版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
新疆沙雅縣第二中學2024屆數(shù)學高一下期末綜合測試模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在數(shù)列{an}中,若a1,且對任意的n∈N*有,則數(shù)列{an}前10項的和為()A. B. C. D.2.若,,則()A. B. C. D.3.供電部門對某社區(qū)1000位居民2019年4月份人均用電情況進行統(tǒng)計后,按人均用電量分為[0,10),[10,20),[20,30),[40,50]五組,整理得到如下的頻率分布直方圖,則下列說法錯誤的是()A.4月份人均用電量人數(shù)最多的一組有400人B.4月份人均用電量不低于20度的有500人C.4月份人均用電量為25度D.在這1000位居民中任選1位協(xié)助收費,選到的居民用電量在[30,40)一組的概率為14.已知正方形的邊長為,若將正方形沿對角線折疊為三棱錐,則在折疊過程中,不能出現(xiàn)()A. B.平面平面 C. D.5.函數(shù)的最大值為()A. B. C. D.6.已知命題,則命題的否定為()A. B.C. D.7.得到函數(shù)的圖象,只需將的圖象()A.向左移動 B.向右移動 C.向左移動 D.向右移動8.如圖是一個正四棱錐,它的俯視圖是()A. B.C. D.9.已知,是平面,m,n是直線,則下列命題不正確的是()A.若,則 B.若,則C.若,則 D.若,則10.若是等差數(shù)列,首項,,,則使前n項和成立的最大正整數(shù)n=()A.2017 B.2018 C.4035 D.4034二、填空題:本大題共6小題,每小題5分,共30分。11.空間一點到坐標原點的距離是_______.12.在直角坐標系中,直線與直線都經(jīng)過點,若,則直線的一般方程是_____.13.已知角的終邊經(jīng)過點,則______.14.設(shè)為內(nèi)一點,且滿足關(guān)系式,則________.15.已知圓的圓心在直線上,半徑為,若圓上存在點,它到定點的距離與到原點的距離之比為,則圓心的縱坐標的取值范圍是__________.16.已知,,且,則的最小值為________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知.(1)若三點共線,求實數(shù)的值;(2)證明:對任意實數(shù),恒有成立.18.某城市理論預(yù)測2020年到2024屆人口總數(shù)與年份的關(guān)系如下表所示:年份202x(年)01234人口數(shù)y(十萬)5781119(1)請在右面的坐標系中畫出上表數(shù)據(jù)的散點圖;(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;(3)據(jù)此估計2025年該城市人口總數(shù).(參考公式:,)19.已知為銳角,.(1)求的值;(2)求的值.20.已知余切函數(shù).(1)請寫出余切函數(shù)的奇偶性,最小正周期,單調(diào)區(qū)間;(不必證明)(2)求證:余切函數(shù)在區(qū)間上單調(diào)遞減.21.已知是等差數(shù)列,設(shè)數(shù)列的前n項和為,且,,又,.(1)求和的通項公式;(2)令,求的前n項和.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解題分析】
用累乘法可得.利用錯位相減法可得S,即可求解S10=22.【題目詳解】∵,則.∴,.Sn,.∴,∴S,則S10=22.故選:A.【點評】本題考查了累乘法求通項,考查了錯位相減法求和,意在考查計算能力,屬于中檔題.2、D【解題分析】
利用集合的補集的定義求出的補集;利用子集的定義判斷出.【題目詳解】解:,,,,故選:.【題目點撥】本題考查利用集合的交集、補集、并集定義求交集、補集、并集;利用集合包含關(guān)系的定義判斷集合的包含關(guān)系.3、C【解題分析】
根據(jù)頻率分布直方圖逐一計算分析.【題目詳解】A:用電量最多的一組有:0.04×10×1000=400人,故正確;B:不低于20度的有:(0.01+0.05)×10×1000=500人,故正確;C:人均用電量:(5×0.01+15×0.04+25×0.03+35×0.01+45×0.01)×10=22,故錯誤;D:用電量在[30,40)的有:0.01×10×1000=100人,所以P=100故選C.【題目點撥】本題考查利用頻率分布直方圖求解相關(guān)量,難度較易.頻率分布直方圖中平均數(shù)的求法:每一段的組中值×頻率4、D【解題分析】對于A:取BD中點O,因為,AO所以面AOC,所以,故A對;對于B:當沿對角線折疊成直二面角時,有面平面平面,故B對;對于C:當折疊所成的二面角時,頂點A到底面BCD的距離為,此時,故C對;對于D:若,因為,面ABC,所以,而,即直角邊長與斜邊長相等,顯然不對;故D錯;故選D點睛:本題考查了立體幾何中折疊問題,要分析清楚折疊前后的變化量與不變量以及線線與線面的位置關(guān)系,屬于中檔題.5、D【解題分析】
