版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
福建省泉州市2024屆數(shù)學(xué)高一第二學(xué)期期末調(diào)研試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.在鈍角中,角的對(duì)邊分別是,若,則的面積為A. B. C. D.2.函數(shù),當(dāng)上恰好取得5個(gè)最大值,則實(shí)數(shù)的取值范圍為()A. B. C. D.3.若一個(gè)正四棱錐的側(cè)棱和底面邊長(zhǎng)相等,則該正四棱錐的側(cè)棱和底面所成的角為()A.30° B.45° C.60° D.90°4.已知數(shù)列滿足,,則數(shù)列的前10項(xiàng)和為()A. B. C. D.5.某廠家生產(chǎn)甲、乙、丙三種不同類型的飲品?產(chǎn)量之比為2:3:4.為檢驗(yàn)該廠家產(chǎn)品質(zhì)量,用分層抽樣的方法抽取一個(gè)容量為72的樣本,則樣本中乙類型飲品的數(shù)量為A.16 B.24 C.32 D.486.若a<b,則下列不等式中正確的是()A.a(chǎn)2<b2 B. C.a(chǎn)2+b2>2ab D.a(chǎn)c2<bc27.關(guān)于x的不等式的解集是,則關(guān)于x的不等式的解集是()A. B.C. D.8.從裝有2個(gè)白球和2個(gè)黑球的口袋內(nèi)任取兩個(gè)球,那么互斥而不對(duì)立的事件是A.至少有一個(gè)黑球與都是黑球 B.至少有一個(gè)黑球與至少有一個(gè)白球C.恰好有一個(gè)黑球與恰好有兩個(gè)黑球 D.至少有一個(gè)黑球與都是白球9.直線2x+y+4=0與圓x+22+y+32=5A.255 B.45510..在各項(xiàng)均為正數(shù)的等比數(shù)列中,若,則…等于()A.5 B.6 C.7 D.8二、填空題:本大題共6小題,每小題5分,共30分。11.若,則的取值范圍是________.12.如圖,已知六棱錐的底面是正六邊形,平面,,給出下列結(jié)論:①;②直線平面;③平面平面;④異面直線與所成角為;⑤直線與平面所成角的余弦值為.其中正確的有_______(把所有正確的序號(hào)都填上)13.在梯形中,,,設(shè),,則__________(用向量表示).14.在等比數(shù)列中,,的值為_(kāi)_____.15.設(shè)變量滿足條件,則的最小值為_(kāi)__________16.已知為第二象限角,且,則_________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知函數(shù),且的解集為.(1)求函數(shù)的解析式;(2)解關(guān)于的不等式,;(3)設(shè),若對(duì)于任意的都有,求的最小值.18.如圖,在直三棱柱中,,二面角為直角,為的中點(diǎn).(1)求證:平面平面;(2)求直線與平面所成的角.19.已知函數(shù)的圖象如圖所示.(1)求這個(gè)函數(shù)的解析式,并指出它的振幅和初相;(2)求函數(shù)在區(qū)間上的最大值和最小值,并指出取得最值時(shí)的的值.20.如圖,在中,角,,的對(duì)邊分別為,,,且.(1)求的大??;(2)若,為外一點(diǎn),,,求四邊形面積的最大值.21.已知方程有兩個(gè)實(shí)根,記,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解題分析】
根據(jù)已知求出b的值,再求三角形的面積.【題目詳解】在中,,由余弦定理得:,即,解得:或.∵是鈍角三角形,∴(此時(shí)為直角三角形舍去).∴的面積為.故選A.【題目點(diǎn)撥】本題主要考查余弦定理解三角形和三角形的面積的計(jì)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于基礎(chǔ)題.2、C【解題分析】
先求出取最大值時(shí)的所有的解,再解不等式,由解的個(gè)數(shù)決定出的取值范圍.【題目詳解】設(shè),所以,解得,所以滿足的值恰好只有5個(gè),所以的取值可能為0,1,2,3,4,由,故選C.【題目點(diǎn)撥】本題主要考查正弦函數(shù)的最值以及不等式的解法,意在考查學(xué)生的數(shù)學(xué)運(yùn)算能力.3、B【解題分析】
