2024屆安徽省安慶一中高一數(shù)學第二學期期末達標檢測試題含解析_第1頁
2024屆安徽省安慶一中高一數(shù)學第二學期期末達標檢測試題含解析_第2頁
2024屆安徽省安慶一中高一數(shù)學第二學期期末達標檢測試題含解析_第3頁
2024屆安徽省安慶一中高一數(shù)學第二學期期末達標檢測試題含解析_第4頁
2024屆安徽省安慶一中高一數(shù)學第二學期期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆安徽省安慶一中高一數(shù)學第二學期期末達標檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.平行四邊形中,M為的中點,若.則=()A. B.2 C. D.2.如圖,圓O所在的平面,AB是圓O的直徑,C是圓周上一點(與A、B均不重合),則圖中直角三角形的個數(shù)是()A.1 B.2 C.3 D.43.一個幾何體的三視圖如圖,則該幾何體的體積為()A. B. C.10 D.4.的內(nèi)角,,的對邊分別為,,.已知,則()A. B. C. D.5.已知圓柱的軸截面為正方形,且該圓柱的側(cè)面積為,則該圓柱的體積為A. B. C. D.6.已知a,b,c,d∈R,則下列不等式中恒成立的是()A.若a>b,c>d,則ac>bd B.若a>b,則C.若a>b>0,則(a﹣b)c>0 D.若a>b,則a﹣c>b﹣c7.在集合且中任取一個元素,所取元素x恰好滿足方程的概率是()A. B. C. D.8.已知函數(shù),則下列命題正確的是()①的最大值為2;②的圖象關(guān)于對稱;③在區(qū)間上單調(diào)遞增;④若實數(shù)m使得方程在上恰好有三個實數(shù)解,,,則;A.①② B.①②③ C.①③④ D.①②③④9.設(shè)x,y滿足約束條件,則z=x-y的取值范圍是A.[–3,0] B.[–3,2] C.[0,2] D.[0,3]10.直線過且在軸與軸上的截距相等,則的方程為()A. B.C.和 D.二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,正方體中,的中點為,的中點為,為棱上一點,則異面直線與所成角的大小為__________.12.在平面直角坐標系中,點到直線的距離為______.13.一個社會調(diào)查機構(gòu)就某地居民收入調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫出了如圖所示的頻率分布直方圖,現(xiàn)要從這10000人中再用分層抽樣的方法抽出100人作進一步調(diào)查,則月收入在(元)內(nèi)的應抽出___人.14.函數(shù)的定義域為__________;15.已知與的夾角為求=_____.16.若、為單位向量,且,則向量、的夾角為_______.(用反三角函數(shù)值表示)三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在中,內(nèi)角所對的邊分別為.已知,,.(Ⅰ)求和的值;(Ⅱ)求的值.18.已知向量(cosx+sinx,1),(sinx,),函數(shù).(1)若f(θ)=3且θ∈(0,π),求θ;(2)求函數(shù)f(x)的最小正周期T及單調(diào)遞增區(qū)間.19.設(shè)數(shù)列滿足,,,.s(1)證明:數(shù)列是等差數(shù)列,并求數(shù)列的通項;(2)求數(shù)列的通項,并求數(shù)列的前項和;(3)若,且是單調(diào)遞增數(shù)列,求實數(shù)的取值范圍.20.某企業(yè)生產(chǎn)一種產(chǎn)品,質(zhì)量測試分為:指標不小于為一等品;指標不小于且小于為二等品;指標小于為三等品。其中每件一等品可盈利元,每件二等品可盈利元,每件三等品虧損元?,F(xiàn)對學徒甲和正式工人乙生產(chǎn)的產(chǎn)品各件的檢測結(jié)果統(tǒng)計如下:測試指標甲乙根據(jù)上表統(tǒng)計得到甲、乙生產(chǎn)產(chǎn)品等級的頻率分別估計為他們生產(chǎn)產(chǎn)品等級的概率。求:(1)乙生產(chǎn)一件產(chǎn)品,盈利不小于元的概率;(2)若甲、乙一天生產(chǎn)產(chǎn)品分別為件和件,估計甲、乙兩人一天共為企業(yè)創(chuàng)收多少元?(3)從甲測試指標為與乙測試指標為共件產(chǎn)品中選取件,求兩件產(chǎn)品的測試指標差的絕對值大于的概率.21.(1)證明:;(2)證明:對任何正整數(shù)n,存在多項式函數(shù),使得對所有實數(shù)x均成立,其中均為整數(shù),當n為奇數(shù)時,,當n為偶數(shù)時,;(3)利用(2)的結(jié)論判斷是否為有理數(shù)?

