![2024屆云南省元陽縣一中數(shù)學高一下期末教學質(zhì)量檢測模擬試題含解析_第1頁](http://file4.renrendoc.com/view11/M00/06/11/wKhkGWWeet-AZCDTAAIJ0FjXUxQ622.jpg)
![2024屆云南省元陽縣一中數(shù)學高一下期末教學質(zhì)量檢測模擬試題含解析_第2頁](http://file4.renrendoc.com/view11/M00/06/11/wKhkGWWeet-AZCDTAAIJ0FjXUxQ6222.jpg)
![2024屆云南省元陽縣一中數(shù)學高一下期末教學質(zhì)量檢測模擬試題含解析_第3頁](http://file4.renrendoc.com/view11/M00/06/11/wKhkGWWeet-AZCDTAAIJ0FjXUxQ6223.jpg)
![2024屆云南省元陽縣一中數(shù)學高一下期末教學質(zhì)量檢測模擬試題含解析_第4頁](http://file4.renrendoc.com/view11/M00/06/11/wKhkGWWeet-AZCDTAAIJ0FjXUxQ6224.jpg)
![2024屆云南省元陽縣一中數(shù)學高一下期末教學質(zhì)量檢測模擬試題含解析_第5頁](http://file4.renrendoc.com/view11/M00/06/11/wKhkGWWeet-AZCDTAAIJ0FjXUxQ6225.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆云南省元陽縣一中數(shù)學高一下期末教學質(zhì)量檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若將函數(shù)的圖象向左平移個單位長度,平移后的圖象關(guān)于點對稱,則函數(shù)在上的最小值是A. B. C. D.2.《五曹算經(jīng)》是我國南北朝時期數(shù)學家甄鸞為各級政府的行政人員編撰的一部實用算術(shù)書.其第四卷第九題如下:“今有平地聚粟,下周三丈高四尺,問粟幾何?”其意思為“場院內(nèi)有圓錐形稻谷堆,底面周長3丈,高4尺,那么這堆稻谷有多少斛?”已知1丈等于10尺,1斜稻谷的體積約為1.62立方尺,圓周率約為3,估算出堆放的稻谷約有()A.57.08斜 B.171.24斛 C.61.73斛 D.185.19斛3.已知函數(shù)的值域為,且圖像在同一周期內(nèi)過兩點,則的值分別為()A. B.C. D.4.已知,且,則()A. B. C. D.5.設(shè)點M是直線上的一個動點,M的橫坐標為,若在圓上存在點N,使得,則的取值范圍是()A. B. C. D.6.設(shè)x,y滿足約束條件2x-y+2≥0,8x-y-4≤0,x≥0,y≥0,若目標函數(shù)z=abx+y(a,A.2 B.4 C.6 D.87.已知,表示兩條不同的直線,表示平面,則下列說法正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則8.在等差數(shù)列中,若,則()A. B. C. D.9.已知向量,,則向量的夾角的余弦值為()A. B. C. D.10.已知函數(shù)在區(qū)間上恒成立,則實數(shù)的最小值是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在等差數(shù)列中,,,則的值為_______.12.函數(shù)()的值域是__________.13.函數(shù)的值域是______.14.設(shè)常數(shù),函數(shù),若的反函數(shù)的圖像經(jīng)過點,則_______.15.用數(shù)學歸納法證明時,從“到”,左邊需增乘的代數(shù)式是___________.16.已知為直線上一點,過作圓的切線,則切線長最短時的切線方程為__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知數(shù)列滿足:.(1)證明數(shù)列是等比數(shù)列,并求數(shù)列的通項;(2)求數(shù)列的前項和.18.扇形AOB中心角為,所在圓半徑為,它按如圖(Ⅰ)(Ⅱ)兩種方式有內(nèi)接矩形CDEF.(1)矩形CDEF的頂點C、D在扇形的半徑OB上,頂點E在圓弧AB上,頂點F在半徑OA上,設(shè);(2)點M是圓弧AB的中點,矩形CDEF的頂點D、E在圓弧AB上,且關(guān)于直線OM對稱,頂點C、F分別在半徑OB、OA上,設(shè);試研究(1)(2)兩種方式下矩形面積的最大值,并說明兩種方式下哪一種矩形面積最大?19.