正四棱錐,連接底面對(duì)角線,在中,為側(cè)棱與地面所成角,通過(guò)邊的關(guān)系得到答案.【題目詳解】正四棱錐,連接底面對(duì)角線,,易知為等腰直角三角形.中點(diǎn)為,又正四棱錐知:底面即為所求角為,答案為B【題目點(diǎn)撥】本題考查了線面夾角的計(jì)算,意在考察學(xué)生的計(jì)算能力和空間想象力.4、C【解題分析】
由判斷出數(shù)列是等比數(shù)列,再求出,利用等比數(shù)列前項(xiàng)和公式求解即可.【題目詳解】由,得,所以數(shù)列是以為公比的等比數(shù)列,又,所以,由等比數(shù)列前項(xiàng)和公式,.故選:C【題目點(diǎn)撥】本題主要考查等比數(shù)列的定義和等比數(shù)列前項(xiàng)和公式的應(yīng)用,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.5、B【解題分析】
根據(jù)分層抽樣各層在總體的比例與在樣本的比例相同求解.【題目詳解】因?yàn)榉謱映闃涌傮w和各層的抽樣比例相同,所以各層在總體的比例與在樣本的比例相同,所以樣本中乙類型飲品的數(shù)量為.故選B.【題目點(diǎn)撥】本題考查分層抽樣,依據(jù)分層抽樣總體和各層的抽樣比例相同.6、C【解題分析】
利用特殊值對(duì)錯(cuò)誤選項(xiàng)進(jìn)行排除,然后證明正確的不等式.【題目詳解】取代入驗(yàn)證可知,A、D選項(xiàng)錯(cuò)誤;取代入驗(yàn)證可知,B選項(xiàng)錯(cuò)誤.對(duì)于C選項(xiàng),由于,所以,即成立.故選:C【題目點(diǎn)撥】本小題主要考查不等式的性質(zhì),屬于基礎(chǔ)題.7、D【解題分析】
由不等式與方程的關(guān)系可得且,則等價(jià)于,再結(jié)合二次不等式的解法求解即可.【題目詳解】解:由關(guān)于x的不等式的解集是,由不等式與方程的關(guān)系可得且,則等價(jià)于等價(jià)于,解得,即關(guān)于x的不等式的解集是,故選:D.【題目點(diǎn)撥】本題考查了不等式與方程的關(guān)系,重點(diǎn)考查了二次不等式的解法,屬基礎(chǔ)題.8、C【解題分析】
列舉每個(gè)事件所包含的基本事件,結(jié)合互斥事件和對(duì)立事件的定義,依次驗(yàn)證即可【題目詳解】對(duì)于A:事件:“至少有一個(gè)黑球”與事件:“都是黑球”可以同時(shí)發(fā)生,如:兩個(gè)都是黑球,∴這兩個(gè)事件不是互斥事件,∴A不正確對(duì)于B:事件:“至少有一個(gè)黑球”與事件:“至少有一個(gè)白球”可以同時(shí)發(fā)生,如:一個(gè)白球一個(gè)黑球,∴B不正確對(duì)于C:事件:“恰好有一個(gè)黑球”與事件:“恰有兩個(gè)黑球”不能同時(shí)發(fā)生,但從口袋中任取兩個(gè)球時(shí)還有可能是兩個(gè)都是白球,∴兩個(gè)事件是互斥事件但不是對(duì)立事件,∴C正確對(duì)于D:事件:“至少有一個(gè)黑球”與“都是白球”不能同時(shí)發(fā)生,但一定會(huì)有一個(gè)發(fā)生,∴這兩個(gè)事件是對(duì)立事件,∴D不正確故選C.【題目點(diǎn)撥】本題考查互斥事件與對(duì)立事件.首先要求理解互斥事件和對(duì)立事件的定義,理解互斥事件與對(duì)立事件的聯(lián)系與區(qū)別.同時(shí)要能夠準(zhǔn)確列舉某一事件所包含的基本事件.屬簡(jiǎn)單題9、C【解題分析】
先求出圓心到直線的距離d,然后根據(jù)圓的弦長(zhǎng)公式l=2r【題目詳解】由題意得,圓x+22+y+32=5圓心-2,-3到直線2x+y+4=0的距離為d=|2×(-2)-3+4|∴MN=2故選C.【題目點(diǎn)撥】求圓的弦長(zhǎng)有兩種方法:一是求出直線和圓的交點(diǎn)坐標(biāo),然后利用兩點(diǎn)間的距離公式求解;二是利用幾何法求解,即求出圓心到直線的距離,在由半徑、弦心距和半弦長(zhǎng)構(gòu)成的直角三角形中運(yùn)用勾股定理求解,此時(shí)不要忘了求出的是半弦長(zhǎng).在具體的求解中一般利用幾何法,以減少運(yùn)算、增強(qiáng)解題的直觀性.10、C【解題分析】因?yàn)閿?shù)列為等比數(shù)列,所以,所以.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
