安徽省阜陽市界首市2024屆數(shù)學高一下期末質(zhì)量檢測模擬試題含解析_第1頁
安徽省阜陽市界首市2024屆數(shù)學高一下期末質(zhì)量檢測模擬試題含解析_第2頁
安徽省阜陽市界首市2024屆數(shù)學高一下期末質(zhì)量檢測模擬試題含解析_第3頁
安徽省阜陽市界首市2024屆數(shù)學高一下期末質(zhì)量檢測模擬試題含解析_第4頁
安徽省阜陽市界首市2024屆數(shù)學高一下期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

安徽省阜陽市界首市2024屆數(shù)學高一下期末質(zhì)量檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知為銳角,且滿足,則()A. B. C. D.2.已知三棱錐P-ABC的四個頂點在球O的球面上,PA=PB=PC,△ABC是邊長為的正三角形,E,F(xiàn)分別是PA,AB的中點,∠CEF=90°.則球O的體積為()A. B. C. D.3.已知一組正數(shù)的平均數(shù)為,方差為,則的平均數(shù)與方差分別為()A. B. C. D.4.表示不超過的最大整數(shù),設(shè)函數(shù),則函數(shù)的值域為()A. B. C. D.5.一個人打靶時連續(xù)射擊兩次,事件“至多有一次中靶”的互斥事件是A.兩次都中靶B.至少有一次中靶C.兩次都不中靶D.只有一次中靶6.若某程序框圖如圖所示,則該程序運行后輸出的值是()A.3 B.4 C.5 D.67.設(shè),若不等式恒成立,則實數(shù)a的取值范圍是()A. B. C. D.8.若向量,,則()A. B. C. D.9.以拋物線C的頂點為圓心的圓交C于A、B兩點,交C的準線于D、E兩點.已知|AB|=,|DE|=,則C的焦點到準線的距離為()A.2 B.4 C.6 D.810.已知直線與圓交于A、B兩點,O是坐標原點,向量、滿足,則實數(shù)a的值是()A.2 B. C.或 D.2或二、填空題:本大題共6小題,每小題5分,共30分。11.等差數(shù)列中,公差.則與的等差中項是_____(用數(shù)字作答)12.在明朝程大位《算術(shù)統(tǒng)宗》中有這樣的一首歌謠:“遠看巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈”.這首古詩描述的這個寶塔古稱浮屠,本題說“寶塔一共有七層,每層懸掛的紅燈數(shù)是上一層的2倍,共有381盞燈,問塔頂有幾盞燈?”根據(jù)上述條件,從上往下數(shù)第二層有___________盞燈.13.在中,,,是的中點.若,則________.14.已知等差數(shù)列,的前項和分別為,,若,則______.15.已知實數(shù)滿足條件,則的最大值是________.16.設(shè),數(shù)列滿足,,將數(shù)列的前100項從大到小排列得到數(shù)列,若,則k的值為______;三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(Ⅰ)求函數(shù)的最小正周期;(Ⅱ)求函數(shù)在區(qū)間上的最值以及相應(yīng)的x的取值.18.已知圓C過點,圓心在直線上.(1)求圓C的方程;(2)過圓O1:上任一點P作圓C的兩條切線,切點分別為Q,T,求四邊形PQCT面積的取值范圍.19.△ABC在內(nèi)角A、B、C的對邊分別為a,b,c,已知a=bcosC+csinB.(Ⅰ)求B;(Ⅱ)若b=2,求△ABC面積的最大值.20.近年來,鄭州經(jīng)濟快速發(fā)展,躋身新一線城市行列,備受全國矚目.無論是市內(nèi)的井字形快速交通網(wǎng),還是輻射全國的米字形高鐵路網(wǎng),鄭州的交通優(yōu)勢在同級別的城市內(nèi)無能出其右.為了調(diào)查鄭州市民對出行的滿意程度,研究人員隨機抽取了1000名市民進行調(diào)查,并將滿意程度以分數(shù)的形式統(tǒng)計成如下的頻率分布直方圖,其中.(I)求的值;(Ⅱ)求被調(diào)查的市民的滿意程度的平均數(shù),眾數(shù),中位數(shù);(Ⅲ)若按照分層抽樣從,中隨機抽取8人,再從這8人中隨機抽取2人,求至少有1人的分數(shù)在的概率.21.若(1)化簡;(2)求函數(shù)的單調(diào)遞增區(qū)間.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解題分析】