的內(nèi)角,,的對邊分別為,,,為邊上一點,為的角平分線,,.(1)求的值:(2)求面積的最大值.20.已知向量,,函數(shù).(1)求函數(shù)的單調(diào)遞增區(qū)間;(2)在中,內(nèi)角、、所對邊的長分別是、、,若,,,求的面積.21.足球,有“世界第一運動的美譽,是全球體育界最具影響力的單項體育運動之一.足球傳球是足球運動技術(shù)之一,是比賽中組織進攻、組織戰(zhàn)術(shù)配合和進行射門的主要手段.足球截球也是足球運動技術(shù)的一種,是將對方控制或傳出的球占為己有,或破壞對方對球的控制的技術(shù),是比賽中由守轉(zhuǎn)攻的主要手段.這兩種運動技術(shù)都需要球運動員的正確判斷和選擇.現(xiàn)有甲、乙兩隊進行足球友誼賽,A、B兩名運動員是甲隊隊員,C是乙隊隊員,B在A的正西方向,A和B相距20m,C在A的正北方向,A和C相距14m.現(xiàn)A沿北偏西60°方向水平傳球,球速為10m/s,同時B沿北偏西30°方向以10m/s的速度前往接球,C同時也以10m/s的速度前去截球.假設(shè)球與B、C都在同一平面運動,且均保持勻速直線運動.(1)若C沿南偏西60°方向前去截球,試判斷B能否接到球?請說明理由.(2)若C改變(1)的方向前去截球,試判斷C能否球成功?請說明理由.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】
由題意得,故得平移后的解析式為,根據(jù)所的圖象關(guān)于點對稱可求得,從而可得,進而可得所求最小值.【題目詳解】由題意得,將函數(shù)的圖象向左平移個單位長度所得圖象對應的解析式為,因為平移后的圖象關(guān)于點對稱,所以,故,又,所以.所以,由得,所以當或,即或時,函數(shù)取得最小值,且最小值為.故選C.【題目點撥】本題考查三角函數(shù)的性質(zhì)的綜合應用,解題的關(guān)鍵是求出參數(shù)的值,容易出現(xiàn)的錯誤是函數(shù)圖象平移時弄錯平移的方向和平移量,此時需要注意在水平方向上的平移或伸縮只是對變量而言的.2、C【解題分析】
根據(jù)圓錐的周長求出底面半徑,再計算圓錐的體積,從而估算堆放的稻谷數(shù).【題目詳解】設(shè)圓錐形稻谷堆的底面半徑為尺,則底面周長為尺,解得尺,又高為尺,所以圓錐的體積為(立方尺);又(斛,所以估算堆放的稻谷約有61.73(斛.故選:.【題目點撥】本題考查了椎體的體積計算問題,也考查了實際應用問題,是基礎(chǔ)題.3、C【解題分析】
先利用可求出的值,再利用、兩點橫坐標之差的絕對值為周期的一半,計算出周期,再由可計算出的值,從而可得出答案.【題目詳解】由題意可知,,、兩點橫坐標之差的絕對值為周期的一半,則,,因此,,,故選C.【題目點撥】本題考查三角函數(shù)的解析式的求解,求解步驟如下:(1)求、:,;(2)求:根據(jù)題中信息求出最小正周期,利用公式求出的值;(3)求:將對稱中心點和最高、最低點的坐標代入函數(shù)解析式,若選擇對稱中心點,還要注意函數(shù)在該點附近的單調(diào)性.4、A【解題分析】
根據(jù),,利用平方關(guān)系得到,再利用商數(shù)關(guān)系得到,最后用兩和的正切求解.【題目詳解】因為,,所以,所以,所以.故選:A【題目點撥】本題主要考查了同角三角函數(shù)基本關(guān)系式和兩角和的正切公式,還考查了運算求解的能力,屬于中檔題.5、D【解題分析】
由題意畫出圖形,根據(jù)直線與圓的位置關(guān)系可得相切,設(shè)切點為P,數(shù)形結(jié)合找出M點滿足|MP|≤|OP|的范圍,從而得到答案.【題目詳解】由題意可知直線與圓相切,如圖,設(shè)直線x+y?2=0與圓相切于點P,要使在圓上存在點N,使得,使得最大值大于或等于時一定存在點N,使得,而當MN與圓相切時,此時|MP|取得最大值,則有|MP|≤|OP|才能滿足題意,圖中只有在M1、M2之間才可滿足,∴的取值范圍是[0,2].故選:D.【題目點撥】本題考查直線與圓的位置關(guān)系,根據(jù)數(shù)形結(jié)合思想,畫圖進行分析可得,屬于中等題.6、B【解題分析】