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解題分析】

先求出,再根據(jù)得到解方程組即得解.【題目詳解】由題意得,又因為,所以,由題意得,所以解得所以,故選A.【題目點撥】本題主要考查平面向量的運算法則,意在考查學生對這些知識的理解掌握水平,屬于基礎(chǔ)題.2、D【解題分析】

利用直徑所對的圓周角為直角和線面垂直的判定定理和性質(zhì)定理即可判斷出答案.【題目詳解】AB是圓O的直徑,則AC⊥BC,由于PA⊥平面ABC,則PA⊥BC,即有BC⊥平面PAC,則有BC⊥PC,則△PBC是直角三角形;由于PA⊥平面ABC,則PA⊥AB,PA⊥AC,則△PAB和△PAC都是直角三角形;再由AC⊥BC,得∠ACB=90°,則△ACB是直角三角形.綜上可知:此三棱錐P?ABC的四個面都是直角三角形.故選D.【題目點撥】本題考查直線與平面垂直的性質(zhì),考查垂直關(guān)系的推理與證明,屬于基礎(chǔ)題.3、B【解題分析】

由三視圖可知該幾何體為正四棱臺,下底面邊長為4,上底面邊長為2,高為1.再由正四棱臺體積公式求解.【題目詳解】由三視圖可知該幾何體為正四棱臺,下底面邊長為4,上底面邊長為2,高為1,所以,,∴該正四棱臺的體積.故選:B.【題目點撥】本題考查由三視圖求正四棱臺的體積,關(guān)鍵是由三視圖判斷出原幾何體的形狀,屬于基礎(chǔ)題.4、A【解題分析】

由正弦定理,整理得到,即可求解,得到答案.【題目詳解】在中,因為,由正弦定理可得,因為,則,所以,即,又因為,則,故選A.【題目點撥】本題主要考查了正弦定理的應用,其中解答中熟練應用正弦定理的邊角互化,以及特殊角的三角函數(shù)是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.5、C【解題分析】

設(shè)圓柱的底面半徑,該圓柱的高為,利用側(cè)面積得到半徑,再計算體積.【題目詳解】設(shè)圓柱的底面半徑.因為圓柱的軸截面為正方形,所以該圓柱的高為因為該圓柱的側(cè)面積為,所以,解得,故該圓柱的體積為.故答案選C【題目點撥】本題考查了圓柱的體積,意在考查學生的計算能力和空間想象能力.6、D【解題分析】

根據(jù)不等式的性質(zhì)判斷.【題目詳解】當時,A不成立;當時,B不成立;當時,C不成立;由不等式的性質(zhì)知D成立.故選D.【題目點撥】本題考查不等式的性質(zhì),不等式的性質(zhì)中,不等式兩邊乘以同一個正數(shù),不等式號方向不變,兩邊乘以同一個負數(shù),不等式號方向改變,這個性質(zhì)容易出現(xiàn)錯誤:一是不區(qū)分所乘數(shù)的正負,二是不區(qū)分是否為1.7、B【解題分析】

寫出集合中的元素,分別判斷是否滿足即可得解.【題目詳解】集合且的元素,,,,,,.基本事件總數(shù)為,滿足方程的基本事件數(shù)為.故所求概率.故選:B.【題目點撥】本題考查了古典概型概率的求解,屬于基礎(chǔ)題.8、C【解題分析】