由,得,,即可得到本題答案.【題目詳解】由,得,所以,,所以.故選:D【題目點撥】本題主要考查兩角和的正切公式的應(yīng)用以及特殊角的三角函數(shù)值.2、D【解題分析】

計算可知三棱錐P-ABC的三條側(cè)棱互相垂直,可得球O是以PA為棱的正方體的外接球,球的直徑,即可求出球O的體積.【題目詳解】在△PAC中,設(shè),,,,因為點E,F(xiàn)分別是PA,AB的中點,所以,在△PAC中,,在△EAC中,,整理得,因為△ABC是邊長為的正三角形,所以,又因為∠CEF=90°,所以,所以,所以.又因為△ABC是邊長為的正三角形,所以PA,PB,PC兩兩垂直,則球O是以PA為棱的正方體的外接球,則球的直徑,所以外接球O的體積為.故選D.【題目點撥】本題考查了三棱錐的外接球,考查了學生的空間想象能力,屬于中檔題.3、C【解題分析】

根據(jù)平均數(shù)的性質(zhì)和方差的性質(zhì)即可得到結(jié)果.【題目詳解】根據(jù)平均數(shù)的線性性質(zhì),以及方差的性質(zhì):將一組數(shù)據(jù)每個數(shù)擴大2倍,且加1,則平均數(shù)也是同樣的變化,方差變?yōu)樵瓉淼?倍,故變換后數(shù)據(jù)的平均數(shù)為:;方差為4.故選:C.【題目點撥】本題考查平均數(shù)和方差的性質(zhì),屬基礎(chǔ)題.4、D【解題分析】

由已知可證是奇函數(shù),是互為相反數(shù),對是否為正數(shù)分類討論,即可求解.【題目詳解】的定義域為,,,是奇函數(shù),設(shè),若是整數(shù),則,若不是整數(shù),則.的值域是.故選:D.【題目點撥】本題考查函數(shù)性質(zhì)的應(yīng)用,考查對新函數(shù)定義的理解,考查分類討論思想,屬于中檔題.5、A【解題分析】

利用對立事件、互斥事件的定義直接求解.【題目詳解】一個人打靶時連續(xù)射擊兩次,事件“至多有一次中靶”的互斥事件是兩次都中靶.故選:A.【題目點撥】本題考查互事件的判斷,是中檔題,解題時要認真審題,注意對立事件、互斥事件的定義的合理運用.6、C【解題分析】

根據(jù)程序框圖依次計算得到答案.【題目詳解】根據(jù)程序框圖依次計算得到結(jié)束故答案為C【題目點撥】本題考查了程序框圖,意在考查學生對于程序框圖的理解能力和計算能力.7、D【解題分析】

由題意可得恒成立,討論,,運用基本不等式,可得最值,進而得到所求范圍.【題目詳解】恒成立,即為恒成立,當時,可得的最小值,由,當且僅當取得最小值8,即有,則;當時,可得的最大值,由,當且僅當取得最大值,即有,則,綜上可得.故選.【題目點撥】本題主要考查不等式恒成立問題的解法,注意運用參數(shù)分離和分類討論思想,以及基本不等式的應(yīng)用,意在考查學生的轉(zhuǎn)化思想、分類討論思想和運算能力.8、B【解題分析】

根據(jù)向量的坐標運算,先由,求得,再求的坐標.【題目詳解】因為,所以,所以.故選:B【題目點撥】本題主要考查了向量的坐標運算,還考查了運算求解的能力,屬于基礎(chǔ)題.9、B【解題分析】