畫出不等式組對應的平面區(qū)域,平移動直線至1,4時z有最大值8,再利用基本不等式可求a+b的最小值.【題目詳解】原不等式組表示的平面區(qū)域如圖中陰影部分所示,當直線z=abx+y(a,b>0)過直線2x-y+2=0與直線8x-y-4=0的交點1,4時,目標函數(shù)z=abx+y(a,即ab=4,所以a+b≥2ab=4,當且僅當a=b=2時,等號成立.所以【題目點撥】二元一次不等式組的條件下的二元函數(shù)的最值問題,常通過線性規(guī)劃來求最值,求最值時往往要考二元函數(shù)的幾何意義,比如3x+4y表示動直線3x+4y-z=0的橫截距的三倍,而y+2x-1則表示動點Px,y與7、A【解題分析】
根據(jù)線面垂直的判定與性質(zhì)、線面平行的判定與性質(zhì)依次判斷各個選項可得結(jié)果.【題目詳解】選項:由線面垂直的性質(zhì)定理可知正確;選項:由線面垂直判定定理知,需垂直于內(nèi)兩條相交直線才能說明,錯誤;選項:若,則平行關(guān)系不成立,錯誤;選項:的位置關(guān)系可能是平行或異面,錯誤.故選:【題目點撥】本題考查空間中線面平行與垂直相關(guān)命題的辨析,關(guān)鍵是能夠熟練掌握空間中直線與平面位置關(guān)系的判定與性質(zhì)定理.8、B【解題分析】
由等差數(shù)列的性質(zhì)可得,則答案易求.【題目詳解】在等差數(shù)列中,因為,所以.所以.故選B.【題目點撥】本題考查等差數(shù)列性質(zhì)的應用.在等差數(shù)列中,若,則.特別地,若,則.9、C【解題分析】
先求出向量,再根據(jù)向量的數(shù)量積求出夾角的余弦值.【題目詳解】∵,∴.設(shè)向量的夾角為,則.故選C.【題目點撥】本題考查向量的線性運算和向量夾角的求法,解題的關(guān)鍵是求出向量的坐標,然后根據(jù)數(shù)量積的定義求解,注意計算的準確性,屬于基礎(chǔ)題.10、D【解題分析】
直接利用三角函數(shù)關(guān)系式的恒等變換,把函數(shù)的關(guān)系式變形為正弦型函數(shù),進一步利用恒成立問題的應用求出結(jié)果.【題目詳解】函數(shù),由因為,所以,即,當時,函數(shù)的最大值為,由于在區(qū)間上恒成立,故,實數(shù)的最小值是.故選:D【題目點撥】本題考查了兩角和的余弦公式、輔助角公式以及三角函數(shù)的最值,需熟記公式與三角函數(shù)的性質(zhì),同時考查了不等式恒成立問題,屬于基出題二、填空題:本大題共6小題,每小題5分,共30分。11、.【解題分析】
設(shè)等差數(shù)列的公差為,根據(jù)題中條件建立、的方程組,求出、的值,即可求出的值.【題目詳解】設(shè)等差數(shù)列的公差為,所以,解得,因此,,故答案為:.【題目點撥】本題考查等差數(shù)列的項的計算,常利用首項和公差建立方程組,結(jié)合通項公式以及求和公式進行計算,考查方程思想,屬于基礎(chǔ)題.12、【解題分析】
由,根據(jù)基本不等式即可得出,然后根據(jù)對數(shù)函數(shù)的單調(diào)性即可得出,即求出原函數(shù)的值域.【題目詳解】解:,當且僅當,時取等號,;原函數(shù)的值域是.故答案為:.【題目點撥】考查函數(shù)的值域的定義及求法,基本不等式的應用,以及對數(shù)函數(shù)的單調(diào)性,增函數(shù)的定義.13、【解題分析】
先求得函數(shù)的定義域,根據(jù)函數(shù)在定義域內(nèi)的單調(diào)性,求得函數(shù)的值域.【題目詳解】依題意可知,函數(shù)的定義域為,且函數(shù)在區(qū)間上為單調(diào)遞增函數(shù),故當時,函數(shù)有最小值為,當時,函數(shù)有最大值為.所以函數(shù)函數(shù)的值域是.故答案為:.【題目點撥】本小題主要考查反正弦函數(shù)的定義域和單調(diào)性,考查正弦函數(shù)的單調(diào)性,考查利用函數(shù)的單調(diào)性求函數(shù)的值域,屬于基礎(chǔ)題.14、1【解題分析】
反函數(shù)圖象過(2,1),等價于原函數(shù)的圖象過(1,2),代點即可求得.【題目詳解】依題意知:f(x)=lg(x+a)的圖象過(1,2),∴l(xiāng)g(1+a)=2,解得a=1.故答案為:1【題目點撥】本題考查了反函數(shù),熟記其性質(zhì)是關(guān)鍵,屬基礎(chǔ)題.15、.【解題分析】
從到時左邊需增乘的代數(shù)式是,化簡即可得出.【題目詳解】假設(shè)時命題成立,則,當時,從到時左邊需增乘的代數(shù)式是.故答案為:.【題目點撥】本題考查數(shù)學歸納法的應用,考查推理能力與計算能力,屬于中檔題.16、或【解題分析】