令,根據(jù)正弦型函數(shù)的性質(zhì)可得,那么,可將問題轉(zhuǎn)化為二次函數(shù)在定區(qū)間上的最值問題.【題目詳解】由題意,令,可得,,∴,∴原函數(shù)的值域與函數(shù)的值域相同.∵函數(shù)圖象的對稱軸為,,取得最大值為.故選:D.【題目點撥】本題考查三角函數(shù)中的恒等變換、函數(shù)的值域,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意換元法的使用,將問題轉(zhuǎn)化為二次函數(shù)的值域問題.6、C【解題分析】
根據(jù)全稱命題的否定是特稱命題,可直接得出結(jié)果.【題目詳解】命題“”的否定是“”.故選C【題目點撥】本題主要考查全稱命題的否定,只需改量詞和結(jié)論即可,屬于基礎(chǔ)題型.7、B【解題分析】
直接利用三角函數(shù)圖象的平移變換法則,對選項中的變換逐一判斷即可.【題目詳解】函數(shù)的圖象,向左平移個單位,得,錯;函數(shù)的圖象,向右平移個單位,得,對.函數(shù)的圖象,向左平移個單位,得,錯;函數(shù)的圖象,向右平移個單位,得,錯,故選B.【題目點撥】本題考查了三角函數(shù)的圖象,重點考查學生對三角函數(shù)圖象變換規(guī)律的理解與掌握,能否正確處理先周期變換后相位變換這種情況下圖象的平移問題,反映學生對所學知識理解的深度.8、D【解題分析】
根據(jù)正四棱錐的特征直接判定即可.【題目詳解】正四棱錐俯視圖可以看到四條側(cè)棱與頂點,且整體呈正方形.故選:D【題目點撥】本題主要考查了正四棱錐的俯視圖,屬于基礎(chǔ)題.9、D【解題分析】
由題意找到反例即可確定錯誤的選項.【題目詳解】如圖所示,在正方體中,取直線m為,平面為,滿足,取平面為平面,則的交線為,很明顯m和n為異面直線,不滿足,選項D錯誤;如果兩條平行直線中的一條垂直于一個平面,那么另一條也垂直于這個平面,所以A正確;如果兩個平面與同一條直線垂直,則這兩個平面平行,所以B正確;由A選項和面面垂直的判定定理可得C也正確.本題答案為D.【題目點撥】本題主要考查線面關(guān)系有關(guān)命題真假的判斷,意在考查學生的轉(zhuǎn)化能力和邏輯推理能力,屬基礎(chǔ)題.10、D【解題分析】
由等差數(shù)列的性質(zhì)可得,,由等差數(shù)列前項和公式可得則,,得解.【題目詳解】解:由是等差數(shù)列,又,所以,又首項,,則,,則,,即使前n項和成立的最大正整數(shù),故選:D.【題目點撥】本題考查了等差數(shù)列的性質(zhì),重點考查了等差數(shù)列前項和公式,屬中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
直接運用空間兩點間距離公式求解即可.【題目詳解】由空間兩點距離公式可得:.【題目點撥】本題考查了空間兩點間距離公式,考查了數(shù)學運算能力.12、【解題分析】
點代入的方程求出k,再由求出直線的斜率,即可寫出直線的點斜式方程.【題目詳解】將點代入直線得,,解得,又,,于是的方程為,整理得.故答案為:【題目點撥】本題考查直線的方程,屬于基礎(chǔ)題.13、【解題分析】由題意,則.14、【解題分析】
由題意將已知中的向量都用為起點來表示,從而得到32,分別取AB、AC的中點為D、E,可得2,利用平面知識可得S△AOB與S△AOC及S△BOC與S△ABC的關(guān)系,可得所求.【題目詳解】∵,∴32,∴2,分別取AB、AC的中點為D、E,∴2,∴S△AOBS△ABFS△ABCS△ABC;S△AOCS△ACFS△ABCS△ABC;S△BOCS△ABC,∴故答案為:.【題目點撥】本題考查向量的加減法運算,體現(xiàn)了數(shù)形結(jié)合思想,解答本題的關(guān)鍵是利用向量關(guān)系畫出助解圖形.15、【解題分析】因為圓心在直線上,設(shè)圓心,則圓的方程為,設(shè)點,因為,所以,化簡得,即,所以點在以為圓心,為半徑的圓上,則,即,整理得,由,得,由,得,所以圓心的縱坐標的取值范圍是.點睛:本題主要考查了圓的方程,動點的軌跡方程、兩圓的位置關(guān)系、解不等式等知識的綜合運用,著重考查了轉(zhuǎn)化與化歸思想和學生的運算求解能力,解答中根據(jù)題設(shè)條件得到動點的軌跡方程,利用兩圓的位置關(guān)系,列出不等式上解答的關(guān)鍵.對于直線與圓的位置關(guān)系問題,要熟記有關(guān)圓的性質(zhì),同時注意數(shù)形結(jié)合思想的靈活運用.16、【解題分析】