,由此判斷①的正誤,根據(jù)判斷②的正誤,由求出的單調(diào)遞增區(qū)間,即可判斷③的正誤,結(jié)合的圖象判斷④的正誤.【題目詳解】因為,故①正確因為,故②不正確由得所以在區(qū)間上單調(diào)遞增,故③正確若實數(shù)m使得方程在上恰好有三個實數(shù)解,結(jié)合的圖象知,必有此時,另一解為即,,滿足,故④正確綜上可知:命題正確的是①③④故選:C【題目點撥】本題考查的是三角函數(shù)的圖象及其性質(zhì),解決這類問題時首先應把函數(shù)化成三角函數(shù)基本型.9、B【解題分析】作出約束條件表示的可行域,如圖中陰影部分所示.目標函數(shù)即,易知直線在軸上的截距最大時,目標函數(shù)取得最小值;在軸上的截距最小時,目標函數(shù)取得最大值,即在點處取得最小值,為;在點處取得最大值,為.故的取值范圍是[–3,2].所以選B.【名師點睛】線性規(guī)劃的實質(zhì)是把代數(shù)問題幾何化,即運用數(shù)形結(jié)合的思想解題.需要注意的是:一,準確無誤地作出可行域;二,畫目標函數(shù)所對應的直線時,要注意與約束條件中的直線的斜率進行比較,避免出錯;三,一般情況下,目標函數(shù)的最大或最小值會在可行域的端點處或邊界上取得.10、B【解題分析】

對直線是否過原點分類討論,若直線過原點滿足題意,求出方程;若直線不過原點,在軸與軸上的截距相等,且不為0,設(shè)直線方程為將點代入,即可求解.【題目詳解】若直線過原點方程為,在軸與軸上的截距均為0,滿足題意;若直線過原點,依題意設(shè)方程為,代入方程無解.故選:B.【題目點撥】本題考查直線在上的截距關(guān)系,要注意過原點的直線在軸上的截距是軸上的截距的任意倍,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

根據(jù)題意得到直線MP運動起來構(gòu)成平面,可得到面,進而得到結(jié)果.【題目詳解】取的中點O連接,,根據(jù)題意可得到直線MP是一條動直線,當點P變動時直線就構(gòu)成了平面,因為MO均為線段的中點,故得到,四邊形為平行四邊形,面,故得到,又面,進而得到.故夾角為.故答案為.【題目點撥】這個題目考查的是異面直線的夾角的求法;常見方法有:將異面直線平移到同一平面內(nèi),轉(zhuǎn)化為平面角的問題;或者證明線面垂直進而得到面面垂直,這種方法適用于異面直線垂直的時候.12、2【解題分析】

利用點到直線的距離公式即可得到答案。【題目詳解】由點到直線的距離公式可知點到直線的距離故答案為2【題目點撥】本題主要考查點到直線的距離,熟練掌握公式是解題的關(guān)鍵,屬于基礎(chǔ)題。13、25【解題分析】由直方圖可得[2500,3000)(元)月收入段共有10000×0.0005×500=2500人按分層抽樣應抽出人.故答案為25.14、【解題分析】

根據(jù)偶次被開方數(shù)大于等于零,分母不為零,列出不等式組,解出即可.【題目詳解】依題意可得,,解得即,故函數(shù)的定義域為.故答案為:.【題目點撥】本題主要考查函數(shù)定義域的求法,涉及三角不等式的解法,屬于基礎(chǔ)題.15、【解題分析】

由題意可得:,結(jié)合向量的運算法則和向量模的計算公式可得的值.【題目詳解】由題意可得:,則:.【題目點撥】本題主要考查向量模的求解,向量的運算法則等知識,意在考查學生的轉(zhuǎn)化能力和計算求解能力.16、.【解題分析】

設(shè)向量、的夾角為,利用平面向量數(shù)量積的運算律與定義計算出的值,利用反三角函數(shù)可求出的值.【題目詳解】設(shè)向量、的夾角為,由平面向量數(shù)量積的運算律與定義得,,,因此,向量、的夾角為,故答案為.【題目點撥】本題考查利用平面向量的數(shù)量積計算平面向量所成的夾角,解題的關(guān)鍵就是利用平面向量數(shù)量積的定義和運算律,考查運算求解能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(Ⅰ).=.(Ⅱ).【解題分析】試題分析:利用正弦定理“角轉(zhuǎn)邊”得出邊的關(guān)系,再根據(jù)余弦定理求出,進而得到,由轉(zhuǎn)化為,求出,進而求出,從而求出的三角函數(shù)值,利用兩角差的正弦公式求出結(jié)果.試題解析:(Ⅰ)解:在中,因為,故由,可得.由已知及余弦定理,有,所以.由正弦定理,得.所以,的值為,的值為.(Ⅱ)解:由(Ⅰ)及,得,所以,.故.考點:正弦定理、余弦定理、解三角形【名師點睛】利用正弦定理進行“邊轉(zhuǎn)角”尋求角的關(guān)系,利用“角轉(zhuǎn)邊”尋求邊的關(guān)系,利用余弦定理借助三邊關(guān)系求角,利用兩角和差公式及二倍角公式求三角函數(shù)值.利用正、余弦定理解三角形問題是高考高頻考點,經(jīng)常利用三角形內(nèi)角和定理,三角形面積公式,結(jié)合正、余弦定理解題.18、(1)θ(2)最小正周期為π;單調(diào)遞增區(qū)間為[kπ,kπ],k∈Z【解題分析】