利用切線長最短時,取最小值找點:即過圓心作直線的垂線,求出垂足點.就切線的斜率是否存在分類討論,結(jié)合圓心到切線的距離等于半徑得出切線的方程.【題目詳解】設(shè)切線長為,則,所以當切線長取最小值時,取最小值,過圓心作直線的垂線,則點為垂足點,此時,直線的方程為,聯(lián)立,得,點的坐標為.①若切線的斜率不存在,此時切線的方程為,圓心到該直線的距離為,合乎題意;②若切線的斜率存在,設(shè)切線的方程為,即.由題意可得,化簡得,解得,此時,所求切線的方程為,即.綜上所述,所求切線方程為或,故答案為或.【題目點撥】本題考查過點的圓的切線方程的求解,考查圓的切線長相關(guān)問題,在過點引圓的切線問題時,要對直線的斜率是否存在進行分類討論,另外就是將直線與圓相切轉(zhuǎn)化為圓心到直線的距離等于半徑長,考查分析問題與解決問題的能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見證明;(2)【解題分析】
(1)由變形得,即,從而可證得結(jié)論成立,進而可求出通項公式;(2)由(1)及條件可求出,然后根據(jù)分組求和法可得.【題目詳解】(1)證明:因為,所以.因為所以所以.又,所以是首項為,公比為2的等比數(shù)列,所以.(2)解:由(1)可得,所以.【題目點撥】證明數(shù)列為等比數(shù)列時,在得到后,不要忘了說明數(shù)列中沒有零項這一步驟.另外,對于數(shù)列的求和問題,解題時要根據(jù)通項公式的特點選擇合適的方法進行求解,屬于基礎(chǔ)題.18、方式一最大值【解題分析】
試題分析:(1)運用公式時要注意審查公式成立的條件,要注意和差、倍角的相對性,要注意升冪、降冪的靈活運用;(2)重視三角函數(shù)的三變:三變指變角、變名、變式;變角:對角的分拆要盡可能化成同名、同角、特殊角;變名:盡可能減少函數(shù)名稱;變式:對式子變形一般要盡可能有理化、整式化、降低次數(shù)等,適當選擇公式進行變形;(3)把形如化為,可進一步研究函數(shù)的周期、單調(diào)性、最值和對稱性.試題解析:解(1)在中,設(shè),則又當即時,(Ⅱ)令與的交點為,的交點為,則,于是,又當即時,取得最大值.,(Ⅰ)(Ⅱ)兩種方式下矩形面積的最大值為方式一:考點:把實際問題轉(zhuǎn)化為三角函數(shù)求最值問題.19、(1)(2)3【解題分析】
(1)由,,根據(jù)三角形面積公式可知,,再根據(jù)角平分線的定義可知,到,的距離相等,所以,即可求出;(2)先根據(jù)(1)可得,,由平方關(guān)系得,再根據(jù)三角形的面積公式,可化簡得,然后根據(jù)基本不等式即可求出面積的最大值.【題目詳解】(1)如圖所示:因為,所以.又因為為的角平分線,所以到,的距離相等,所以所以.(2)由(1)及余弦定理得:所以,又因為所以,所以又因為且,故所以,當且僅當即時取等號.所以面積的最大值為.【題目點撥】本題主要考查正余弦定理在解三角形中的應用,三角形面積公式的應用,以及利用基本不等式求最值,意在考查學生的轉(zhuǎn)化能力和數(shù)學運算能力,屬于中檔題.2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025電梯貨物購銷合同書模板
- 2025國際技術(shù)咨詢服務(wù)合同
- 2025土地廠房轉(zhuǎn)讓合同范本
- 建筑施工質(zhì)量整改
- 2025商品采購合同審批表
- 2025年中圖版九年級生物下冊月考試卷含答案
- 2025年防靜電刷項目規(guī)劃申請報告模板
- 2025年碾磨谷物及谷物加工品項目立項申請報告模范
- 建筑工程施工管理的關(guān)鍵問題
- 新生杯籃球賽閉幕詞范文(5篇)
- AQ6111-2023個體防護裝備安全管理規(guī)范
- 中國血管通路專家共識解讀
- 開學前幼兒園安全培訓
- 《裝配式蒸壓加氣混凝土外墻板保溫系統(tǒng)構(gòu)造》中
- 中國紅十字會救護員培訓理論考試試題及答案
- 《建設(shè)工程監(jiān)理》課件
- 2019版新人教版高中英語必修+選擇性必修共7冊詞匯表匯總(帶音標)
- 中層領(lǐng)導的高績效管理
- 小小銀行家-兒童銀行知識、理財知識培訓
- 閱讀理解特訓卷-英語四年級上冊譯林版三起含答案
- 國庫集中支付培訓班資料-國庫集中支付制度及業(yè)務(wù)操作教學課件
評論
0/150
提交評論