利用反函數(shù)的運(yùn)算法則,定義及其性質(zhì),求解即可.【題目詳解】由,得所以,又因?yàn)?,所?故答案為:【題目點(diǎn)撥】本題考查反余弦函數(shù)的運(yùn)算法則,反函數(shù)的定義域,考查學(xué)生計(jì)算能力,屬于基礎(chǔ)題.12、①③④⑤【解題分析】
設(shè)出幾何體的邊長(zhǎng),根據(jù)正六邊形的性質(zhì),線面垂直的判定定理,線面平行的判定定理,面面垂直的判定定理,異面直線所成角,線面角有關(guān)知識(shí),對(duì)五個(gè)結(jié)論逐一分析,由此得出正確結(jié)論的序號(hào).【題目詳解】設(shè)正六邊形長(zhǎng)為,則.根據(jù)正六邊形的幾何性質(zhì)可知,由平面得,所以平面,所以,故①正確.由于,而,所以直線平面不正確,故②錯(cuò)誤.易證得,所以平面,所以平面平面,故③正確.由于,所以是異面直線與所成角,在中,,故,也即異面直線與所成角為,故④正確.連接,則,由①證明過(guò)程可知平面,所以平面,所以是所求線面角,在三角形中,,由余弦定理得,故⑤正確.綜上所述,正確的序號(hào)為①③④⑤.【題目點(diǎn)撥】本小題主要考查線面垂直的判定,面面垂直的判定,考查線線角、線面角的求法,屬于中檔題.13、【解題分析】
根據(jù)向量減法運(yùn)算得結(jié)果.【題目詳解】利用向量的三角形法則,可得,,又,,則,.故答案為.【題目點(diǎn)撥】本題考查向量表示,考查基本化解能力14、【解題分析】
由等比中項(xiàng),結(jié)合得,化簡(jiǎn)即可.【題目詳解】由等比中項(xiàng)得,得,設(shè)等比數(shù)列的公比為,化簡(jiǎn).故答案為:4【題目點(diǎn)撥】本題考查了等比中項(xiàng)的性質(zhì),通項(xiàng)公式的應(yīng)用,屬于基礎(chǔ)題.15、-1【解題分析】
根據(jù)線性規(guī)劃的基本方法求解即可.【題目詳解】畫出可行域有:因?yàn)?根據(jù)當(dāng)直線縱截距最大時(shí),取得最小值.由圖易得在處取得最小值.故答案為:【題目點(diǎn)撥】本題主要考查了線性規(guī)劃的基本運(yùn)用,屬于基礎(chǔ)題.16、.【解題分析】
先由求出的值,再利用同角三角函數(shù)的基本關(guān)系式求出、即可.【題目詳解】因?yàn)闉榈诙笙藿牵?,所以,解得,再由及為第二象限角可得、,此時(shí).故答案為:.【題目點(diǎn)撥】本題主要考查兩角差的正切公式及同角三角函數(shù)的基本關(guān)系式的應(yīng)用,屬常規(guī)考題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)答案不唯一,具體見(jiàn)解析(3)1【解題分析】
(1)根據(jù)韋達(dá)定理即可。(2)分別對(duì)三種情況進(jìn)行討論。(3)帶入,分別對(duì)時(shí)三種情況討論。【題目詳解】(1)的解集為可得1,2是方程的兩根,則,(2)時(shí),時(shí),時(shí),(3),為上的奇函數(shù)當(dāng)時(shí),當(dāng)時(shí),,則函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,且時(shí),,在時(shí),取得最大值,即;當(dāng)時(shí),,則函數(shù)在上單調(diào)遞減,在上單調(diào)遞減,且時(shí),,在時(shí),取得最小值,即;對(duì)于任意的都有則等價(jià)于或()則的最小值為1【題目點(diǎn)撥】本題主要考查了含參數(shù)的一元二次不等式,以及絕對(duì)值不等式,在解決含參數(shù)的不等式時(shí)首先要對(duì)參數(shù)進(jìn)行討論。本題屬于難題。18、(1)證明見(jiàn)詳解;(2).【解題分析】