由,可得,然后利用基本不等式可求出最小值.【題目詳解】因為,所以,當且僅當,時取等號.【題目點撥】利用基本不等式求最值必須具備三個條件:①各項都是正數(shù);②和(或積)為定值;③等號取得的條件.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)-3;(2)證明見解析.【解題分析】分析:(1)由題意可得,結(jié)合三點共線的充分必要條件可得.(2)由題意結(jié)合平面向量數(shù)量積的坐標運算法則可得,則恒有成立.詳解:(1),∵三點共線,∴,∴.(2),∴,∴恒有成立.點睛:本題主要考查平面向量數(shù)量積的運算法則,二次函數(shù)的性質(zhì)及其應(yīng)用等知識,意在考查學生的轉(zhuǎn)化能力和計算求解能力.18、(1)見解析;(2);(3)2025年該城市人口總數(shù)為196萬人【解題分析】
(1)由表中數(shù)據(jù)描點即可;(2)由最小二乘法的公式得出的值,即可得出該線性方程;(3)將代入(2)中的線性方程,即可得出2025年該城市人口總數(shù).【題目詳解】(1)畫出散點圖如圖所示.(2),,,,,,則線性回歸方程.(3)時,(十萬)(萬).答:估計2025年該城市人口總數(shù)為196萬人【題目點撥】本題主要考查了繪制散點圖,求回歸直線方程以及根據(jù)回歸方程進行數(shù)據(jù)估計,屬于中檔題.19、(1);(2).【解題分析】
(1)由二倍角公式,結(jié)合題意,可直接求出結(jié)果;(2)先由題意求出,,根據(jù),由兩角差的正弦公式,即可求出結(jié)果.【題目詳解】(1)因為,所以;(2)因為為銳角,所以,,又,所以,,所以.【題目點撥】本題主要考查三角恒等變換給值求值的問題,熟記二倍角公式,以及兩角差的正弦公式即可,屬于??碱}型.20、(1)奇函數(shù);周期為,單調(diào)遞減速區(qū)間:(2)證明見解析【解題分析】
(1)直接利用函數(shù)的性質(zhì)寫出結(jié)果.(2)利用單調(diào)性的定義和三角函數(shù)關(guān)系式的變換求出結(jié)果.【題目詳解】(1)奇函數(shù);周期為,單調(diào)遞減區(qū)間:(2)任取,,,有因為,所以,于是,,從而,.因此余切函數(shù)在區(qū)間上單調(diào)遞減.【題目點撥】本題考查的知識要點:三角函數(shù)關(guān)系式的恒等變變換,函數(shù)關(guān)系式的應(yīng)用,主要考查學生的運算能
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年環(huán)保材料貼牌生產(chǎn)與技術(shù)支持合同
- 2025年度木工企業(yè)員工績效考核與激勵合同4篇
- 二零二五年度水利樞紐工程塊石供應(yīng)合同模板下載3篇
- 二零二五年度商業(yè)用途二房東房屋租賃經(jīng)營合同2篇
- 2025年度挖掘機械買賣與環(huán)保節(jié)能合同3篇
- 二零二五年度智能農(nóng)業(yè)無人機農(nóng)藥噴灑服務(wù)合同3篇
- 二零二四年度醫(yī)療器械研發(fā)合作與專利授權(quán)合同
- 二零二五年度農(nóng)業(yè)大棚租賃與農(nóng)業(yè)保險合作合同范本4篇
- 二零二五年度牛肝菌產(chǎn)品包裝設(shè)計與印刷合同3篇
- 二零二五年度醫(yī)療設(shè)備配件更換與健康管理合同4篇
- 2025-2030年中國陶瓷電容器行業(yè)運營狀況與發(fā)展前景分析報告
- 2025年山西國際能源集團限公司所屬企業(yè)招聘43人高頻重點提升(共500題)附帶答案詳解
- 二零二五年倉儲配送中心物業(yè)管理與優(yōu)化升級合同3篇
- 2025屆廈門高三1月質(zhì)檢期末聯(lián)考數(shù)學答案
- 音樂作品錄制許可
- 江蘇省無錫市2023-2024學年高三上學期期終教學質(zhì)量調(diào)研測試語文試題(解析版)
- 拉薩市2025屆高三第一次聯(lián)考(一模)英語試卷(含答案解析)
- 開題報告:AIGC背景下大學英語教學設(shè)計重構(gòu)研究
- 師德標兵先進事跡材料師德標兵個人主要事跡
- 連鎖商務(wù)酒店述職報告
- 2024年山東省煙臺市初中學業(yè)水平考試地理試卷含答案
評論
0/150
提交評論