如圖,設(shè)拋物線方程為,交軸于點,則,即點縱坐標為,則點橫坐標為,即,由勾股定理知,,即,解得,即的焦點到準線的距離為4,故選B.【題目點撥】10、D【解題分析】

由,兩邊平方,得,所以,則為等腰直角三角形,而圓的半徑,則原點到直線的距離為,所以,解得的值為2或-2.故選D.二、填空題:本大題共6小題,每小題5分,共30分。11、5【解題分析】

根據(jù)等差中項的性質(zhì),以及的值,求出的值即是所求.【題目詳解】根據(jù)等差中項的性質(zhì)可知,的等差中項是,故.【題目點撥】本小題主要考查等差中項的性質(zhì),考查等差數(shù)列基本量的計算,屬于基礎(chǔ)題.12、6.【解題分析】

根據(jù)題意可將問題轉(zhuǎn)化為等比數(shù)列中,已知和,求解的問題;利用等比數(shù)列前項和公式可求得,利用求得結(jié)果.【題目詳解】由題意可知,每層懸掛的紅燈數(shù)成等比數(shù)列,設(shè)為設(shè)第層懸掛紅燈數(shù)為,向下依次為且即從上往下數(shù)第二層有盞燈本題正確結(jié)果;【題目點撥】本題考查利用等比數(shù)列前項和求解基本量的問題,屬于基礎(chǔ)題.13、【解題分析】

在中,由已知利用余弦定理可得,結(jié)合,解得,可求,在中,由余弦定理可得的值.【題目詳解】由題意,在中,由余弦定理可得:可得:所以:…………①又……………②所以聯(lián)立①②,解得.所以在中,由余弦定理得:即故答案為:【題目點撥】本題考查利用余弦定理解三角形,屬于中檔題.14、【解題分析】

利用等差數(shù)列的性質(zhì)以及等差數(shù)列奇數(shù)項之和與中間項的關(guān)系進行化簡求解.【題目詳解】因為是等差數(shù)列,所以,又因為為等差數(shù)列,所以,故.【題目點撥】(1)在等差數(shù)列中,若,則有;(2)在等差數(shù)列.15、8【解題分析】

畫出滿足約束條件的可行域,利用目標函數(shù)的幾何意義求解最大值即可.【題目詳解】實數(shù),滿足條件的可行域如下圖所示:將目標函數(shù)變形為:,則要求的最大值,即使直線的截距最大,由圖可知,直線過點時截距最大,,故答案為:8.【題目點撥】本題考查線性規(guī)劃的簡單應(yīng)用,解題關(guān)鍵是明確目標函數(shù)的幾何意義.16、【解題分析】

根據(jù)遞推公式利用數(shù)學歸納法分析出與的關(guān)系,然后考慮將的前項按要求排列,再根據(jù)項的序號計算出滿足的值即可.【題目詳解】由已知,a1=a,0<a<1;并且函數(shù)y=ax單調(diào)遞減;∵∴1>a2>a1∴,∴a2>a3>a1∵,且∴a2>a4>a3>a1……當為奇數(shù)時,用數(shù)學歸納法證明,當時,成立,設(shè)時,,當時,因為,結(jié)合的單調(diào)性,所以,所以即,所以時成立,所以為奇數(shù)時,;當為偶數(shù)時,用數(shù)學歸納法證明,當時,成立,設(shè)時,,當時,因為,結(jié)合的單調(diào)性,所以,所以即,所以時成立,所以為偶數(shù)時,;用數(shù)學歸納法證明:任意偶數(shù)項大于相鄰的奇數(shù)項即證:當為奇數(shù),,當時,符合,設(shè)時,,當時,因為,結(jié)合的單調(diào)性,所以,所以,所以,所以時成立,所以當為奇數(shù)時,,據(jù)此可知:,當時,若,則有,此時無解;當時,此時的下標成首項為公差為的等差數(shù)列,通項即為,若,所以,所以.故答案為:.【題目點撥】本題考查數(shù)列與函數(shù)的綜合應(yīng)用,難度較難.(1)分析數(shù)列的單調(diào)性時,要注意到數(shù)列作為特殊的函數(shù),其定義域為;(2)證明數(shù)列的單調(diào)性可從與的關(guān)系入手分析.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)時,取得最大值2;時,取得最小值.【解題分析】

