和單調(diào)性,得到,且,解不等式得解.【詳解】由題得函數(shù)的定義域?yàn)?因?yàn)椋詾樯系呐己瘮?shù),因?yàn)楹瘮?shù)都是在上單調(diào)遞減.所以函數(shù)在上單調(diào)遞減.因?yàn)?,所以,且,解?故選:D【點(diǎn)睛】本題主要考查函數(shù)的奇偶性和單調(diào)性的判斷,考查函數(shù)的奇偶性和單調(diào)性的應(yīng)用,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.12、B【解析】試題分析:由題意故選B.考點(diǎn):正態(tài)分布二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
求出和的值,利用點(diǎn)斜式可得出所求切線的方程.【詳解】,則,,.因此,函數(shù)在處的切線方程是,即.故答案為:.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求函數(shù)的切線方程,考查計(jì)算能力,屬于基礎(chǔ)題.14、【解析】
利用導(dǎo)數(shù)的運(yùn)算法則求出導(dǎo)函數(shù),再利用導(dǎo)數(shù)的幾何意義即可求解.【詳解】求導(dǎo)得,所以,所以切線方程為故答案為:【點(diǎn)睛】本題考查了基本初等函數(shù)的導(dǎo)數(shù)、導(dǎo)數(shù)的運(yùn)算法則以及導(dǎo)數(shù)的幾何意義,屬于基礎(chǔ)題.15、【解析】試題分析:顯然,又,①當(dāng)時(shí),,作出可行區(qū)域,因拋物線與直線及在第一象限內(nèi)的交點(diǎn)分別是(1,1)和,從而②當(dāng)時(shí),,作出可行區(qū)域,因拋物線與直線及在第一象限內(nèi)的交點(diǎn)分別是(1,1)和,從而綜上所述,的取值范圍是.考點(diǎn):不等式、簡(jiǎn)單線性規(guī)劃.16、【解析】試題分析:由三角函數(shù)定義知,又由誘導(dǎo)公式知,所以答案應(yīng)填:.考點(diǎn):1、三角函數(shù)定義;2、誘導(dǎo)公式.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1),;(2)證明見(jiàn)解析.【解析】
(1)根據(jù)題中條件求出等差數(shù)列的首項(xiàng)和公差,然后根據(jù)首項(xiàng)和公差即可求出數(shù)列的通項(xiàng)和前項(xiàng)和;(2)根據(jù)裂項(xiàng)求和求出,根據(jù)的表達(dá)式即可證明.【詳解】(1)設(shè)的公差為,由題意有,且,所以,;(2)因?yàn)?,所以?【點(diǎn)睛】本題主要考查了等差數(shù)列基本量的求解,裂項(xiàng)求和法,屬于基礎(chǔ)題.18、(1)證明見(jiàn)解析;(2)【解析】
(1)根據(jù)題目所給遞推關(guān)系式得到,由此證得數(shù)列為等比數(shù)列,并求得其通項(xiàng)公式.然后利用累加法求得數(shù)列的通項(xiàng)公式.(2)利用錯(cuò)位相減求和法求得數(shù)列的前項(xiàng)和【詳解】(1)已知,則,且,則為以3為首相,3為公比的等比數(shù)列,所以,.(2)由(1)得:,,①,②①-②可得,則即.【點(diǎn)睛】本小題主要考查根據(jù)遞推關(guān)系式證明等比數(shù)列,考查累加法求數(shù)列的通項(xiàng)公式,考查錯(cuò)位相減求和法,屬于中檔題.19、(1)見(jiàn)解析;(2)見(jiàn)解析【解析】
(1)取的中點(diǎn)構(gòu)造平行四邊形,得到,從而證出平面;(2)先證平面,再利用面面垂直的判定定理得到平面平面.【詳解】證明:(1)如圖,取的中點(diǎn),連接,,是棱的中點(diǎn),底面是矩形,,且,又,分別是棱,的中點(diǎn),,且,,且,四邊形為平行四邊形,,又平面,平面,平面;(2),點(diǎn)是棱的中點(diǎn),,又,,平面,平面,,底面是矩形,,平面,平面,且,平面,又平面,,,,又平面,平面,且,平面,又平面,平面平面.【點(diǎn)睛】本題主要考查線面平行的判定,面面垂直的判定,首選判定定理,是中檔題.20、證明見(jiàn)解析【解析】
利用比較法進(jìn)行證明:把代數(shù)式展開(kāi)、作差、化簡(jiǎn)可得,,可證得成立,同理可證明,由此不等式得證.【詳解】證明:因?yàn)?,所以,∴成立,又都是正數(shù),∴,①同理,∴.【點(diǎn)睛】本題考查利用比較法證明不等式;考查學(xué)生的邏輯推理能力和運(yùn)算求解能力;把差變形為因式乘積的形式是證明本題的關(guān)鍵;屬于中檔題。21、(1)若,則在定義域內(nèi)遞增;若,則在上單調(diào)遞增,在上單調(diào)遞減(2)證明見(jiàn)解析【解析】
(1),分,討論即可;(2)由題可得到,故只需證,,即,采用換元法,轉(zhuǎn)化為函數(shù)的最值問(wèn)題來(lái)處理.【詳解】由已知,,若,則在定義域內(nèi)遞增;若,則在上單調(diào)遞增,在上單調(diào)遞減.(2)由題意,對(duì)求導(dǎo)可得從而,是的兩個(gè)變號(hào)零點(diǎn),因此下證:,即證令,即證:,對(duì)求導(dǎo)可得,,,因?yàn)楣剩栽谏蠁握{(diào)遞減,而,從而所以在單調(diào)遞增,所以,即于是【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性以及證明不等式,考查學(xué)生邏輯推理能力、轉(zhuǎn)化與化歸能力,是一道有一定難度的壓軸題.
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 交行貸款放款合同范例
- 企業(yè)對(duì)外投資入股合同范本
- 農(nóng)村改革合同范本
- 幼兒游戲與學(xué)習(xí)能力發(fā)展考核試卷
- 公共裝飾裝修合同范本
- 公眾號(hào)投訴合同范本
- 蘭州勞務(wù)外包合同范本
- 亞馬遜運(yùn)營(yíng)合同范本
- 他人經(jīng)營(yíng)合同范本
- 公路承包轉(zhuǎn)讓合同范本
- 暖氣維修常識(shí)知識(shí)培訓(xùn)課件
- 精神科患者服藥依從性健康宣教
- 設(shè)備維保的維修流程與指導(dǎo)手冊(cè)
- 急性腎小球腎炎病人護(hù)理課件
- 招標(biāo)代理服務(wù)的關(guān)鍵流程與難點(diǎn)解析
- GB/T 5465.2-2023電氣設(shè)備用圖形符號(hào)第2部分:圖形符號(hào)
- 《三國(guó)演義》中的佛教文化:以黃承兒為例
- 材料預(yù)定協(xié)議
- 《學(xué)習(xí)的本質(zhì)》讀書(shū)會(huì)活動(dòng)
- 高氨血癥護(hù)理課件
- 《石油化工電氣自動(dòng)化系統(tǒng)設(shè)計(jì)規(guī)范》
評(píng)論
0/150
提交評(píng)論