(1)計算平面向量的數(shù)量積得出函數(shù)f(x)的解析式,求出f(θ)=3時θ的值;

(2)根據(jù)函數(shù)f(x)的解析式,求出它的最小正周期和單調(diào)遞增區(qū)間.【題目詳解】(1)向量(cosx+sinx,1),(sinx,),函數(shù)=sinx(cosx+sinx)sinxcosx+sin2xsin2xcos2x+2=sin(2x)+2,f(θ)=3時,sin(2θ)=1,解得2θ2kπ,k∈Z,即θkπ,k∈Z;又θ∈(0,π),所以θ;(2)函數(shù)f(x)=sin(2x)+2,它的最小正周期為Tπ;令2kπ≤2x2kπ,k∈Z,kπ≤xkπ,k∈Z,所以f(x)的單調(diào)遞增區(qū)間為[kπ,kπ],k∈Z.【題目點撥】本題考查了平面向量的數(shù)量積計算問題,也考查了三角函數(shù)的圖象與性質(zhì)的應用問題,是基礎(chǔ)題.19、(1)證明見解析,;(2),;(3).【解題分析】

(1)利用等差數(shù)列的定義可證明出數(shù)列是等差數(shù)列,并確定該數(shù)列的首項和公差,即可得出數(shù)列的通項;(2)利用累加法求出數(shù)列的通項,然后利用裂項法求出數(shù)列的前項和;(3)求出,然后分為正奇數(shù)和正偶數(shù)兩種情況分類討論,結(jié)合可得出實數(shù)的取值范圍.【題目詳解】(1),等式兩邊同時減去得,,且,所以,數(shù)列是以為首項,以為公差的等差數(shù)列,因此,;(2),,,;(3).當為正奇數(shù)時,,,由,得,可得,由于數(shù)列為單調(diào)遞減數(shù)列,;當為正偶數(shù)時,,,由,得,可得,由于數(shù)列為單調(diào)遞增數(shù)列,.因此,實數(shù)的取值范圍是.【題目點撥】本題考查利用等差數(shù)列的定義證明等差數(shù)列,同時也考查了累加法求通項、裂項求和法以及利用數(shù)列的單調(diào)性求參數(shù),充分利用單調(diào)性的定義來求解,考查運算求解能力,屬于中等題.20、(1);(2)元;(3)【解題分析】

(1)設(shè)事件表示“乙生產(chǎn)一件產(chǎn)品,盈利不小于25元”,即該產(chǎn)品的測試指標不小于80,由此能求出乙生產(chǎn)一件產(chǎn)品,盈利不小于25元的概率.(2)由表格知甲生產(chǎn)的一等品、二等品、三等品比例為即,所以甲一天生產(chǎn)30件產(chǎn)品,其中一等品有3件,二等品有21件,三等品有6件;由表格知乙生產(chǎn)的一等品、二等品、三等品比例為,所以乙一天生產(chǎn)20件產(chǎn)品,其中一等品有6件,二等品有12件,三等品有2件,由此能求出甲、乙兩人一天共為企業(yè)創(chuàng)收1195元.(3)設(shè)甲測試指標為,的7件產(chǎn)品用,,,,,,表示,乙測試指標為,的7件產(chǎn)品用,表示,利用列舉法能求出兩件產(chǎn)品的測試指標差的絕對值大于10的概率.【題目詳解】(1)設(shè)事件表示“乙生產(chǎn)一件產(chǎn)品,盈利不小于元”,即該產(chǎn)品的測試指標不小于,則;(2)甲一天生產(chǎn)件產(chǎn)品,其中一等品有件;二等品有件;三等品有件;甲一天生產(chǎn)件產(chǎn)品,其中一等品有件;二等品有件;三等品有,即甲、乙兩人一天共為企業(yè)創(chuàng)收元;(3)設(shè)甲測試指標為的件

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論