(Ⅰ)利用二倍角和兩角和與差以及輔助角公式將函數(shù)化為y=Asin(ωx+φ)的形式,利用三角函數(shù)的周期公式求函數(shù)的最小正周期.(Ⅱ)利用x∈[,]上時,求出內(nèi)層函數(shù)的取值范圍,結(jié)合三角函數(shù)的圖象和性質(zhì),求出f(x)的最大值和最小值.【題目詳解】(Ⅰ)因為函數(shù)f(x)=4cosxsin(x)1.化簡可得:f(x)=4cosxsinxcos4cos2xsin1sin2x+2cos2x1sin2x+cos2x=2sin(2x)所以的最小正周期為.(Ⅱ)因為,所以.當,即時,f(x)取得最大值2;當,即時,f(x)取得最小值-1.【題目點撥】本題主要考查對三角函數(shù)的化簡能力和三角函數(shù)的圖象和性質(zhì)的運用,利用三角函數(shù)公式將函數(shù)進行化簡是解決本題的關(guān)鍵,屬于基礎(chǔ)題.18、(1).(2).【解題分析】分析:(1)根據(jù)條件設(shè)圓的方程為,由題意可解得,于是可求得圓的方程.(2)根據(jù)幾何知識可得,故將所求范圍的問題轉(zhuǎn)化為求切線長的問題,然后根據(jù)切線長的求法可得結(jié)論.詳解:(1)由題意設(shè)圓心為,半徑為,則圓的標準方程為.由題意得,解得,所以圓的標準方程為.(2)由圓的切線的性質(zhì)得,而.由幾何知識可得,又,所以,故,所以,即四邊形面積的取值范圍為.點睛:解決圓的有關(guān)問題時經(jīng)常結(jié)合幾何法求解,借助圖形的直觀性可使得問題的求解簡單直觀.如在本題中將四邊形的面積轉(zhuǎn)化為切線長的問題,然后再轉(zhuǎn)化為圓外一點到圓上的點的距離的范圍的問題求解.19、(Ⅰ)B=(Ⅱ)【解題分析】

(1)∵a=bcosC+csinB∴由正弦定理知sinA=sinBcosC+sinCsinB①在三角形ABC中,A=-(B+C)∴sinA=sin(B+C)=sinBcosC+cosBsinC②由①和②得sinBsinC=cosBsinC而C∈(0,),∴sinC≠0,∴sinB=cosB又B(0,),∴B=(2)S△ABCacsinBac,由已知及余弦定理得:4=a2+c2﹣2accos2ac﹣2ac,整理得:ac,當且僅當a=c時,等號成立,則△ABC面積的最大值為(2)1.20、(Ⅰ)(Ⅱ)平均數(shù)74.9,眾數(shù)75.14,中位數(shù)75;(Ш)【解題分析】

(I)根據(jù)頻率之和為列方程,結(jié)合求出的值.(II)利用各組中點值乘以頻率然后相加,求得平均數(shù).利用中位數(shù)是面積之和為的地方,列式求得中位數(shù).以頻率分布直方圖最高一組的中點作為中位數(shù).(III)先計算出從,中分別抽取人和人,再利用列舉法和古典概型概率計算公式,計算出所求的概率.【題目詳解】解:(I)依題意得,所以,又,所以.(Ⅱ)平均數(shù)為中位數(shù)為眾數(shù)為(Ш)依題意,知分數(shù)在的市民抽取了2人,記為,分數(shù)在的市民抽取了6人,記為1,2,3,4,5,6,所以從這8

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論