(1)先證明平面,再推出面面垂直;(2)由(1)可知即為所求,在三角形中求角即可.【題目詳解】(1)證明:因?yàn)?,所以;又為的中點(diǎn),所以.在直三棱柱中,平面.又因?yàn)槠矫嬷?,所以,因?yàn)?,所以平面,又因?yàn)槠矫?,所以平面平?(2)由(1)知為在平面內(nèi)的射影,所以為直線與平面所成的角,設(shè),則,在中,,在中,,又,得,因此直線與平面所成的角為.【題目點(diǎn)撥】本題第一問(wèn)考查由線面垂直證明面面垂直,第二問(wèn)考查線面角的求解,屬綜合基礎(chǔ)題.19、(1)函數(shù)的解析式為,其振幅是2,初相是(2)時(shí),函數(shù)取得最大值0;時(shí),函數(shù)取得最小值勤-2【解題分析】
(1)根據(jù)圖像寫出,由周期求出,再由點(diǎn)確定的值.(2)根據(jù)的取值范圍確定的取值范圍,再由的單調(diào)求出最值【題目詳解】(1)由圖象知,函數(shù)的最大值為2,最小值為-2,∴,又∵,∴,,∴.∴函數(shù)的解析式為.∵函數(shù)的圖象經(jīng)過(guò)點(diǎn),∴,∴,又∵,∴.故函數(shù)的解析式為,其振幅是2,初相是.(2)∵,∴.于是,當(dāng),即時(shí),函數(shù)取得最大值0;當(dāng),即時(shí),函數(shù)取得最小值為-2.【題目點(diǎn)撥】本題考查由圖像確定三角函數(shù)、給定區(qū)間求三角函數(shù)的最值,屬于基礎(chǔ)題.20、(1)(2)【解題分析】
(1)由余弦定理和誘導(dǎo)公式整理,得到,求出;(2)在中,用余弦定理表示出,判斷是等腰直角三角形,再利用三角形面積公式表示出,再利用輔助角公式化簡(jiǎn),求出四邊形面積的最大值.【題目詳解】(1)在中,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度企業(yè)法律培訓(xùn)法律顧問(wèn)聘用協(xié)議2篇
- 2025年度公司與自然人環(huán)境保護(hù)治理合作協(xié)議3篇
- 2025年度智能交通領(lǐng)域公司合作股權(quán)協(xié)議書模板3篇
- 農(nóng)村家庭房屋分割與農(nóng)村環(huán)境保護(hù)合作協(xié)議(2025年度)
- 二零二五年度茶葉電商平臺(tái)客戶服務(wù)合作協(xié)議3篇
- 二零二五年度養(yǎng)殖場(chǎng)養(yǎng)殖技術(shù)指導(dǎo)服務(wù)合同3篇
- 2025農(nóng)村回遷房買賣合同(含公共設(shè)施配套)
- 二零二五年度生態(tài)農(nóng)業(yè)示范園-鄉(xiāng)土樹種批量采購(gòu)合同
- 2025年公司年會(huì)場(chǎng)地租賃及布置服務(wù)合同3篇
- 2025年度農(nóng)產(chǎn)品冷鏈物流配送合同版3篇
- 2024初中數(shù)學(xué)競(jìng)賽真題訓(xùn)練(學(xué)生版+解析版)(共6個(gè))
- 江蘇省南通市崇川區(qū)2023-2024學(xué)年八上期末數(shù)學(xué)試題(原卷版)
- 河南省鄭州市2023-2024學(xué)年高二上學(xué)期期末考試歷史試題(解析版)
- 遼寧省沈陽(yáng)市沈河區(qū)2024-2025學(xué)年九年級(jí)上學(xué)期期末道德與法治試題(含答案)
- 江西省贛州市南康區(qū)2023-2024學(xué)年八年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(含答案)
- 《制造業(yè)成本核算》課件
- 2024項(xiàng)目經(jīng)理講安全課
- 中國(guó)共產(chǎn)主義青年團(tuán)團(tuán)章
- 采購(gòu)原材料年終總結(jié)
- 蘇教版(2024新版)七年級(jí)上冊(cè)生物期末學(xué)情評(píng)估模擬試卷(含答案)
- 2023-2024學(xué)年廣東省深圳市福田區(qū)教科版三年級(jí)上冊(cè)期末考試科學(xué)試卷
評(píng)論
0/150
提交評(píng)論